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a b s t r a c t 

The goal of this work is to study the optimal controls for the COVID-19 epidemic in Brazil. We consider 

an age-structured SEIRQ model with quarantine compartment, where the controls are the quarantine 

entrance parameters. We then compare the optimal controls for different quarantine lengths and distri- 

butions of the total control cost by assessing their respective reductions in deaths in comparison to the 

same period without quarantine. The best strategy provides a calendar of when to relax the isolation 

measures for each age group. Finally, we analyse how a delay in the beginning of the quarantine affects 

this calendar by changing the initial conditions. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

At the end of 2019 a novel coronavirus emerged in the city of

uhan, China. In January 2020 the disease was given the name

OVID-19 and, by mid February, China already faced over 60 thou-

and cases [1] . Many scientists then began to model disease to

orecast its worldwide impact [2,3] , even influencing policies of

any governments. 

As the disease spread across Europe and the United States,

ome countries were forced to implement quarantines or even

ockdowns to mitigate the harms and were able to do the so called

flattening of the curve”, i.e., to postpone and dampen the maxi-

um number of active cases. By mid May, Brazil is entering this

tage, with some states declaring stricter quarantine policies. 

Optimal control theory has been applied to general epidemic

odels [4,5] as well as to specific disease models such as HIV [6–

] , tuberculosis [9,10] and influenza [11] . Recently, a few works ap-

lying optimal control theory to the COVID-19 pandemic, such as

12] and [13] , have appeared. This paper focuses on a SEIR model

ith quarantine as was proposed in Jia et al. [14] , but dividing the

opulation in age groups as in Castilho et al. [15] . This is partic-

larly important since COVID-19 has worse consequences on the

lderly than it does on younger people. 
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Our goal is to calculate the optimal quarantine strategies nu-

erically for different choices of parameters in the model, which

eflect the decisions governments must make when implementing

hese policies, such as evaluating the economical costs of the quar-

ntine for each of the age groups and when to start implement-

ng the measures. Then, we compare the controls by looking at

ow they reduce deaths in comparison to the same period with-

ut quarantine. The best strategy gave us a calendar of when to

elax the measures in each of the age groups. 

. The age-structured SEIRQ model 

Our model consists of a classical SEIR model with a quarantined

lass. Besides, we assume that the population has an age struc-

ure (see [16,17] for models with a continuous age structure and

18,19] for models with a discrete one). There are three age groups, 

escribed in Table 1 . 

Let S i ( t ), E i ( t ), I i ( t ), R i ( t ) and Q i ( t ) be the number of susceptible,

xposed, infected, recovered and quarantined individuals in each

ge group at time t ≥ 0, respectively. We assume that the total

opulation 

(t) = 

3 ∑ 

i =1 

( S i (t) + E i (t) + I i (t) + R i (t) + Q i (t) ) 

s constant since we are only dealing with a short time frame

n comparison to the demographic time scale. The equations, for

https://doi.org/10.1016/j.chaos.2020.110166
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110166&domain=pdf
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2 J.A.M. Gondim and L. Machado / Chaos, Solitons and Fractals 140 (2020) 110166 

Table 1 

Description of the age groups. 

Age group Description 

1 Young people, aged 0 to 19 

2 Adults, aged 20 to 59 

3 Elderly, aged 60 onwards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Parameter values (data from [15] ). 

Parameter Value Parameter Value 

β11 1.76168 σ 1 0.27300 

β12 0.36475 σ 2 0.58232 

β13 1.32468 σ 3 0.69339 

β22 0.63802 γ 1 0.06862 

β23 0.35958 γ 2 0.03317 

β33 0.57347 γ 3 0.35577 

Table 3 

Number of cases, deaths and recoveries by age 

group [21] . 

Age group Cases Deaths Recoveries 

1 2448 7 2441 

2 113,059 891 112,168 

3 121,928 17,948 103,980 

Total 237,435 18,846 218,589 

Table 4 

Distribution of infections and recoveries by age group. 

