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The goal of this work is to study the optimal controls for the COVID-19 epidemic in Brazil. We consider
an age-structured SEIRQ model with quarantine compartment, where the controls are the quarantine
entrance parameters. We then compare the optimal controls for different quarantine lengths and distri-
butions of the total control cost by assessing their respective reductions in deaths in comparison to the
same period without quarantine. The best strategy provides a calendar of when to relax the isolation
measures for each age group. Finally, we analyse how a delay in the beginning of the quarantine affects
this calendar by changing the initial conditions.
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1. Introduction

At the end of 2019 a novel coronavirus emerged in the city of
Wubhan, China. In January 2020 the disease was given the name
COVID-19 and, by mid February, China already faced over 60 thou-
sand cases [1]. Many scientists then began to model disease to
forecast its worldwide impact [2,3], even influencing policies of
many governments.

As the disease spread across Europe and the United States,
some countries were forced to implement quarantines or even
lockdowns to mitigate the harms and were able to do the so called
“flattening of the curve”, i.e., to postpone and dampen the maxi-
mum number of active cases. By mid May, Brazil is entering this
stage, with some states declaring stricter quarantine policies.

Optimal control theory has been applied to general epidemic
models [4,5] as well as to specific disease models such as HIV [6-
8], tuberculosis [9,10] and influenza [11]. Recently, a few works ap-
plying optimal control theory to the COVID-19 pandemic, such as
[12] and [13], have appeared. This paper focuses on a SEIR model
with quarantine as was proposed in Jia et al. [14], but dividing the
population in age groups as in Castilho et al. [15]. This is partic-
ularly important since COVID-19 has worse consequences on the
elderly than it does on younger people.
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Our goal is to calculate the optimal quarantine strategies nu-
merically for different choices of parameters in the model, which
reflect the decisions governments must make when implementing
these policies, such as evaluating the economical costs of the quar-
antine for each of the age groups and when to start implement-
ing the measures. Then, we compare the controls by looking at
how they reduce deaths in comparison to the same period with-
out quarantine. The best strategy gave us a calendar of when to
relax the measures in each of the age groups.

2. The age-structured SEIRQ model

Our model consists of a classical SEIR model with a quarantined
class. Besides, we assume that the population has an age struc-
ture (see [16,17] for models with a continuous age structure and
[18,19] for models with a discrete one). There are three age groups,
described in Table 1.

Let S;(t), Ei(t), Ii(t), Ri(t) and Q;(t) be the number of susceptible,
exposed, infected, recovered and quarantined individuals in each
age group at time t > 0, respectively. We assume that the total
population

3
N(t) =) (Si(t) +Ei(t) +i(t) + Ri(t) + Qi(t))

i=1

is constant since we are only dealing with a short time frame
in comparison to the demographic time scale. The equations, for
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Table 1
Description of the age groups.
Age group  Description
1 Young people, aged 0 to 19
2 Adults, aged 20 to 59
3 Elderly, aged 60 onwards.

i € ({1, 2, 3}, are as follows

si(t) = -0 3 Sl (t (0)Si () + AQ;(t
© = 3 | 2O | ~uOSO 100
o< SO (3

Ei(t):N(t) ;ﬂijlj(t) — oiE;(t)

L(t) = oiEi(t) — yili(t)
Ri(t) = yili(t)
Q/(t) = u()S;(t) — AQi(1). (1)

All parameters are nonnegative. §; is the transmission coeffi-
cient from age group i to age group j. Typically, it will be assumed
that B;; = B;; for all i, j. o; and y; are the latency and recovery
periods, respectively, for age group i. A is the exit rate from the
quarantine. Our controls are the u;(t), which denote the fraction of
susceptible individuals in each age group that are put into quaran-
tine per unit time at t. As such, they satisfy, a priori,

O0<u(t)<1 ie{1,2,3). (2)

However, it is unrealistic to expect an entire population to stay
under quarantine for a long time. There are essential workers such
as healthcare professionals and police officers that cannot stay at
home during these times. As most of these workers are in age
group 2, we suppose that all of age groups 1 and 3 can be quar-
antined (for age group 3, indeed, this is especially important since
they are a risk group for the COVID-19 pandemic). Thus, we shall
loosen (2) by considering, for example,

0 = u2(t) =< Umax.

