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Abstract

Metal and metalloid contamination of soil and sediment is a widespread problem both in urban 

and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-

products as amendments to remediate metal-contaminated soils and sediments can provide major 

economic and environmental advantages on both a site-specific and national scale. These waste 

by-products can also reduce our need to mine virgin materials or produce synthetic materials for 

amendments. Waste by-products must not be hazardous or pose unacceptable risk to human health 

and the environment, and should be a suitable replacement for virgin and synthetic materials. This 

review serves to present the state of science on in situ remediation of metal-contaminated soil and 

sediment and the potential for beneficial usage of waste by-product materials. Not all unintended 

consequences can be fully understood or predicted prior to implementing a treatment option, 

however some realized, and potentially unrealized, benefits and unintended consequences are 

explored.

Keywords

Amendments; metals; remediation; waste by-products

1. Introduction

Metal and metalloid contamination of soil and sediment is a widespread problem throughout 

the United States, both in urban and rural areas.[1] Lead (Pb), chromium (Cr), arsenic (As), 

zinc (Zn), cadmium (Cd), copper (Cu), mercury (Hg), and nickel (Ni) are the most 

commonly found metals and metalloids at contaminated sites.[2] Other less common metals 

found at the contaminated sites include antimony (Sb), barium (Ba), beryllium (Be), 

manganese (Mn), selenium (Se), silver (Ag), thallium (Tl), and vanadium (V). Certain 
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metals (e.g., iron [Fe] or magnesium [Mg]) are naturally present in soil and sediment, but 

rarely at toxic levels. Contamination primarily results from anthropogenic pathways 

including industrial operations, energy generation (e.g., coal combustion), wastes from 

hospital and medical facilities, mining, manufacturing, historical use of leaded gasoline, and 

the use of synthetic products (e.g., paints, pesticides, batteries). Several of the common 

metal contaminants, such as Cu, Ni, and Zn, are essential micronutrients for human, plant, 

animal, and/or microorganism health. Some are toxic at even low concentrations (e.g., Pb, 

Ag, As, Hg), while others (e.g., rubidium [Rb], cesium [Cs], strontium [Sr]) are often neither 

toxic, nor essential.[3] The average concentration range of commonly found metals at 

contaminated sites with their categories are shown in Table 1[4]

The variation in metals’ concentration range is due to the inherent variation in soil lithology 

and parent materials, and does not dictate its mobility or bioavailability in soils and 

sediments. However, it does help determine the native concentrations and the percent 

attributed to the source of contamination. Therefore, differentiating between the baseline (or 

background) and human-induced concentrations is necessary prior to selecting any treatment 

technology.

Once introduced into the environment, metals will remain intact and will not degrade like 

organic molecules. Mercury and Se are exceptions, as they can be transformed and 

volatilized by specific microorganisms.[5] Accumulation of these metals in soil and sediment 

may cause adverse effects on soil/sediment health, food quality, human health, and the 

ecological receptors through various pathways. This may include food chain (e.g., soil → 
plant → animal → human), drinking of contaminated groundwater and/or surface water, 

low food quality (e.g., safety and marketability), potential reduction in agricultural land 

causing food insecurity, and associated land use problems (e.g., vacancy, zoning 

restrictions).[6-8]

Traditionally, mitigation of metal-contaminated soils and sediments has been achieved 

through excavation and disposal in a landfill, and/or capping systems. Excavation requires 

replacement with clean soil, sourced from another location, making this an unsustainable 

remediation approach. Capping systems are used to provide a physical barrier to restrict 

access to contaminated media or to inhibit surface water infiltration to prevent the further 

release of contaminants to the surrounding surface or groundwater. Capping also controls 

gas and odor emissions, and reduces the risks associated with dermal contact/and or 

incidental ingestion of surface soils.[9] Alternatively, immobilization techniques are designed 

to reduce the mobility of contaminants by altering physical or leaching characteristics of the 

contaminated matrix. Mobility is usually decreased by physically restricting the contact 

between contaminant and the surrounding groundwater, or by chemically altering the 

contaminant to make it more stable with respect to dissolution in groundwater or ecoreceptor 

bioavailability. Potential immobilization mechanisms include: solidification/stabilization 

(S/S), chemical reduction, oxidation, phytostabilization, and biological stabilization. Most 

immobilization technologies can be performed ex situ or in situ. Ex situ treatment options 

remove and/or degrade the contaminant above ground. However, it usually takes a longer 

period of time, and often creates the burden of additional treatment or disposal of the 

contaminated material to an offsite location. In situ processes are considered a more 
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environmentally friendly and less intrusive treatment method compared to traditional 

remediation techniques, like excavation and capping,[9-12] and although their 

implementations are site specific, they are often preferred due to lower labor and energy 

requirements. In situ immobilization of metals in soil and sediment has been practiced via 

addition of organic, synthetic, or mineral-based amendments, which can complement natural 

attenuation processes (i.e., sorption, precipitation, and complexation). The remediation of 

metal-contaminated soil and sediment through in situ amendment application can be 

challenging and costly because of a variety of factors that influence the specific 

immobilization mechanisms and geochemical properties (pH, oxidation-reduction potential 

(ORP), mineralogy, conductivity), which come into play when amendments are applied in 

any specific treatment.

When considering the application of amendments generated from waste by-products, a 

thorough understanding of the physical and chemical properties is required. Depending on 

the physical and chemical properties of the amendment and the receiving environment, one 

or more immobilizing mechanisms may be responsible for a specific metal. In general, the 

predominant mechanism by which metals are immobilized through the addition of either 

inorganic (e.g., fly ash, slag, zeolites); organic (e.g., biosolids, manures, paper pulp); or a 

combination of both inorganic and organic by-product amendment types is through the 

precipitation of hydroxides.[13] Unintended consequences, whether beneficial or adverse, 

may result from the application of an amendment and must be considered when deciding on 

an amendment to use at a specific site. An example of an unintended adverse consequence is 

the addition of phosphate amendments to Pb-contaminated soil, which has been shown to 

decrease the mobility and the bioavailability of Pb; however, phosphate additions to Pb-

contaminated soil that also contain elevated concentrations of antimony (Sb) and arsenic 

(As) can greatly increase the mobility of Sb and As.[14] Arsenic and phosphate are known to 

compete for reaction sites, and Sb is similar to As in chemical behavior. Numerous by-

product amendments that can be categorized as waste by-products (from industrial or other 

operations) have been used for metal immobilization, including organic products (e.g., 

biosolids, manures, paper mill sludges); liming/alkaline products (e.g., cement kiln dust 

[CKD], coal combustion residuals [CCRs], red mud); and mineral/inorganic products (e.g., 

foundry sand, gypsum, steel slag). Waste by-products are often valuable resources, but are 

typically disposed of in a landfill in the lack of a better or more cost-effective usage. 

Beneficial use of waste by-products as amendments for metal immobilization in 

contaminated soil and sediment has several advantages as it provides the potential to replace 

virgin and synthetically produced amendments, recycle what would otherwise be disposed, 

and potentially create or strengthen the existing economic markets. The objectives of this 

review article are to: (1) summarize the current state of the science on in situ treatment of 

metal-contaminated soils and sediments; (2) review the more recent use of non-municipal 

and non-hazardous waste by-products for use as soil and sediment amendments; and (3) 

identify physical and chemical properties that are indicative of the success or effectiveness 

of using a specific amendment to treat metals in contaminated soils or sediments.
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2. Overview of treatment technologies

Treatment methods for soil are generally similar to those of sediment, although fewer 

remediation technologies for sediment are both commercially available and cost-effective.
[11,12,15] A summary of remedial options and technologies specifically used for metal-

contaminated soil and sediment is presented in Fig. 1.

The remedial options presented in Fig. 1 can be applied in combination or separately, as well 

as in situ or ex situ, depending on the nature and the extent of contamination and remedial 

goals. In situ, or in its current location, indicates that the contaminated soil is treated in its 

original place; neither excavated nor moved, and remains in the subsurface. In situ treatment 

is often used to reduce metal leaching and metal toxicity/bioavailability, and establish 

vegetation at the contaminated site to reduce wind and water movement (as applicable) of 

metal-laden particles. Ex situ, or offsite, means that the contaminated soil is moved or 

excavated from the original site or subsurface for treatment and disposal, or for replacement. 