Age group % of cases % of recoveries 

1 1.03% 1.12% 

2 47.62% 51.31% 

3 51.35% 47.57% 

Total 100% 100% 
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i ∈ {1, 2, 3}, are as follows 

S ′ i (t) = −S i (t) 

N(t) 

( 

3 ∑ 

j=1 

βi j I j (t) 

) 

− u i (t) S i (t) + λQ i (t) 

E ′ i (t) = 

S i (t) 

N(t) 

( 

3 ∑ 

j=1 

βi j I j (t) 

) 

− σi E i (t) 

I ′ i (t) = σi E i (t) − γi I i (t) 

R 

′ 
i (t) = γi I i (t) 

Q 

′ 
i (t) = u i (t) S i (t) − λQ i (t) . (1)

All parameters are nonnegative. β ij is the transmission coeffi-

cient from age group i to age group j . Typically, it will be assumed

that βi j = β ji for all i, j. σ i and γ i are the latency and recovery

periods, respectively, for age group i. λ is the exit rate from the

quarantine. Our controls are the u i ( t ), which denote the fraction of

susceptible individuals in each age group that are put into quaran-

tine per unit time at t . As such, they satisfy, a priori, 

0 ≤ u i (t) ≤ 1 i ∈ { 1 , 2 , 3 } . (2)

However, it is unrealistic to expect an entire population to stay

under quarantine for a long time. There are essential workers such

as healthcare professionals and police officers that cannot stay at

home during these times. As most of these workers are in age

group 2, we suppose that all of age groups 1 and 3 can be quar-

antined (for age group 3, indeed, this is especially important since

they are a risk group for the COVID-19 pandemic). Thus, we shall

loosen (2) by considering, for example, 

0 ≤ u 2 (t) ≤ u max . 

Evaluating u max is one of the tasks of each government’s au-

thorities. In this paper, we fix this parameter at u max = 0 . 9 . This

means that 

0 ≤ u 1 (t) ≤ 1 , 0 ≤ u 2 (t) ≤ 0 . 9 , 0 ≤ u 3 (t) ≤ 1 . (3)

Let 

N i (t) = S i (t) + E i (t) + I i (t) + R i (t) + Q i (t) 

be the total population of age group i . Adding the equations in the

system above, we see that N i ( t ) is also constant for i ∈ {1, 2, 3}.

Since R i ( t ) only appears in the other equations as a part of N i ( t ),

we substitute the equations for R ′ 
i 
i (t) by N 

′ 
i 
(t) . Hence, we may also

consider the system of 

S ′ i (t) = −S i (t) 

N(t) 

( 

3 ∑ 

j=1 

βi j I j (t) 

) 

− u i (t) S i (t) + λQ i (t) 

E ′ i (t) = 

S i (t) 

N(t) 

( 

3 ∑ 

j=1 

βi j I j (t) 

) 

− σi E i (t) 

I ′ i (t) = σi E i (t) − γi I i (t) 

Q 

′ 
i (t) = u i (t) S i (t) − λQ i (t) 

N 

′ 
i (t) = 0 . (4)

Parameter values are taken from [15] and are listed in Table 2 .

The data fitting was performed using an adaptation of a least-

squares algorithm from [20] . 
To see how the numbers of infections and recoveries are dis-

ributed in the three age groups, we refer to the data available in

entro [21] , shown in Table 3 . For simplification, we suppose that

he difference between the number of cases and the number of

eaths represents the number of recoveries. This is not necessarily

orrect, because some of the patients that we considered as recov-

red might still carry the disease, but we use this approach due to

he scarcity of information regarding recoveries we currently have.

he respective distributions are shown in Table 4 . 