Evaluating umax is one of the tasks of each government’s au-
thorities. In this paper, we fix this parameter at umax = 0.9. This
means that

O<u () <1,
Let
N;i(t) = S;(t) + Ei(t) + L;(t) + Ri(t) + Qi(t)

be the total population of age group i. Adding the equations in the
system above, we see that Nj(t) is also constant for i € {1, 2, 3}.
Since R;(t) only appears in the other equations as a part of Nj(t),
we substitute the equations for R}i(t) by N/(t). Hence, we may also
consider the system of

0<uy(t) <09, O0<us(t) <1. (3)

st = 0 : Lt (D)S;(t) + AQ; (¢
j()——N(t) jé]ﬂij]() —u;()S;(t) + AQ;(t)
, Sit) [ <

E{(t) = N(D jE:1 Bijli(t) | — oiEi(t)

I} (t) = oiEi(t) — yili(t)

Qi (t) = u;(D)Si(t) — AQi(t)

Ni(t) = 0. (4)
Parameter values are taken from [15] and are listed in Table 2.

The data fitting was performed using an adaptation of a least-
squares algorithm from [20].

Table 2
Parameter values (data from [15]).
Parameter  Value Parameter  Value
B 1.76168 o, 0.27300
B2 036475 o, 0.58232
Bis 1.32468 o3 0.69339
B2 0.63802 ¥, 0.06862
Bas 035958  y, 0.03317
Bss 0.57347  y; 0.35577
Table 3
Number of cases, deaths and recoveries by age
group [21].
Age group  Cases Deaths Recoveries
1 2448 7 2441
2 113,059 891 112,168
3 121,928 17,948 103,980
Total 237,435 18,846 218,589
Table 4

Distribution of infections and recoveries by age group.

Age group % of cases % of recoveries
1 1.03% 1.12%

2 47.62% 51.31%

3 51.35% 47.57%

Total 100% 100%

To see how the numbers of infections and recoveries are dis-
tributed in the three age groups, we refer to the data available in
Centro [21], shown in Table 3. For simplification, we suppose that
the difference between the number of cases and the number of
deaths represents the number of recoveries. This is not necessarily
correct, because some of the patients that we considered as recov-
ered might still carry the disease, but we use this approach due to
the scarcity of information regarding recoveries we currently have.
The respective distributions are shown in Table 4.

According to [1], Brazil had as of May 13, 2020 a total of 97,575
active COVID-19 cases. Even though there seems to be a large un-
derreporting in the country [22], this number will be considered
as the total number of infected individuals nonetheless. To esti-
mate the number of exposed cases, we look at data from May 8,
2020, since the mean incubation period of the disease is thought
to be around 5 days [23]. Once again according to [1], at this time
Brazil had 76,603 active cases, so this gives us an estimation of
20,972 exposed cases. We also suppose that these cases follow the
age distributions of cases from Table 4. Finally, as of May 8, there
were 65,124 recovered cases in Brazil [1].

Therefore, our initial time will consist of data from Brazil as of
May 8, 2020. The total population is assumed to be 200 million,
divided into 40% young people, 50% adults and 10% elderly. We
also assume that there are no quarantined individuals when the
simulation starts. Since the numbers of exposed, infected and re-
covered are very small in comparison to the total population, we
assume that the initial number of susceptible individuals is equal
to the total population of the respective age group. The initial con-
ditions of all variables, rounded to the nearest integers, are listed
in Table 5.