Nearly all ex situ technologies tend to be costly compared to in situ technologies due to the 

required operation and maintenance costs, aboveground technology needs, and labor. Ex situ 
treatment may take longer and often create the burden of additional treatment or disposal of 

the contaminated material or generated waste to an offsite location.[16]

3. Factors impacting the treated metals, and mechanisms involved in 

immobilization processes

In addition to the challenges associated with onsite/offsite treatment technologies, it is 

critical to understand the physical and chemical properties of soils/sediments at a particular 

contaminated site prior to application of any amendment. Soil structure, texture, surface 

area, bulk density, and composition are important physical properties that may further 

impact soil/sediment chemical properties. The fate and transport of metals highly depend 

upon the chemical and mineralogical properties such as particle size distribution, pH, 

salinity, nutrients, temperature, cation exchange capacity (CEC), soil moisture contents, 

organic carbon (OC) and organic matter (OM) content, reactivity of metals, concentration of 

organic and inorganic ligands, competing ions, colloid formation, and redox reactions.[17,18] 

The first major step in identifying amendments, and specifically candidate waste by-

products to use as an amendment for in situ remediation of metal-contaminated soils and 

sediments, is to characterize its physical, chemical, and mineralogical properties. This 

review presents physical, chemical, and mineralogical properties of a variety of amendments 

included in peer-reviewed literatures and government (US EPA) publications to better 

understand the success factors of specific amendments and identify similarities across 

amendment types.

In general, the toxicity, mobility, and reactivity of metals depend on the metal’s distribution 

and its speciation. In soils and sediments, metals exist in various physiochemical forms such 

as dissolved, colloidal, exchangeable, adsorbed, organic complexes, precipitates, and as 

incorporated in the structure of secondary minerals.[19,20] Metal ions can be retained in soils 

and sediments largely by (ad)sorption, precipitation, complexation, and chelation reactions, 

thereby making them unavailable (to varying degrees) for human and plant uptake, as well 
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as leaching to the groundwater. More details on common factors affecting the mobilization 

of metals in soils and sediments are provided in Table S1.

3.1. Sorption

Sorption interactions generally operate among all phases present in any subsurface system 

and is defined as the accumulation of matter at the interface between the aqueous solution 

phase and a solid sorbent phase.[21] Solutes that undergo sorption are termed as sorbates, 

sorbing phase is the sorbent, and the primary phase from which sorption occurs is the 

solution or solvent. Absorption and adsorption are two broad categories of the sorption 

phenomenon. Absorption is a process in which a solute is transferred from one phase to 

another that interpenetrates the sorbent phase by at least several nanometers. Adsorption is a 

surface-based process and refers to the adhesion of atoms, ions, or molecules from a gas, 

liquid, or dissolved solid onto a surface. Such accumulation is generally restricted to a 

surface or interface between the solution and adsorbent. Adsorption is the predominant 

mechanism by which metals are immobilized through in situ remediation. Three loosely 

defined categories of adsorption—physical, chemical, and exchange (electrostatic) 

adsorption—are differentiated according to the class of attractive force that predominates.
[21] Physical adsorption is associated with van der Waals attraction between adsorbate and 

adsorbent. The attraction is not fixed to a specific site and the adsorbate is relatively free to 

move on the surface. This is relatively weak, reversible, and capable of multilayer 

adsorption. Chemical adsorption involves chemical bonding between the metal ions and the 

sorption sites on soil particle surfaces, and the adsorbed atoms/molecules are bound to 

specific chemically reactive sites on the surface and are not free to move. There is a high 

degree of specificity and typically a monolayer is formed, therefore chemical adsorption is 

seldom fully reversible. Exchange adsorption (ion exchange) is associated with electrostatic 

interactions due to charged sites on the surface.[16]

3.2. Precipitation

Precipitation is classified as a separate process; however, it is preceded by sorption reactions 

and occurs with an additional variation of the sorption process. Precipitation reactions occur 

when the solution becomes supersaturated with respect to the solid phase of the specific 

element of interest through either a homo-or hetero-aggregation process. Homo-aggregation 

precipitation occurs via nucleation of the supersaturated phase within the soil solution, while 

hetero-aggregation refers to the nucleation of a precipitate at the surface of another material 

where an element first adsorbs onto the surface of a soil particle followed by nucleation of 

the phase. Trace elements such as Zn, Ni, Cr, and Pb can precipitate onto a soil particle 

under specific reaction conditions and in the presence of reactive soil particle surfaces. A 

second form of hetero-aggregation involves co-precipitation, which involves the 

incorporation of a trace element into a mineral structure during solid-state solution 

formation and the recrystallization of minerals (e.g., the incorporation of Sr or Zn into a 

carbonate precipitate). Precipitation as metal phosphates is considered to be one of the major 

mechanisms for the P-induced immobilization of metals.[22]

In a bench-scale study, Jardine et al.[14] (Fig. 2) found that the addition of soluble Fe(II) and 

Fe(III) salts to soil containing Fe and Al oxides were more effective than metallic Fe in 
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reducing As bioaccessibility. Adding soluble Fe(III) salts to contaminated soil caused a 

decrease in soil As bioaccessibility by increasing the Fe(III) (hydr)oxide content via 

precipitation reactions. The freshly precipitated amorphous Fe oxides provide significant 

surface area and charge to strongly bind As(III) and As(V), thus making it less bioavailable 

in soil. When soil moisture was ≥30%, the addition of Fe(III) amendments indicated that the 

reaction can occur in situ.[14] Similarly, Cr(III), which is highly reactive in soil systems, 

readily precipitates with soil Fe oxides and suggests that the transformation of Cr(VI) to 

Cr(III) coupled with the surface reactivity of Cr(III) significantly decreases Cr(VI) 

bioaccessibility.[14] Addition of organic amendments as an electron donor influences the soil 

microorganisms involved in the reduction of chromate Cr(VI) to chromite Cr(III), thereby 

facilitating its adsorption/precipitation reactions.[23]

3.3. Complexation and chelation

A complex consists of a central metal atom to which neutral or negatively charged ligands 

possessing electron donor properties are bonded. The resulting complex may be neutral, 

positive, or negative. Complexation reactions, in the context of metal remediation, are 

represented as Metal (acid) + Ligand (base) = Metal Complex. The general order of affinity 

for complexation of metal cations with OM is as follows: Cu2+ > Hg2+ > Cd2+ > Fe2+ > 

Pb2+ > Ni2+ > Co2+ > Mn2+ > Zn2+.[24] While most trace metals have a high affinity for 

complexation with OM, the formation of the complex is controlled by solution pH, ionic 

strength, redox potential, dominant cation, nature of the metal species, soil surface 

properties, and type and amount of inorganic and organic ligands present in the soil solution.

A special case of complexation that forms strong complexes when a ligand is bound to a 

metal ion in two or more places is called chelation. Stability increases with the number of 

chelating sites available on the ligand. The organic component of soil constituents has a high 

affinity for metal cations due to the presence of ligands or functional groups that can form 

chelates with metals.[25] With increasing pH, the carboxyl, phenolic, alcoholic, and carbonyl 

functional groups in soil OM dissociate, thereby increasing the affinity of the ligand for 

metal cations. Metals that form stable complexes with soluble OM are likely to be mobile in 

soil and sediment.[26] Attenuation of a metal complex may be enhanced when the 

complexing ligand is adsorbed onto a mineral or organic surface as the adsorbed ligand can 

serve as a site for metal retention.[26,27] Complexation may have strong influence on a 

metal’s distribution, fate/transport, and biochemical effects including plant uptake, toxicity, 

and bioavailability.[18,28]

Thus, mechanisms and factors involved in immobilization of metals in soils and sediments 

will provide significant information for amendment applications (Table S2).

4. Soil and sediment amendments

The occurrence of co-contaminants is always challenging and may require a more protective 

solution to counter unintended adverse consequences.[11] For example, the co-occurrence of 

Pb–As is common. In situ stabilization of soil Pb using P amendments, such as phosphate 

fertilizers and phosphate rock, have been suggested as a cost-effective and less-disruptive 

alternative for remediating Pb in soil relative to several other commonly used methods.[30] 
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While the addition of P compounds may immobilize Pb, it has been found to increase the 

mobility of Sb and As because As and phosphate are known to compete for reaction sites, 

and Sb is similar to As in chemical behavior.[14,31,32] Therefore, common sense must prevail 

to utilize an amendment that is capable to sequester both Pb and As, such as iron-

(oxy)hydroxide-based wastes, to reduce or eliminate the known unintended consequences. 