According to [1] , Brazil had as of May 13, 2020 a total of 97,575

ctive COVID-19 cases. Even though there seems to be a large un-

erreporting in the country [22] , this number will be considered

s the total number of infected individuals nonetheless. To esti-

ate the number of exposed cases, we look at data from May 8,

020, since the mean incubation period of the disease is thought

o be around 5 days [23] . Once again according to [1] , at this time

razil had 76,603 active cases, so this gives us an estimation of

0,972 exposed cases. We also suppose that these cases follow the

ge distributions of cases from Table 4 . Finally, as of May 8, there

ere 65,124 recovered cases in Brazil [1] . 

Therefore, our initial time will consist of data from Brazil as of

ay 8, 2020. The total population is assumed to be 200 million,

ivided into 40% young people, 50% adults and 10% elderly. We

lso assume that there are no quarantined individuals when the

imulation starts. Since the numbers of exposed, infected and re-

overed are very small in comparison to the total population, we

ssume that the initial number of susceptible individuals is equal

o the total population of the respective age group. The initial con-

itions of all variables, rounded to the nearest integers, are listed

n Table 5 . 

. The optimization problem 

Using system (4) , we consider the functional to be minimized

s 

 = 

∫ T 

0 

3 ∑ 

i =1 

(
I i (t) + B i u 

2 
i (t) 

)
dt (5)
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Table 5 

Initial conditions. 

Class i = 1 i = 2 i = 3 

Susceptible 80 million 100 million 20 million 

Exposed 216 9987 10,769 

Infected 789 36,478 39,335 

Recovered 729 33,415 30,979 

Quarantined 0 0 0 
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In the formula above, T is the quarantine duration and the pa-

ameters B i are the costs of the control. We assume that B i > 0 for

 ∈ {1, 2, 3} and that 

 1 + B 2 + B 3 = B, (6)

here B ∈ R is the total control cost. Sufficient conditions for the

xistence of the optimal controls follow from standard results from

ptimal control theory. For instance, we can use Theorem 2.1 in

oshi et al. [24] to show that the optimal control exists. Pontrya-

in’s maximum principle [25,26] establish that optimal controls are

olutions of the Hamiltonian system with Hamiltonian function 

 = 

3 ∑ 

i =1 

(
I i (t) + B i u 

2 
i (t) 

)

+ 

3 ∑ 

i =1 

(
λS 

i S 
′ 
i (t) + λE 

i E 
′ 
i (t) + λI 

i I 
′ 
i (t) + λQ 

i 
Q 

′ 
i (t) + λN 

i N 

′ 
i (t) 

)
, (7) 

here λS 
i 
, λE 

i 
, λI 

i 
, λQ 

i 
and λN 

i 
are the adjoint variables. These vari-

bles must satisfy the adjoint equations 

C′ 
i = −∂H 

∂C i 
, (8) 

here i ∈ {1, 2, 3} and C ∈ { S, E, I, Q, N }. The adjoint system is

etailed in (9) below. 

λS′ 
i = 

1 

N 

( 

3 ∑ 

j=1 

βi j I j 

) (
λS 

i − λE 
i 

)
+ u i (t) 

(
λS 

i − λQ 
i 

)
λE′ 

i = σi 

(
λE 

i − λI 
i 

)
λI′ 

i = −1 + 

1 

N 

3 ∑ 

j=1 

β ji S j 
(
λS 

j − λE 
j 

)
+ γi λ

I 
i 

Q′ 
i 

= λ
(
λQ 

i 
− λS 

i 

)
λN′ 

i = 

1 

N 

2 

3 ∑ 

k =1 

3 ∑ 

j=1 

βk j S k I j 
(
λE 

k − λS 
k 

)
. (9) 

The adjoint variables also must satisfy the transversality condi-

ions 

S 
I (T ) = λE 

i (T ) = λI 
i (T ) = λQ 

i 
(T ) = λN 

i (T ) = 0 , (10)

or i ∈ {1, 2, 3}. 