3. The optimization problem

Using system (4), we consider the functional to be minimized
a

S
T 3
j:/ S (1(6) + B2 (6))de 5)
0 i1
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Table 5

Initial conditions.
Class i=1 i=2 i=3
Susceptible 80 million 100 million 20 million
Exposed 216 9987 10,769
Infected 789 36,478 39,335
Recovered 729 33,415 30,979
Quarantined 0 0 0

In the formula above, T is the quarantine duration and the pa-
rameters B; are the costs of the control. We assume that B; > 0 for
i € {1, 2, 3} and that

By + B, + B3 =B, (6)

where B e R is the total control cost. Sufficient conditions for the
existence of the optimal controls follow from standard results from
optimal control theory. For instance, we can use Theorem 2.1 in
Joshi et al. [24] to show that the optimal control exists. Pontrya-
gin’s maximum principle [25,26] establish that optimal controls are
solutions of the Hamiltonian system with Hamiltonian function
3
H =" (Ii(t) + Bu} (1))
i=1

3

+ 3 (AS[(©) + AFE[ (1) + M (1) + A2Q/ (1) + ANN (1)), (7)
i=1

where A$, AE, AL A? and AN are the adjoint variables. These vari-
ables must satisfy the adjoint equations

OH

A= —— 8
"= -3¢ (8)
where i € {1, 2, 3} and C € {S, E, I, Q N}. The adjoint system is

detailed in (9) below.

1 3
M=y <Z ﬁu“) (A = 4F) + u O (A = 42)
j=1
A= oi(hf = Aj)
/ l >
A =1+ N 2 BiSi (25 = A7) + vidi
=
A 208
1 3 3
M= g 20 20 PuSii (M = 45)- ®)
k=1 j=1

The adjoint variables also must satisfy the transversality condi-
tions

AM(T) =AE(T) = AN(T) = A?(T) =ANT) =0, (10)

forie {1, 2, 3}.
Finally, the optimality conditions come from solving

oH
87u,- =0. (11)
This results in

(5~ 29)s

Since we are considering bounded controls (because of (3)), the
u; are calculated using

Q
u?‘—min{uf max{O M“ (13)
[ max: ’ 281 ’

where ul., =ud . =1and u2,, =09.

Uniqueness of the optimal controls (at least for small enough
T) also follow from standard results, such as Theorem 2.3 in Joshi
et al. [24]. Numerical solutions of systems (4) and (9) can be found
by a forward-backward sweep method [26]. The algorithm starts
with an initial guess of the controls uy, u; and us and then solves
(4) forward in time. After this first part, it uses the results and the
initial guesses to solve (9) backward in time and new controls are
defined following (13). This process continues until it converges.

4. Comparison of optimal controls for different control costs

Quarantines are not just a matter of public health, for they also
present economic questions, for example. This means that we must
pay close attention to the control costs B;. These numbers reflect
how the population is capable of dealing with the quarantine of
the respective age group. Smaller values of B; mean that the popu-
lation can withstand a stricter quarantine without many economi-
cal side effects. This is not possible, on the other hand, for bigger
values of B;.

Since the bigger economic toll of the quarantine lies on the
adults (because they form almost all of the economically active
population), we assume that B, is the greatest of the three val-
ues. As the isolation of the young implies closing schools, this ed-
ucational impact makes B; the second highest cost, albeit much
smaller than B,.

How the total cost B is distributed among the age groups de-
termines the shape of the optimal controls. To study this relation,
we let B= 5000, with B, € [3600, 4600] and B3 < [10, 110]. For
our simulations, we consider B, e {3600 + 50k : 0 < k <20} and
B3 € {10 + 5k : 0 < k < 20}. This means that 441 cost distributions
will be analysed for each quarantine length.

Our goal now is to compare these distributions by investigat-
ing the number of deaths caused by the pandemic at the end of
the quarantine for each one of them. As in Castilho et al. [15], the
deaths will be calculated as a fraction of the recovered, since there
is no disease induced mortality in our model. From Table 3, we can
derive the case fatality rates wq, 1 and s for age groups 1, 2 and
3, respectively. The results are

7 891
M = 5aae = 0.003, u, = 113,059 — 0.008,
17,948
U3 = 1,928 = 0.147. (14)

Let D(b,, b3, t) and Ri(b,, bs, t), i € {1, 2, 3}, denote the cu-
mulative number of deaths due to the disease at time t and the
number of recovered individuals in the optimal control problem
for age group i, respectively, for the cost distribution with B, = b,
and B3 = bs. By our discussion above, we can write

D(by, b3, t) = p1R1 (b, b3, t) + aRy(by, b, t) + 3Rs(by, bs, t).
(15)

Fig. 1 shows plots of D(By,B3,T) as a function of B, and Bs.
Because of the uncertain nature of the parameters and due to the
high number of unreported cases, we do not show the crude num-
bers of D(B,, B3, T) for the 441 distributions. The approach we use
instead is to select the smallest values for each quarantine length
as unit and then scale the other values accordingly.