The three major categories have been used in the current review to categorize different types 

of amendments with specific physicochemical characteristics that are capable of 

immobilizing metals in soil and sediment: natural, synthetic, and waste by-product (further 

subcategorized into existing and potential). The characteristics of specific materials within 

each of these three categories may be similar and potentially interchangeable. Choosing a 

waste by-product amendment over other amendment materials (natural or synthetic) may be 

related to the availability of large volumes of the by-product (e.g., biosolids or food waste), 

economic costs or savings, proximity of the source to the remediation site, and/or a 

reduction in the use of virgin materials. As is the case for natural and synthetic amendments, 

the potential unintended consequences of a waste by-product (further reduced ecosystem 

service or increased human health risk) must be carefully considered.

4.1. Natural materials as amendments

Natural materials used as soil/sediment amendments include beneficial natural rock and 

earth materials recovered through mining activities. These materials include limestone, 

gypsum, phosphorite (phosphate rock), zeolite, apatite, bentonite, and other clays. 

Depending on the soil and sediment conditions, variation in particle size may be employed 

to increase the rate of chemical immobilization. Powdered and granulated materials are 

applied most often since grades (or particle sizes) typically available for these materials 

provide more reactive surfaces (higher surface area) to the amended soil. These natural 

materials have a broad range of applications for stabilizing different metal species in a broad 

range of soil conditions.

4.2. Synthetic materials as amendments

Synthetic materials are chemically engineered substances designed specifically for 

compatibility with soil/sediment conditions and the metal species present. Commercially 

developed synthetic materials include zero-valent iron, zeolites, and phosphates. Synthetic 

zeolites can be made from various materials but are often derived from fly ash.[34] 

Approximately 150 synthetic amendments are commercially available compared to 50 

naturally occurring materials. Examples of commercially available synthetic phosphate-

based amendments include EcoBond,[35] Fesi-Bond, and LockUpLead. Metal phosphate 

compounds that form with these types of products can exhibit low solubility. Unlike natural 

phosphate materials, or phosphate-containing wastes, the synthetic product bonds directly to 

the metal and may be less susceptible to pH-related deterioration that eventually enhances 

metals’ mobility.

Synthesized nanoparticles are another emerging type of amendment material. Researchers 

have successfully applied synthesized apatite nanoparticles to Pb-contaminated soil,[36] 

synthesized Fe phosphate (vivianite) nanoparticles to Cu(II)-contaminated soil,[37] and Fe-

Mn binary oxide nanoparticles to As(III)-contaminated soil[38] in laboratory-based 
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experiments. Nanomaterial amendments may not be cost effective as their production carry 

significant costs. To our knowledge, no study has examined the potential of metal-laden 

nanoparticle transport in soils. More details on the subcategories of natural and synthetic 

materials, including clay minerals, carbonates, sulfates, organoclay, phosphates, zeolites, 

iron-based minerals are provided in Table 2 Information on the wise use of amendments by 

considering the target contaminants, immobilization mechanisms involved, and beneficial 

uses to mitigate the potential unintended consequences are also presented.

5. Waste by-products as amendments

A single low-cost industrial by-product that possesses all of the physicochemical 

characteristics necessary for a range of applications does not exist. However, combinations 

of two or more by-products with natural and/or synthetic amendments are routinely used and 

can provide the necessary properties to ameliorate the challenges posed by metal 

contamination in soils and sediments. Waste by-products are viable alternatives to natural or 

synthetic materials under multiple scenarios. Some common examples of waste by-products 

used for immobilizing metals in soil include biosolids, gypsum, calcium compounds, yard 

wastes, and agricultural animal and plant wastes. Using waste by-products for in situ 
remediation of contaminated land is a beneficial use of the material that is likely to have 

both environmental and economic benefits. The economic advantage arise from the fact that 

waste by-products may be used at a low or no cost compared to commercially available 

materials, and the transportation cost can be minimized if waste by-products are obtained 

close to the location where the material will be applied.[11] The major environmental 

advantages associated with using waste by-products as amendments is that wastes are 

averted from being disposed of in landfills or surface impoundments and the need to mine or 

synthetically produce a similar material is reduced. The elimination of extraction of new raw 

material is a major factor in life cycle considerations from materials management 

perspective.

Waste by-products are categorized as organic, liming/alkaline, and mineral/inorganic, and 

can be further classified as either existing or emerging to be consistent with the U.S. EPA's 

2007 report entitled The Use of Soil Amendments for Remediation, Revitalization, and 
Reuse.[11] A high-level summary on the waste by-product amendments identified is 

presented in Table S3.

5.1. Organic waste by-product amendments

In general, the sources of organic waste by-products are associated with sanitary waste 

(biosolids); yard wastes, left over materials from wood processing, plant residues from paper 

mills, agricultural wastes either as (i.e., manures), or composts made from one or more of 

these materials. When added to the soil, these materials generally provide OM and metal 

(oxy)hydroxides to the soil, promote enzymatic activity, and supply essential nutrients to the 

soil matrix. They also cycle nutrients (e.g., plant-available ammonia) and are important for 

nutrient mineralization of phosphates and sulfates. Enzymatic activities also play a role in 

ion exchange processes in the soil, especially in association with clays and soil colloids, 

which are important for metal fixation. Increased available nutrients afforded by organic 
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amendments also promote the growth of soil microbial communities important for viable 

and sustainable plant cover. Soil microbe degradation by-products result in essential plant 

nutrients such as available C, N, O, P, K, and trace elements. Some organic waste by-product 

amendments contain significant C that is effective for adsorbing or chemically bonding 

many metal species.

5.1.1. Biosolids—Biosolids (BS) are commonly used in agricultural land application, 

land and mine site reclamation, and horticulture. They provide additional OM, N, P, and Fe, 

and also play a role in metal immobilization via sorption and complexation of the metal 

fractions associated with OM, metal oxides, or carbonates.[53] Mixed applications of 

biosolids and other waste by-products and non-waste by-products amendments (e.g., 

agricultural lime [ag lime], lime kiln dust [LKD], sugar beet lime [SBL], paper mill 

residues, and natural and iron-activated zeolite) are commonly used to immobilize Cd, Pb, 

Cu, As, and/or Zn in contaminated acid soil.[46,54-59] For example, Brown et al.[55] 

conducted a field study with mixed applications of biosolids combined with other waste by-

product amendments (LKD alone, fine textured lime + biosolids/ag lime + biosolids/coarse 

textured lime + biosolids/SBL + BS, and LKD + BS) on fluvial mine tailings deposits to 

increase plant growth. Plant growth was greatest in the LKD + BS treatment with 92 ± 8% 

cover (Fig. 3). The application of LKD alone (43 ± 21%) and SBL + BS (50 ± 10%) also 

increased plant growth compared to previous years, and growth in all other amended 

treatments was similar with < 25% cover (Fig. 3).

The success of a mixed biosolids application with respect to metal immobilization can vary 

greatly as would be expected when considering the variability in contaminated sites. 

Addition of biosolids or zeolites to seashell grit-amended soil did not exhibit further 

reduction in metal solubilization into soil pore water, but increased As solubilization due to 

excessive soil neutralization (pH > 6.5).[56]

5.1.2. Manures—Manure provide additional OM and nutrients to soils and are 

commonly used in agriculture and horticulture practices to improve soil structure, improve 

water-holding capacity, and enhance crop growth. Manure contains more soluble forms of N, 

which can lead to salt buildup and leaching losses. Only aged manures should be used for 

soil remedial purposes because fresh manures contain high levels of ammonia that may be 

phytotoxic to plants and soil microorganisms. Cow manure has been used to reduce the 

bioavailability of Zn and Mn by 91 and 95%, respectively, compared to non-amended 

control soils[53] due to the increase in soil pH, phosphate, and supplied essential plant 

nutrients.