Finally, the optimality conditions come from solving 

∂H 

∂u i 

= 0 . (11) 

his results in 

 

∗
i = 

(
λS 

i 
− λQ 

i 

)
S i 

2 B i 

. (12) 

Since we are considering bounded controls (because of (3) ), the

 

∗
i 

are calculated using 
 

∗
i = min 

{ 

u 

i 
max , max 

{ 

0 , 

(
λS 

i 
− λQ 

i 

)
S i 

2 B i 

} } 

, (13) 

here u 1 max = u 3 max = 1 and u 2 max = 0 . 9 . 

Uniqueness of the optimal controls (at least for small enough

 ) also follow from standard results, such as Theorem 2.3 in Joshi

t al. [24] . Numerical solutions of systems (4) and (9) can be found

y a forward-backward sweep method [26] . The algorithm starts

ith an initial guess of the controls u 1 , u 2 and u 3 and then solves

4) forward in time. After this first part, it uses the results and the

nitial guesses to solve (9) backward in time and new controls are

efined following (13) . This process continues until it converges. 

. Comparison of optimal controls for different control costs 

Quarantines are not just a matter of public health, for they also

resent economic questions, for example. This means that we must

ay close attention to the control costs B i . These numbers reflect

ow the population is capable of dealing with the quarantine of

he respective age group. Smaller values of B i mean that the popu-

ation can withstand a stricter quarantine without many economi-

al side effects. This is not possible, on the other hand, for bigger

alues of B i . 

Since the bigger economic toll of the quarantine lies on the

dults (because they form almost all of the economically active

opulation), we assume that B 2 is the greatest of the three val-

es. As the isolation of the young implies closing schools, this ed-

cational impact makes B 1 the second highest cost, albeit much

maller than B 2 . 

How the total cost B is distributed among the age groups de-

ermines the shape of the optimal controls. To study this relation,

e let B = 50 0 0 , with B 2 ∈ [360 0, 460 0] and B 3 ∈ [10, 110]. For

ur simulations, we consider B 2 ∈ { 3600 + 50 k : 0 ≤ k ≤ 20 } and

 3 ∈ { 10 + 5 k : 0 ≤ k ≤ 20 } . This means that 441 cost distributions

ill be analysed for each quarantine length. 

Our goal now is to compare these distributions by investigat-

ng the number of deaths caused by the pandemic at the end of

he quarantine for each one of them. As in Castilho et al. [15] , the

eaths will be calculated as a fraction of the recovered, since there

s no disease induced mortality in our model. From Table 3 , we can

erive the case fatality rates μ1 , μ2 and μ3 for age groups 1, 2 and

, respectively. The results are 

1 = 

7 

2448 

= 0 . 003 , μ2 = 

891 

113 , 059 

= 0 . 008 , 

3 = 

17 , 948 

121 , 928 

= 0 . 147 . (14) 

Let D(b 2 , b 3 , t) and R i ( b 2 , b 3 , t ), i ∈ {1, 2, 3}, denote the cu-

ulative number of deaths due to the disease at time t and the

umber of recovered individuals in the optimal control problem

or age group i , respectively, for the cost distribution with B 2 = b 2 
nd B 3 = b 3 . By our discussion above, we can write 

(b 2 , b 3 , t) = μ1 R 1 (b 2 , b 3 , t) + μ2 R 2 (b 2 , b 3 , t) + μ3 R 3 (b 2 , b 3 , t) . 

(15) 

Fig. 1 shows plots of D(B 2 , B 3 , T ) as a function of B 2 and B 3 .

ecause of the uncertain nature of the parameters and due to the

igh number of unreported cases, we do not show the crude num-

ers of D(B 2 , B 3 , T ) for the 441 distributions. The approach we use

nstead is to select the smallest values for each quarantine length

s unit and then scale the other values accordingly. 

According to [22] , ratio estimates of reported to unreported

ases vary from 1:1 to 1:20. This ratio introduces a multiplicative

actor in the numbers of exposed, infected and recovered individ-

als which is cancelled since we are dealing with relative propor-

ions. 
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Fig. 1. Plots of the scaled D(B 2 , B 3 , T ) as a function of B 2 and B 3 for quarantine lengths of 30, 45 and 60 days. 