According to [22], ratio estimates of reported to unreported
cases vary from 1:1 to 1:20. This ratio introduces a multiplicative
factor in the numbers of exposed, infected and recovered individ-
uals which is cancelled since we are dealing with relative propor-
tions.
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Fig. 1. Plots of the scaled D(B,, B3, T) as a function of B, and Bs for quarantine lengths of 30, 45 and 60 days.
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Fig. 2. Plots of D(t)/D (3600, 10, T) for different quarantine lengths.
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Fig. 3. The optimal controls for B; = 1390, B, = 3600 and B3 = 10 for different quarantine lengths.
Notice that, in all three cases, the distribution with the low- Table 6 ) ) )
est number of deaths is B; = 1390, B, = 3600 and B; = 10. To as- How long it takes until quarantine relaxation.
sess how the optimal quarantines reduce deaths for this cost dis- Age group T =30 T =45 T =60
tribution, we let D(t) be the cumulative number of deaths for the 1 16 days 18 days 14 days
model with no quarantine. In Fig. 2, we plot graphs of D(t) di- 2 12 days 13 days 11 days
vided by D(3600, 10, T) for T = 30, 45 and 60 days. At the end of 3 25days  39days 52 days

the quarantine, the optimal controls reduce the number of deaths
in 286, 439 and 461 times, respectively.

Fig. 3 plots the graphs of the optimal controls uq(t), u,(t) and
us(t) for this cost distribution. An interesting feature of these
plots is that they provide an “optimal calendar” of when the
quarantine should start to be relaxed. This calendar is shown in
Table 6.

We acknowledge that the elderly are not the only risk group
for the Covid-19 epidemic, since people with comorbidities such
as obesity, diabetes and hypertension also present higher case fa-
tality rates, even though these factors were not considered in our
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Fig. 4. Curves of infections for quarantines of 30, 45 and 60 days and cost distribution B; = 1390, B, = 3600, B3 = 10.
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Fig. 5. Plots of the optimal controls for different quarantine lengths. Initial conditions of exposed, infected and recovered are doubled.
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Fig. 6. Plots of the optimal controls for different quarantine lengths. Initial conditions of exposed, infected and recovered are multiplied by four.

model. Thus, we emphasize that the quarantines for these individ-
uals should also follow the relaxation calendar of the elderly, inde-
pendently of their age group.

We now investigate how the length of the quarantine influences
its effectiveness by plotting the total number of infections for the
cost distribution By = 1390, B, = 3600 and B3 = 10 in Fig. 4.

The three curves reach their minimum around the same time
that the controls reach zero. For quarantines of 45 and 60 days,
the number of cases at the end is, indeed, much smaller than it
is in the beginning. However, for the shorter quarantine, there are
more cases in the end than the initial total.

This fact shows that quarantines cannot be too short, or else the
overall situation in the end could be worse than in the beginning.
Moreover, the number of cases starts to go up again towards the
end in all three cases.

To finish this Section, we analyse how the initial conditions af-
fect the optimal control. We can interpret this as a way to see what
happens if it takes too long for these measures to be implemented.
We do this by considering initial conditions of exposed, infected
and recovered twice and four times as much as their original val-
ues. As of May 13, 2020, the number of active cases in Brazil dou-
bles every 10 days [1], so this means waiting 10 or 20 days, re-
spectively, to start the quarantine. In the plots of Figs. 5 and 6, we
consider distribution B; = 1390, B, = 3600 and B3 = 10 with initial
conditions twice and four times their original values, respectively.
They provide different relaxation calendars, which are described in
Tables 7 and 8.