5.1.3. Compost—Composts provide additional OM and nutrients to soil and are mainly 

used in agriculture and horticulture to improve soil structure, improve water-holding 

capacity, and enhance crop growth. In comparison with manures, compost contains less 

soluble forms of N. Biosolids compost used for soil remediation has been shown to reduce 

Cu bioavailability.[59] Vermicompost (composting enhancement through addition of worm 

populations) has been shown to have a high affinity and adsorption capacity for Cd.[60] The 

application of municipal solid waste (MSW) and biosolids compost to contaminated soil 

with a neutral pH was shown to induce an anaerobic environment, which, in turn, favored 
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the conversion of As(V) to mobile As(III), which was then accumulated by a fern group 

(Pteridium aquilinum, Digitalis thapsi, and Cytisus scoparius).[34]

5.1.4. Yard and/or wood waste—Yard and wood waste from households, waste from 

tree removal and landscaping companies, or wood processing facilities are typically 

collected, then ground or shredded, and made available for purchase. The composition of 

these wastes can vary greatly depending on the source type, method of processing, and 

storage time and methods. The variability in composition, specifically the proportion of 

rock, mineral, OM, and moisture content[62,63] may change over time depending on the 

conditions and duration of storage.[64] This necessitates a thorough understanding of their 

chemical composition and physical properties. [61] Field trials conducted by Venner et al.[61] 

support the application of woody wastes for site rehabilitation if applied under conditions to 

avoid excessive leachate. In situ mixing of yard and/or wood waste with mineral soil has 

been shown to reduce bulk density and improve water-holding capacity; the additional 

fertilizer can compensate for N immobilization by wastes with high C:N ratios.[61] Surface 

application of certain amendments, including biosolids mixed with wood ash, resulted in 

significant decreases in subsoil acidity as well as subsoil extractable metals and was 

sufficient to restore a plant cover to metal-contaminated areas.[55]

5.1.5. Pulp and paper mill manufacturing waste by-products—Pulp and paper 

mill wastes are composed primarily of OM and are commonly applied to mine site soil to 

enhance revegetation as a source of nutrients. Specific waste by-products from pulp and 

paper manufacturing that have been used or have the potential to be used for in situ 
treatment of metals in soil/sediment include bleached pulp mill, kraft mill, deinking wastes, 

bark and wood chips, lime mud, waste paper, slaker grits, green liquor dregs, fiber sludge, 

xylogen (included in wastewater from paper mills), and sawdust. Application of these 

manufacturing wastes have resulted in the sorption of Zn and the attenuation of Cr and 

Cu[54] due to their high organic and clay content. Similar results were observed after 

applying paper mill water treatment sludge to soil contaminated with Cu, Zn, Ni, Pb, and 

Cd. Six months of sludge application showed a decrease of 30–50% in heavy metal mobile 

fractions (reductions in metal concentration were: Cu, 35%; Zn, 42%; Ni, 30%; Pb, 51%; 

Cd, 38%).[65] Enhanced sorption sites may have been made available on the solid phase of 

the contaminated soil after the sludge application.[65]

5.2. Liming/alkaline waste by-product amendments

Waste by-products under this subcategory can be organic (e.g., wood ash) material, 

inorganic (e.g., fly ash) material, or any material that contains labile Ca and Mg. Soil pH is a 

key chemical characteristic for the immobilization of numerous metal species. Soil and 

sediment contaminated with metals are often acidic, thus soil pH is a key chemical 

characteristic for the immobilization of numerous metal species.[11] Liming amendments can 

be used to raise the pH of contaminated soil to favor the formation of hydroxide, oxide, 

carbonate, and phosphate minerals, thereby reducing metals’ mobility and toxicity. Many 

adsorption sites on soil components are pH-dependent (e.g., OM, carbonates, metal oxides 

and clay minerals), and, as the pH decreases, the number of sites for cation adsorption 

decreases.[19,66]
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While applying liming agents, care must be taken not to introduce amendments with 

phytotoxic characteristics, particularly when using industrial waste by-products. 

Phytotoxicity can occur from high metal contents and can be increased in acidic soil 

conditions coupled with other nutrient deficiencies. Phytotoxicity can result in stunted plant 

growth or plant death. Additionally, the toxicity of some metals (e.g., Al) can be reduced by 

the addition of residuals with high concentrations of specific cations (e.g., Mg, Ca, and K) 

that are constituents of some alkaline amendments.

5.2.1. Coal combustion residue (CCR as a liming agent)—Coal combustion 

residue (CCR), commonly referred to as coal ash, are the residual materials after burning 

coal for electricity generation. CCRs include fly ash, bottom ash, boiler slag, and flue gas 

desulfurization (FGD).[67] CCRs are one of the largest waste streams in the United States 

and typically contain several metals, including As, Se, Hg, and Cd.[67,68] Approximately 

56% of the CCRs generated are disposed of either in liquid form in surface impoundments 

or solid form in landfills, 37% are beneficially used, and 7% are used as minefill.[68] CCRs 

are currently generated in 45 states, with the largest amounts being generated in Kentucky, 

Texas, and Indiana.[68] Oregon, California, and Hawaii generate the least amounts of CCRs, 

thus a more locally abundant and cost-effective source may be available in these states.[68] 

Application of one CCR in particular, fly ash, has been shown to improve textural 

composition, which can enhance soil water retention capacity, improve aeration, and provide 

essential plant nutrients such as B, Se, and Mo for plant and/or animal nutrition. Fly ash can 

also increase soil pH and buffering capacity to counter soil sodicity.[69,70] The composition 

of the fly ash may differ due to the inherent variability of the chemical composition of the 

coal combusted however.[71,72]

5.2.2. Cement kiln dust (CKD)—Cement kiln dust (CKD) is a fine-grained, solid, 

highly alkaline waste similar to Portland cement that is removed from cement kiln exhaust 

gas by air pollution control devices. The physicochemical characteristics of CKD for their 

beneficial use depend on the method of dust collection employed at the facility.[74] CKD 

contains free lime with higher concentrations found in the coarser particles captured closest 

to the kiln. Finer particles exhibit lower free lime, but higher concentrations of sulfates and 

alkalis.[74] CKD can also contain trace amounts of Cd, Pb, Se, and radionuclides, thus fully 

characterizing this material is recommended before use. EPA has categorized CKD as a 

special waste, resulting in a temporary exemption from federal hazardous waste regulations 

under Subtitle C of Resource Conservation and Recovery Act (RCRA). EPA is currently 

developing standards for the management of CKD and proposed Subtitle D (non-hazardous 

solid waste) regulations.[75]

5.2.3. Lime kiln dust (LKD)—Lime kiln dust (LKD) is physically similar, but 

chemically different, to CKD. Its physicochemical properties vary most greatly depending 

on whether LKD is generated from the manufacturing of high-calcium lime (e.g., chemical 

lime, hydrated lime, or quicklime) or dolomitic lime.[74] The type of lime manufacturing 

dictates the concentrations of free lime and magnesium found in LKD. LKD generally has 

higher concentrations of free lime than CKD.
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5.2.4. Red mud—Red mud is a waste by-product from alumina production using bauxite 

ores via the Bayer process. In the United States, bauxite is sourced from surface mines in 

Arkansas, but most bauxite used in the United States are imported.[76] For context, each 

metric ton of alumina produced generates 0.8–1.5 million metric tons of red mud (or 

approximately 35–40% of the processed bauxite ores results in a waste by-product).[77] Red 

mud varies in physical, chemical, and mineralogical properties as a result of different ore 

sources and refining processes used and therefore must be characterized before application. 