Fig. 2. Plots of D (t) / D (3600 , 10 , T ) for different quarantine lengths. 

Fig. 3. The optimal controls for B 1 = 1390 , B 2 = 3600 and B 3 = 10 for different quarantine lengths. 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

How long it takes until quarantine relaxation. 

Age group T = 30 T = 45 T = 60 

1 16 days 18 days 14 days 

2 12 days 13 days 11 days 

3 25 days 39 days 52 days 

 

f  

a  
Notice that, in all three cases, the distribution with the low-

est number of deaths is B 1 = 1390 , B 2 = 3600 and B 3 = 10 . To as-

sess how the optimal quarantines reduce deaths for this cost dis-

tribution, we let D(t) be the cumulative number of deaths for the

model with no quarantine. In Fig. 2 , we plot graphs of D(t) di-

vided by D(3600 , 10 , T ) for T = 30 , 45 and 60 days. At the end of

the quarantine, the optimal controls reduce the number of deaths

in 286, 439 and 461 times, respectively. 

Fig. 3 plots the graphs of the optimal controls u 1 ( t ), u 2 ( t ) and

u 3 ( t ) for this cost distribution. An interesting feature of these

plots is that they provide an “optimal calendar” of when the

quarantine should start to be relaxed. This calendar is shown in

Table 6 . 
t  
We acknowledge that the elderly are not the only risk group

or the Covid-19 epidemic, since people with comorbidities such

s obesity, diabetes and hypertension also present higher case fa-

ality rates, even though these factors were not considered in our
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Fig. 4. Curves of infections for quarantines of 30, 45 and 60 days and cost distribution B 1 = 1390 , B 2 = 3600 , B 3 = 10 . 

Fig. 5. Plots of the optimal controls for different quarantine lengths. Initial conditions of exposed, infected and recovered are doubled. 

Fig. 6. Plots of the optimal controls for different quarantine lengths. Initial conditions of exposed, infected and recovered are multiplied by four. 
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odel. Thus, we emphasize that the quarantines for these individ-

als should also follow the relaxation calendar of the elderly, inde-

endently of their age group. 

We now investigate how the length of the quarantine influences

ts effectiveness by plotting the total number of infections for the

ost distribution B 1 = 1390 , B 2 = 3600 and B 3 = 10 in Fig. 4 . 

The three curves reach their minimum around the same time

hat the controls reach zero. For quarantines of 45 and 60 days,

he number of cases at the end is, indeed, much smaller than it

s in the beginning. However, for the shorter quarantine, there are

ore cases in the end than the initial total. 

This fact shows that quarantines cannot be too short, or else the

verall situation in the end could be worse than in the beginning.

oreover, the number of cases starts to go up again towards the

nd in all three cases. 
To finish this Section, we analyse how the initial conditions af-

ect the optimal control. We can interpret this as a way to see what

appens if it takes too long for these measures to be implemented.

e do this by considering initial conditions of exposed, infected

nd recovered twice and four times as much as their original val-

es. As of May 13, 2020, the number of active cases in Brazil dou-

les every 10 days [1] , so this means waiting 10 or 20 days, re-

pectively, to start the quarantine. In the plots of Figs. 5 and 6 , we

onsider distribution B 1 = 1390 , B 2 = 3600 and B 3 = 10 with initial

onditions twice and four times their original values, respectively.

hey provide different relaxation calendars, which are described in

ables 7 and 8 . 

A comparison of Tables 6–8 shows that the quarantines have

o be much stricter if there is a delay in their implementa-

ion. Moreover, as we did in Fig. 2 , we look at the reduction in
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Fig. 7. Plots of D (t) / D (3600 , 10 , T ) for different quarantine lengths and initial conditions of exposed, infected and recovered. 