A comparison of Tables 6-8 shows that the quarantines have
to be much stricter if there is a delay in their implementa-
tion. Moreover, as we did in Fig. 2, we look at the reduction in
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Fig. 7. Plots of D(t)/D(3600, 10, T) for different quarantine lengths and initial conditions of exposed, infected and recovered.
Table 7 quarantine and even when to start it. As such choices are made,

Times until relaxation for B; = 1390, B, = 3600
and B; = 10. Initial conditions of exposed, in-
fected and recovered are doubled.

Age group T =30 T =45 T =60

1 20 days 27 days 28 days

2 19 days 24 days 26 days

3 25 days 40 days 54 days
Table 8

Times until relaxation for B; = 1390, B, = 3600
and B; = 10. Initial conditions of exposed, in-
fected and recovered are multiplied by four.

Age group T =30 T=45 T =60

1 23 days 33 days 39 days
2 23 days 32 days 38 days
3 25 days 40 days 55 days

deaths at the end of the quarantine in Fig. 7. The plots show
that:

1. For quarantines of 30 days, the optimal controls reduce the
number of deaths in 170 and 95 times for initial conditions
of exposed, infected and recovered twice and four times their
original values, respectively, instead of reducing it in 286 times
as before.

. For quarantines of 45 days, the reduction in the number of
deaths is in 224 and 114 times for initial conditions twice and
four times their original values, respectively, instead of 439
times.

3. For quarantines of 60 days, the reduction is in 234 and 119

times for initial conditions twice and four times the original
values, respectively, instead of 462 times.

Hence, the longer it takes for the quarantine to start, the less
effective it is.

5. Conclusions

In this paper we considered an age-structured SEIRQ model,
where the quarantine entrance parameters are thought as controls
of the system, and we looked for the optimal controls via Pontrya-
gin’s maximum principle. After writing down the optimality sys-
tem, we calculated the optimal controls numerically and analysed
how some of the parameters influence the results.

These parameters represent the difficult choices authorities
must make, such as deciding how many essential workers are al-
lowed to remain circulating, estimating the economic impact of the

the optimal controls give guidelines of how to proceed.

In Section 4, we considered a constant total control cost and
distributed it among the age groups in 441 ways. The distribution
with the best results with regard to deaths during the quarantine
gave us a calendar of when to relax the isolation measures in the
three age groups (for quarantine lengths of 30, 45 and 60 days,
respectively):

o For the youngs, the date of relaxation was the 16th, the 18th or
the 14th day.

o For the adults, the relaxation started at the 12th, the 13th or
the 11th day.

o For the elderly, it started at the 25th, the 39th or the 52nd day.

The optimal controls that induce this calendar produced a re-
duction in the number of deaths of 286, 439 and 462 times, re-
spectively, in comparison to the same period of time without quar-
antine. However, in the three cases the number of infected cases
reached a minimum just before the end of the simulation, so by
the time the quarantine ended, the cases were going up again,
even becoming bigger than the original values for the shorter
length we considered. This shows that the quarantines are not ef-
fective if they are not long enough.

We also showed that waiting too long to start the quarantine
makes the period before the relaxation become longer. This also
produced a loss in efficacy, since the reduction of deaths due to
the quarantine (in comparison to the “doing nothing” scenario) de-
creased as the number of initial cases increased.

In our model we used data from Brazil as initial conditions and
in the parameter fitting. Brazil is a very large country, with many
cities at different stages of the pandemic. This means that studies
such as this one should be made locally to best suit the character-
istics of each city. As the plots of Figs. 5 and 6 suggest, the sooner
the quarantine is implemented, the shortest the time the controls
need to stay at their maximum is.

Finally, we acknowledge that not all individuals have the same
possibility of fulfilling the quarantine. In countries with severe so-
cioeconomic inequalities such as Brazil, the wealthier citizens have
much more resources to go through the isolation period than the
poorer [27]. We did not include these factors in our model. How-
ever, many countries around the world have provided financial
support for those in need [28] in an attempt to mitigate this prob-
lem during the pandemic.
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