It consists of fine particles, high alkalinity (pH 10–12.5), high Fe content (30–60% of Fe2O3 

by weight), and some metals (As and Cr).[76] Red mud has been beneficially used as an 

amendment in wastewater treatment for the removal of metals and metalloids, inorganic 

anions (e.g., nitrate, phosphate, fluoride, phosphate), and organics. Red mud has also used as 

a component of construction materials (e.g., clay, glass, brick, aerated concrete blocks); as a 

filler in road bases, mining sites, and in the manufacturing of polyvinyl chloride (PVC) 

plastic; in the treatment of waste gas containing S; and as a coagulate, adsorbent, and 

catalyst for various industrial processes including hydrofracking.[77] Red mud as a soil 

amendment has shown a reduction in metal mobility, and a low risk of metal remobilization 

associated with soil pH increase,[78] including decreased plant bioavailability.[79-81]

5.2.5. Agricultural limestone—Agricultural limestone is calcium carbonate (CaCO3) 

and may be referred to as Ag lime, garden lime, agricultural lime, and liming. It is an 

aggregate that has a similar chemical makeup and fineness of ground limestone. The 

fineness of lime correlates to how quickly the limestone will react with acids in the soil to 

increase pH. Because of its fineness, most agricultural limestone is used as a fertilizer to 

stabilize acidity in soil. Agricultural limestone is also used in coal burners at power plants to 

reduce air pollution emissions. Agricultural limestone has been proven to be effective in 

reducing Cd, Cu, Cr, Hg, Ni, Pb, and Zn leaching in soil.[22,82-87]

5.2.6. Lime-stabilized biosolids—Lime-stabilized biosolids result from the secondary 

treatment of municipal or industrial biosolids through the addition of quicklime or calcium 

hydroxide (hydrated lime).[88] The addition of lime raises the pH to a level as high as 12.4, 

at which the combination of lime and high temperatures destroy the cell membranes of any 

pathogens.[89] The high pH level of lime-stabilized biosolids causes water-soluble metal ions 

(except for Mo and Se) to convert to water-insoluble metal hydroxides that precipitate from 

the soil solution, thereby reducing their mobility and bioavailability.[88] Lime-stabilized 

biosolids has been shown to reduce the metal extractability and phytoavailability of Cd, Pb, 

and Zn in contaminated soils from smelter sites.[90] In general, few studies are available in 

the literature where lime-stabilized biosolids are used to immobilize metal-contaminated soil 

or sediment.

5.3. Mineral or inorganic waste by-product amendments

Waste by-products with mineral properties include iron/steel slag, phosphates, gypsum, and 

natural or synthetic minerals like leonardite and zeolite. These by-products are generated 

from a variety of industrial sectors including steel manufacturing, aluminum manufacturing, 

and coal combustion for electricity generation. The addition of amendments with inorganic/

mineral by-products increase sorption sites for metal ions and can improve the physical 
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quality of soil. A few of the waste by-products identified in the literature as alkaline by-

product amendment materials are also inorganic materials, including red mud (Fe-rich), 

CKD, and CCR (e.g., fly ash and phosphogypsum). The composition of these by-product 

amendments varies considerably, and the immobilizing effect is mostly due to Al, Fe, and 

Mn oxides; phosphates; silicates; and alkaline materials.[91]

5.3.1. Slag—Slag is a broad term that covers all waste products resulting from the ore-

separation process. Its chemical properties depend on the manufacturing and solidification 

process that has been used for refining metals. Slags are generally categorized as ferrous 

(e.g., Fe and steel) and non-ferrous (e.g., Cu, Pb, and Zn), and have mainly three types that 

are beneficially used: Fe blast furnace slag, basic oxygen furnace (BOF) steel slag, and 

electric arc furnace slag. Slag is rich in P and calcium phosphate and has been used since 

1927 as agricultural soil amendments.[92] Due to the high fraction of calcium silicate 

minerals, slags are extensively used as a soil liming agent and are nearly as effective in 

neutralizing soil acidity as agricultural limestone.[93]

5.3.2. Steel shot—Steel shot refers to spherical grains of molten steel used to shape 

metal surfaces.[94] The particle size of steel shot varies, and the rate of application can have 

a significant impact on bioavailability of Cd and Zn.[94] Larger particle sizes were found to 

be less effective in reducing Cd and Zn uptake by plants compared to finer particle sizes.[95] 

Steel shot readily corrodes and oxidizes to form several Fe oxides and Mn oxides that may 

coat soil particles to create a large surface area for reactions. Single applications of steel 

shot, separately and in combination with beringite, have resulted in reduced Cd and Zn 

mobility.[94,96,97] The combination of beringite (5% wet weight [w/w]) with steel shot was 

found to be more effective in decreasing extractable metals and As.[31] Muller and 

Pluquet[98] found that treatment of Cd- and Zn-contaminated soil with bog iron ore and 

native steel shot caused a small increase in extractable Zn. In general, metal mobility and 

plant bioavailability in steel shot–treated soil may be controlled by Mn oxides.[99]

5.3.3. Beringite—Beringite is a modified aluminosilicate that originates from the 

fluidized bed burning of coal refuse in the former coal mine of Beringen in northeast 

Belgium. It is a strongly metal-fixing substance, relying on chemical precipitation, ion 

exchange, and crystal growth for metal immobilization.[100,101] Beringite amendments can 

increase pH and lead to dissolution of organic material, which may lead to unintended 

consequences. For example, Cu has a strong affinity to adsorb to soluble OM, thus treatment 

with beringite of Cu-contaminated soil is not suitable for immobilizing Cu.[102]

5.3.4. Foundry sands—Foundry sands are a by-product of the metal-casting industry. 

Approximately 6–10 million tons of spent foundry sands are generated annually, with less 

than 15% currently recycled.[103] Foundries reuse spent sands until the heat and mechanical 

abrasion renders the sand unsuitable for use in casting molds. The majority of spent sands 

are landfilled. Foundry sand has been beneficially used in the construction sector and as a 

soil amendment, but limited results were identified with respect to treating metals in 

contaminated soil and sediment. Spent foundry sands may contain metals and other 
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contaminants such as cyanide, fluoride, and phenols; a full metals analysis should be 

conducted to fully characterize the by-product prior to use.

5.3.5. Coal combustion residuals—See the description of CCRs under the “Liming/

Alkaline Waste By-Product Amendments” section (Section 5.2.1).

5.3.6. Phosphorus minerals—Phosphorus comes in two general categories: sparingly 

soluble forms (e.g., phosphate rock, synthetic apatites) and soluble forms (typically present 

in commercially available fertilizer products and phosphoric acid) and occurs in many 

minerals, of which apatite is the most abundant. Phosphate rock is a naturally occurring 

mineral containing calcium phosphate (Ca3(PO4)2). Calcium phosphate is highly insoluble 

in water, making the phosphorus not readily available to plants.[104,105] Phosphate rock and 

phosphate-based compounds are proven amendments for the immobilization of Pb-

contaminated soil through the precipitation of pyromorphite minerals.[89,105-107] They have 

also been used specifically for Zn, Cu, and Cd immobilization via surface adsorption and 

complexation mechanisms.[31,46,82,86,89,107-110] Struvite (also referred to as 

monoammonium phosphate—MAP) is a phosphate mineral, chemically equivalent to 

magnesium ammonium phosphate hexahydrate (NH4MgPO4.6 H2O). Struvite occurs in 

sewage and wastewater treatment, as well as during the degradation of manures, and can 

lead to operational problems by forming a scale on belts, centrifuges, and pumps and can 

clog anaerobic digesters. Struvite can be recovered from waste streams, and has the potential 

for beneficial use as a fertilizer or soil amendment. Struvite solubility is low in water; 

however, it has been shown to dissolve slowly over time in soil environments.[111]

5.3.7. Gypsum—Natural gypsum is mined from geologic deposits, whereas synthetic 

gypsum is produced from FGD systems at electrical power plants. It is also generated 

through various sulfuric acid neutralization processes during the manufacturing of P 

fertilizers. Several researchers have applied gypsum to effectively immobilize Al, Cd, Cu, 

Pb, and Zn.[86,112-116]

5.3.8. Phosphogypsum—Phosphogypsum (PG) is calcium sulfate and a by-product of 

phosphoric acid production from phosphate rock. During PG production, naturally found 

radium within the phosphate rock exhibits radioactivity after reaction with sulfuric acid.
[76,117] Therefore, EPA has banned the use of most applications of PG with radium-226 

concentration greater than 10 picoCurie/gram. However, PG below this threshold can be 

beneficially used as road pavement, a soil conditioner, cover for landfills, roof tiles, and in 

artificial reefs and oyster beds to repopulate the marine environment. PG and red gypsum 

applied to acidic soil contaminated with Cu, Pb, and Cd showed that a 1% w/w amendment 

of either type increased the soil’s retention of all three metals. The study reported the highest 

reduction (98%) of Pb compared to Cu and Cd, which could be due to the formation of Pb 

minerals.[34]

5.3.9. Water treatment residuals—Drinking water treatment plants generate by-

products in the form of amorphous masses of Fe and Al hydroxides; sediment and humic 

substances removed from raw water (e.g., flocculates, precipitates, fine clays, silts, and 

organics); and traces of coagulating agents (e.g., alums and other chemicals) used in the 
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water treatment process.[118] Few studies have investigated the use of water treatment 

residuals (or alum sludge) for immobilization of metals in soil/sediment.[119-123] However, 