Table 7 

Times until relaxation for B 1 = 1390 , B 2 = 3600 

and B 3 = 10 . Initial conditions of exposed, in- 

fected and recovered are doubled. 

Age group T = 30 T = 45 T = 60 

1 20 days 27 days 28 days 

2 19 days 24 days 26 days 

3 25 days 40 days 54 days 

Table 8 

Times until relaxation for B 1 = 1390 , B 2 = 3600 

and B 3 = 10 . Initial conditions of exposed, in- 

fected and recovered are multiplied by four. 

Age group T = 30 T = 45 T = 60 

1 23 days 33 days 39 days 

2 23 days 32 days 38 days 

3 25 days 40 days 55 days 
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deaths at the end of the quarantine in Fig. 7 . The plots show

that: 

1. For quarantines of 30 days, the optimal controls reduce the

number of deaths in 170 and 95 times for initial conditions

of exposed, infected and recovered twice and four times their

original values, respectively, instead of reducing it in 286 times

as before. 

2. For quarantines of 45 days, the reduction in the number of

deaths is in 224 and 114 times for initial conditions twice and

four times their original values, respectively, instead of 439

times. 

3. For quarantines of 60 days, the reduction is in 234 and 119

times for initial conditions twice and four times the original

values, respectively, instead of 462 times. 

Hence, the longer it takes for the quarantine to start, the less

effective it is. 

5. Conclusions 

In this paper we considered an age-structured SEIRQ model,

where the quarantine entrance parameters are thought as controls

of the system, and we looked for the optimal controls via Pontrya-

gin’s maximum principle. After writing down the optimality sys-

tem, we calculated the optimal controls numerically and analysed

how some of the parameters influence the results. 

These parameters represent the difficult choices authorities

must make, such as deciding how many essential workers are al-

lowed to remain circulating, estimating the economic impact of the
uarantine and even when to start it. As such choices are made,

he optimal controls give guidelines of how to proceed. 

In Section 4 , we considered a constant total control cost and

istributed it among the age groups in 441 ways. The distribution

ith the best results with regard to deaths during the quarantine

ave us a calendar of when to relax the isolation measures in the

hree age groups (for quarantine lengths of 30, 45 and 60 days,

espectively): 

• For the youngs, the date of relaxation was the 16th, the 18th or

the 14th day. 
• For the adults, the relaxation started at the 12th, the 13th or

the 11th day. 
• For the elderly, it started at the 25th, the 39th or the 52nd day.

The optimal controls that induce this calendar produced a re-

uction in the number of deaths of 286, 439 and 462 times, re-

pectively, in comparison to the same period of time without quar-

ntine. However, in the three cases the number of infected cases

eached a minimum just before the end of the simulation, so by

he time the quarantine ended, the cases were going up again,

ven becoming bigger than the original values for the shorter

ength we considered. This shows that the quarantines are not ef-

ective if they are not long enough. 

We also showed that waiting too long to start the quarantine

akes the period before the relaxation become longer. This also

roduced a loss in efficacy, since the reduction of deaths due to

he quarantine (in comparison to the “doing nothing” scenario) de-

reased as the number of initial cases increased. 

In our model we used data from Brazil as initial conditions and

n the parameter fitting. Brazil is a very large country, with many

ities at different stages of the pandemic. This means that studies

uch as this one should be made locally to best suit the character-

stics of each city. As the plots of Figs. 5 and 6 suggest, the sooner

he quarantine is implemented, the shortest the time the controls

eed to stay at their maximum is. 

Finally, we acknowledge that not all individuals have the same

ossibility of fulfilling the quarantine. In countries with severe so-

ioeconomic inequalities such as Brazil, the wealthier citizens have

uch more resources to go through the isolation period than the

oorer [27] . We did not include these factors in our model. How-

ver, many countries around the world have provided financial

upport for those in need [28] in an attempt to mitigate this prob-

em during the pandemic. 
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