Fe-rich water treatment residuals could be appropriate to improve soil texture and treat soils 

contaminated with both As and cationic metals.[124] Water treatment residuals have a large 

surface area, and are highly reactive with increased sorption capacity. Water treatment 

residuals have been effective in raising pH and acting as a sorbent for excess P,[11] and other 

contaminants of concern that include As, Cu, Cd, Cr, Hg, Pb, Ni, Se, and Zn.[118,120,123,124]

Additional waste by-product amendments that are less frequently used include Alperujo, 

spent mushroom substrate, silkworm excrement, vermicompost, palm oil waste product, 

sugarcane filter cake, bagasse, sugar foam, sugar beet lime, wood ash, seashell grit, sea food, 

and meat processing by-products along with targeted contaminants, immobilizing 

mechanisms, and the associated limitations with their application. Details on field 

applications of these waste by-product amendments are provided in Table S3. The 

amendments mentioned thus far have chemical and physical properties that can assist in 

controlling metal availability and mobility in soil/sediment. As in all cases of remediation, 

the soil/sediment chemistry must be well understood to appropriately select the amendment 

materials for application, either as single amendments or in combination, to achieve the 

desired result.

The quantity of amendment needed is determined on a case-by-case basis and primarily 

depends on the application rate. Assessing the application rate is important because 

sustained changes in microbial structure, biomass, and function occur with multiple 

amendment applications.[125] Other factors that impact amendment selection are availability 

and source location and costs. Qualitative information on sources and availability throughout 

the United States, a general rating of costs (e.g., free, low, high), and limitations and 

unintended consequences of each amendment are included in Table S3. Certain amendments 

may have higher costs associated with them because they are commercial products (e.g., 

Bauxsol™) or the result of competing markets (e.g., municipal composting of yard and 

wood waste). Transportation costs and emissions are associated with all by-products, thus 

distance to the source must be considered. Characteristics of the by-products affecting 

transportation logistics and cost include water content (e.g., adds extra weight and may 

require special vehicle containers); odor (e.g., unpleasant to thruway residents); and particle 

size (e.g., finer materials will require a completely enclosed vehicle). Site-specific 

transportation factors include the presence of access roadways (e.g., residential vs. highway 

vs. unpaved roads) and their suitability for handling large loads. In general, transporting 

waste by-products from within 200 miles of a project site is considered economically viable.
[11] Beyond that, rail hauling is a potentially expensive, but alternative option. Costs on a 

per-volume or per-area basis vary widely across the amendments. Cost considerations should 

cover availability and quantity needed, distance to/from the source (transportation and 

vehicle/equipment requirements), and onsite storage. For the most part, waste by-product 

amendments are available throughout the United States at low or no cost.

Storage of the by-products prior to use should also be considered, particularly if the by-

product has the potential to generate odors or fugitive dust emissions or will become 

unstable when left uncovered and unmanaged. Seasonal temperature and precipitation may 
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affect onsite storage decisions as well. For example, by-products with high moisture 

contents such as biosolids or pulp mill sludges can become anaerobic, decompose, and 

generate odors. These adverse effects may be higher in hot, humid summers compared to a 

colder winter.

5.4. Emerging waste by-products as amendments

The classification of amendments as emerging is somewhat subjective, but is mostly based 

on limited laboratory and field studies compared to more commonly used amendments (e.g., 

biosolids, CCR, CKD) and whether or not the amendment was identified in the U.S. EPA 

report entitled, The Use of Soil Amendments for Remediation, Revitalization, and Reuse.[11] 

The majority of emerging amendments identified in this section fall under the agricultural 

umbrella. The functional groups present in biomass molecules are known to have an affinity 

for metal complexation[126] and are a natural fit for metal treatment. These by-products 

typically undergo some form of chemical or physical modification to make them more 

suitable as an amendment (e.g., drying, grinding, composting, sieving, or pyrolysis in the 

case of biochar), but some may be directly applied. The biochar as an amendment to 

improve soil health and the environment has been highly utilized.[127] Only those studies 

that presented information pertaining to the use of non-municipal, non-hazardous waste by-

products as soil/sediment amendments are included in this section. Studies were retained if 

an existing waste by-product was included in a study as a component of an amendment 

mixture.

Table 3 presents agricultural waste by-products that have been used to treat metal 

contamination in water, soil, or sediment in a laboratory or small field-scale applications. 

Few studies demonstrating field applications of emerging waste by-product amendments for 

metal treatment in soil/sediment were identified in the literature review. Certain agricultural 

waste crops used to treat metals, but not typically found in the United States, include black 

gram (a common Indian pulse), jatropha (a flowering plant used for biofuels), and palm oil 

manufacturing by-products.[161] Other waste by-products classified as emerging include 

digestates from anaerobic digestion, red gypsum (a by-product of titanium dioxide 

production), and various by-products from the seafood processing industry (e.g., fish bone 

char, crab, oyster, mussel shells, and seashell grit). An extensive overview of emerging waste 

by-products, including the general mechanisms (e.g., sorption, precipitation, complexation) 

for metal immobilization observed are provided along with the general availability of the 

waste by-product within the United States, benefits, and unintended consequences is 

presented in Table 4

5.5. Candidate waste by-products for further assessment

Identifying amendment substitutes, for virgin materials, relies on identifying the 

physicochemical properties of the materials and how they compare and contrast with virgin 

materials. The substitution of waste by-products for virgin-based amendments certainly has 

environmental and economic benefits that need to be further investigated prior to their 

successful applications. Using the North American Industry Classification System (NAICS), 

we have identified several waste by-products from various industrial sectors, including even 

those with limited or no application for metal immobilization. In order for waste by-products 
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to be eligible for further assessment, they must be non-hazardous and non-MSW, and must 

either be an emerging amendment or not currently used as an amendment for soil/sediment 

metal contamination as presented in Table S4. This section presents the data collection 

focused on peer-reviewed literature and government (e.g., U.S. EPA) publications for 

selected physical and chemical properties of amendments that have been reported to 

contribute in their successful application, or effectiveness, in immobilizing and/or reducing 

the bioavailability of metals in soils and sediments. A vast array of additional information on 

these amendments properties is anticipated to be available outside of the realm of metal 

remediation literatures. Physicochemical properties of waste by-products such as pH, 

particle size, surface area, OC, and OM have been generally used in the literature as a 

baseline to make a decision for further assessment. In general, based on the data available 

from the literature, singling out one physical or chemical property of an amendment as being 

the driver for metal immobilization is challenging. Therefore, a combination of these 

amendment properties is most likely responsible for metal reduction in soil and sediment. 

Additionally, the environmental characteristics are equally significant in determining the 

effectiveness of a specific amendment (Table S1). The candidate waste by-products 

categorized as emerging are presented in Table 5

5.6. Regulations

Regulatory frameworks and considerations for the beneficial use of waste materials set out 

to protect human health and the environment without creating major impediments that 

discourage beneficial use activities.[169] No encompassing U.S. federal program specifically 

addresses beneficial use activities across all industrial and commercial sectors. Federal 

regulations that do address the beneficial use of some waste materials include RCRA (40 

CFR Part 261) and the Biosolids Rule (40 CFR Part 503). Additionally, many states have 

also developed regulatory programs that allow for the beneficial use of designated materials 

for specific applications. A list of state beneficial use programs is provided on EPA’s 

Industrial Materials Recycling Program website, http://www.epa.gov/wastes/conserve/imr/

live.htm. These regulations operate under the common theme that the waste by-product must 

not be listed as a hazardous waste per state and federal regulations, must act as a suitable 

replacement for virgin or synthetic materials, and must not pose unacceptable risk to human 

health. These criteria help dictate the appropriate and safe use of a waste by-product, and, in 

the context of remediation, typically require permanent monitoring of the soil condition and 

groundwater quality. Besides the federal and state-level frameworks, additional regulations 

should be considered when deciding whether to use a waste by-product in place of a 

traditional amendment (Table 6). Additionally, if using waste by-products for beneficial use 

outside of the U.S., national and local standards and limits must also be considered. Still, 

unintended consequences can occur in environmental work. Solutions to one environmental 

problem may lead to another and environmental scientists, engineers, and geologists must 

carefully evaluate all potential positive and negative impacts before implementing a 

remediation program.

5.7. Potential unintended consequences associated with waste by-products

Although immobilization techniques using waste by-products and other natural and 

synthetic amendments can effectively immobilize metals and support a healthy subsurface 
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environment, there are unintended consequences and potential limitations that must be 

considered so as to not increase risks to human health and the environment.[196,197] Not all 

unintended consequences will be fully understood or predicted prior to implementing a 

treatment option, but they may generally fall under the categories discussed below.

5.7.1. Interactions with amendment constituents—Interactions between 

amendment and soil geochemistry and target versus non-target metals can increase metal 

mobility and bioavailability. For example, Cd bioavailability is strongly affected by Zn at 

typical background concentrations in soil, as Zn inhibits Cd binding to soil, root uptake, and 

transport. In most aerobic soils, metals such as Zn and Cd are present as complexed cations 

or anions but, depending on soil conditions, constituents in amendments can interact with 

soil particles in unintended ways.[198] Iron, Al, and Mn oxide soil minerals act as important 

trace metal sinks in amended soils.[199-201] Trace metal sorption is a pH-dependent process 

where protons compete with cations for sorption. Thus, metal cation adsorption by oxide 

surfaces increases to almost 100% with increasing pH, whereas oxyanion adsorption 

generally decreases with increasing pH.[202] For example, laboratory study conducted by 

Aguilar-Carrillo[170] reported As, Cd, and Tl immobilization with PG and sugar foam (SF) 

treatment. In comparison to PG + SF treatments, the single SF amendment showed the 

highest retention of the three elements (Table 7).

The addition of PG and SF induced the formation and retention of Al-hydroxypolymer in 

acidic soils, to which As, Cd, and Tl were associated, probably through direct coordination 

or the formation of ternary complexes.[170] Metal cations can also sorb to OM in soil with 

increased pH and reduce the corresponding solubility of the metals present in amended soils.
[24] Metal cations may also form soluble precipitates with phosphate, sulfides, and other 

anions[198,203] based on increasing pH in most cases.

5.7.2. Long-term stability—Metals stability (e.g., fixation) can occur in a variety of 

ways, including solid phase diffusion into mineral lattices, mineral entrapment (e.g., 

between clay layers), and coprecipitation. If physicochemical properties change over time, 

metals can remobilize (e.g., desorb) in the subsurface environment. For example, OM is 

important for the retention of metals by soil solids, thus decreasing mobility and 

bioavailability. However, because of the complexation of metals by soluble OM, the addition 

of OM can release metals from the solids to the soil solution. The increase in the solubility 

of the Cu and Pb is related to the dissolution of the humic acid (HA) component of the OM, 

which indicates that solution phase speciation reactions with OM dominate the partition of 

these metals at higher pH because the dissolved organic matter (DOM) increases because of 

the solubility of HA under high pH. Elevated temperatures generally increase metal “aging,” 

whereby metals move into inaccessible porous mineral surfaces and form more stable bonds 

over time. If OM is present, higher temperatures can also increase microbial attenuation and 

desorb or remobilize the aged metals through OM degradation.[196,197] Therefore, the 

application methods and soil hydrogeochemistry are crucial in determining the long-term 

stability of treatment with waste by-products, as well as synthetic or natural amendments. 

For example, applying an amendment without mixing it into the soil homogeneously may 

decrease the likelihood of long-term success, as would applying the amendment at a lower 
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application rate (e.g., due to uncertainty in the effectiveness rate). Similarly, changes in the 

soil hydrogeochemistry (e.g., decreased pH or reducing conditions) may remobilize metals. 

In certain cases, the amendment itself may cause a nutrient deficiency or excess fertility, or 

otherwise adversely affect soil structure, OM, or other conditions. [196,197]

5.7.3. Leaching of contaminants—Immobilized metals can remobilize under 

changing pH conditions as certain metals become more soluble at pH < 6.0,[89] while others 

become less soluble at higher pH. Indeed, it is apparent that alkaline amendments low in 

calcium (e.g., certain zeolites) and high in DOM promote leaching in the subsurface 

environment. Beesley et al.[147] found that the application of both Alperujo compost and 

biochar increased the potential for As leaching in a laboratory study designed to treat As-, 

Cd-, Cu-, Pb-, and Zn-contaminated soil (Fig. 4). Arsenic leaching was caused due to the 

influence of pH, degradable organic carbon (DOC), and soluble P concentrations as 

staggering factors on the geochemistry of trace elements.[147]

Carcamo et al.[56] conducted a field study that reduced Cu and Zn availability using seashell 

grit, but As still remained soluble in pore water. Gonzalez et al.[178] conducted a laboratory 

study designed to treat As-, Cd-, Cu-, Pb-, and Zn-contaminated soil with sludge, compost, 

or synthetic iron oxides. Study findings indicated that amendments that raised pH, especially 

marble sludge, effectively diminished soluble heavy metal concentrations. However, these 

amendments also increased As concentration in lixiviates and encouraged As dispersion. 

Iron oxides that fixed As were not effective in diminishing soluble heavy-metal 

concentrations at acidic pH. Houben et al.[204] conducted a laboratory study that aimed to 

reduce Cd, Pb, and Zn concentrations in soil using bone meal, manure, or iron grit. The 

study found that Pb leaching was strongly affected by DOC release. Therefore, bone meal 

and manure treatments, which highly increased DOC concentrations in leachates, increased 

the flow-weighted mean Pb concentrations by 2.3 and 16 times, respectively. From these 

studies, it is apparent that amendments can beneficially stabilize metal-contaminated soil, 

but the potential for leaching of one or more metal contaminants is also present under certain 

conditions given certain subsurface conditions and amendment physicochemical 

characteristics. Establishment of field trials on metal-contaminated soils and sediments 

should be conducted prior to further assessment.

5.7.4. Inconsistency of the waste by-product composition—Using a waste by-

product as an amendment for in situ remediation may be challenging if the supply fluctuates 

over time, seasons, etc. For example, if a more economically valuable alternative arises that 

creates an additional market for a given waste by-product (e.g., ethanol), or if an industry 

reduces its waste footprint voluntarily or due to new regulations (e.g., food waste), it may no 

longer be feasible to use a specific waste by-product or by-product class for remediation. In 

certain cases, more likely than not the composition of waste by-products can be inconsistent 

due to spatial (e.g., different facilities) or temporal (e.g., different inputs over time) changes 

in the waste. For example, biosolids and boiler ash can vary in their physicochemical 

properties based on changing inputs, variation among facilities, and even intrafacility 

variation.[205] These changes could potentially lead to performance issues if in situ 
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remediation of metal-contaminated soil and sediment is conducted under the assumption that 

a waste by-product amendment will include a certain physicochemical profile.

5.7.5. Introduction of additional or new contaminants—Depending on which 

metals are present, and their concentration and physiochemical characteristics, cumulative 

additions of amendments may result in increasing metal content over time with potential 

adverse effects on the subsurface environment. Consequently, using waste by-products may 

introduce additional mass of metal contaminants already present in soil, or potentially even 

new metal constituents into the contaminated medium.[196,197] Soil structure can be 

damaged by constituents in certain amendments (e.g., Na in zeolite) and soil porosity may 

be reduced (e.g., steel shot).[94] Lee et al.[184] conducted a laboratory study using one of the 

following amendments: bone meal, bottom ash, furnace slag, red mud, or plant species to 

reduce Cd, Cu, Pb, and Zn concentrations in soil. The study found that bone meal increased 

the concentration of all metals evaluated in pore water samples, though the study was unable 

to identify whether it was related to elevated metal concentrations in the bone meal itself or 

the effect the amendment had on the soil hydrogeochemistry.

5.7.6. Plant uptake—Soil chemical processes typically limit the availability of metals 

for uptake by plants. However, during in situ remediation of contaminated metals, it is 

possible for plant uptake (e.g., similar to phytoremediation) to occur rather than, or in 

concert with in situ immobilization/stabilization of metals, depending on site conditions 

such as the vertical extent of contamination and the natural ground cover at the site. Houben 

et al.[204] conducted a laboratory study that aimed to reduce Cd, Pb, and Zn concentrations 

in soil using bone meal, manure, or iron grit. Iron grit induced strong Cd and Pb leaching 

reductions and doubled Cd and Pb concentrations in shoots of white lupin. Lee et al.[184] 

conducted a laboratory study aiming to reduce Cd, Pb, and Zn concentrations in soil using 

zero-valent iron, limestone, sludge, bone meal, or bottom ash. The study found that bottom 

ash increased Cd concentrations in lettuce shoots compared to untreated soil. Another 

laboratory study designed to reduce As, Pb, and Zn concentrations in soil using olive mill 

compost or fresh pig slurry found that plant metal uptake increased, although the metal 

mobility in soil was reduced.[190] Nevertheless, even in cases where plant uptake may occur, 

senescence due to phytotoxicity often decreases the likelihood that plants with high levels of 

metal contamination could be ingested by ecological or human receptors. Metal 

phytotoxicity (e.g., Al, As, B, Cr3+, Cu, fluorine [F], Mn, Ni, or Zn) can limit the overall 

metal concentration in plant shoots to levels that are typically tolerated by ecological and 

human receptors, meaning the plant would likely die long before it can accumulate enough 

metal to harm humans through consumption. Additionally, metal adsorption or precipitation 

in soil and roots usually limits the amount of uptake to plant shoots, and the presence of 

certain metals in conjunction with one another can reduce overall toxicity.[196,197] For 

example, the presence of Zn significantly reduces Cd absorption by animals.[206] Another 

study found that increased Zn levels in spinach and lettuce reduced the absorption of Cd in 

leafy vegetables consumed by Japanese quail.[207] Increased dietary Zn has also been shown 

to strongly inhibit Cd absorption in cattle.[208] Plant uptake of Cd and Zn can also be 

reduced by liming the soil to increase pH.[196]
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Unfortunately, certain metals are not restricted by the soil-plant barrier (e.g., Se, Mo, Cd, 

Co) to protect against the ingestion of plants by human or ecological receptors. For example, 

earthworms still exhibit similar metal bioaccumulation even with liming of soil to increase 

pH, showing that reduced metal concentrations in pore water cannot be used to estimate 

exposure for soil ingested by invertebrates.[196] Consequently, it is crucial to characterize 

potential risks at a site and, as necessary, enlist engineering (e.g., paving, fencing) or 

administrative (e.g., restrictive use covenants) controls in locations with the potential for 

ecological or human exposures to contaminated soil or plants.

5.8. Results comparison to background and benchmark values

Determining unacceptable risks to human health and the environment is often difficult from 

a decision-making perspective. One major reason why waste by-products are not beneficially 

used to their full capacity in the United States is an overall lack of data and general 

uncertainty regarding the risks, benefits, and unintended consequences of using waste by-

products.[4] In an attempt to address this uncertainty, we have compiled metal concentrations 

presented in the literature in order to compare them against the concentrations in the 2013 

U.S. Geological Survey (USGS) report[4], which analyzed background metal concentrations 

in surface soil throughout the United States (Table S5). Two different extraction methods 

were used for As and Cd, but, for summary purposes, the minimum and maximum 

concentrations were incorporated in one column. From the studies reviewed for this report, 

concentration data were available for 18 metals that were contained in waste by-products. 

The concentrations of eight of these metals (Ag, As, Cd, Cu, Cs, Mo, Pb, and Zn) exceed the 

median U.S. background soil concentration for at least one waste by-product sample out of 

the three waste by-product categories. Additionally, three metals (Mn, Se, and V) exceed the 

maximum U.S. background soil concentration for at least one organic waste by-product 

sample. Overall, the organic waste by-products contained a greater proportion of elevated 

metals concentrations compared to U.S. background soils, which are based on samples 

collected from 0–100 cm below the surface. Finally, seven metals (Ba, Be, Co, Cr, Hg, Ni, 

and Sb) did not exceed median or maximum U.S. background soil concentrations for any 

waste by-product samples. These data indicate that there could be some potential concern 

for elevated metal concentrations in certain waste by-product samples. Variability among the 

waste by-product categories may also exist. However, the question as to whether metal 

concentrations above median or maximum U.S. background concentrations pose a potential 

risk to humans or ecological receptors still exists.

To demonstrate whether metals exceeding background concentration in waste by-products 

could pose a potential human health or environmental risk, Table S6 compares human and 

ecological soil screening values. Screening values were reviewed for 11 metals; however, Ag 

and Cs do not have benchmark values, so they were removed from the comparison. Overall, 

three metals (As, Mn, and V) exceeded the human soil screening level (SSL) based on the 

maximum metal concentration identified in the waste by-product studies reviewed for the 

report. Additionally, eight (As, Cd, Cu, Mn, Pb, Se, V, and Zn) metals exceeded the eco-SSL 

based on the maximum metal concentration identified in the waste by-product studies 

reviewed for the report. The eco-SSLs tend to contain more conservative values to account 

for the likelihood that ecological species living in or near the soil will be more greatly 
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exposed to metal contaminants. It should be noted, however, that these values are only 

considered for preliminary risk screening and do not take into account site-specific 

conditions, site-specific risk assessment modeling, and the unique conditions that can be 

present at contaminated sites with pending remediation.

If waste by-products are being considered as amendments for the in situ remediation of 

contaminated soil and sediment, the potential for adding elevated metals concentrations from 

the waste by-product itself may not be a limiting factor if (1) the metal may also become 

reduced or immobilized during the in situ treatment, (2) the metal concentration and toxicity 

may be considered minor compared to the contaminant present at the site, and/or (3) there 

may not be human or ecological receptors likely to be exposed to the added metal 

concentrations at the site (e.g., for industrial or vacant sites in non-sensitive ecological 

areas).

6. Summary and recommendations

Selected waste by-products have been shown to be successfully used as amendments for the 

in situ remediation of soil and sediment. This review presents the current state of science of 

using waste by-products as amendments for in situ remediation of metal-contaminated soil 

and sediment. Moreover, it also summarizes the multimedia, probabilistic human health and 

environmental risk assessment that compares the waste concentrations to the actual 

likelihood of exposure, the corresponding toxicity for each metal, and the resulting risk that 

could be used to provide a more definitive understanding of the “appropriateness” of using 

waste by-products from a human health and environmental perspective.

To better estimate human health and environmental risk and the suitability of amendment 

substitution, additional physicochemical properties and composition data for waste by-

products are needed. Further investigation of the chemical and physical properties and 

metals reduction data for specific and promising amendments would be worthwhile to better 

identify waste by-products as substitute amendments. Such an investigation could focus on 

comparing amendments within the organic, liming, and mineral categories first, and then 

comparing property data across the categories. A targeted list of properties that are important 

for metal immobilization mechanisms, and could be the focus of further investigations of 

amendments, include pH, OC, surface area, Eh, CEC, adsorption capacities, Fe and Mn 

oxides, and carbonate content. As additional properties data become available, it could be 

stored by amendment or amendment combinations in a web-based, searchable tool or 

searchable access database to facilitate queries and data analyses. The addition of the annual 

generation quantities, availability, source location, and costs related to the purchase and 

transportation of the waste by-products will provide supplementary decision-making 

information for site managers, regulators, and communities. Additionally, longer-term 

laboratory and field studies are needed that consider amendment aging and the interactions 

between metal contaminants in post-treatment soil with the application of amendments that 

may also contain elevated metal concentrations.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Remedial options for metal-contaminated soil and sediment.
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Figure 2. 
Effects of bioaccessibility of Cr and As from OM additions to Cr-contaminated soil (a) and 

Fe oxides to As-contaminated soil (b).[14]
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Figure 3. 
Percent cover for field plots on the alluvial tailings deposits. The measures were collected at 

the end of 2007 growing season, 7-year after plots were established. Means and standard 

deviation are shown (n = 3).[55] © 2009 American Society of Agronomy, Crop Science 

Society of America, and Soil Science Society of America. Reproduced by permission of the 

American Society of Agronomy, Crop Science Society of America, and Soil Science Society 

of America. Permission to reuse must be obtained from the rightsholder.
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Figure 4. 
Concentration of arsenic (As) and selected heavy metals in pore water from soil (S), soil 

plus compost (S + C), soil plus biochar (S + BC), and soil plus compost and biochar (S + C 

+ BC) sampled 1 week (T1) and 4 weeks (T4) following commencement of the experiment 

(mean n = 4; ±se).[147] © Elsevier. Reproduced by permission of Elsevier. Permission to 

reuse must be obtained from the rightsholder.
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