Skip to main content
. Author manuscript; available in PMC: 2020 Aug 13.
Published in final edited form as: Br J Nutr. 2020 Feb 5;123(10):1187–1200. doi: 10.1017/S0007114520000422

Table 3.

Associations between one-carbon metabolites and inflammation biomarkers among 238 colorectal cancer patients enrolled in the ColoCare Study*

(β-Coefficients and 95 % confidence intervals)

Inflammation biomarkers One-carbon metabolites
PLP
mTHF
Simple
Full
Simple
Full
β 95% CI P β 95% CI P β 95% CI P β 95% CI P
CRP −098 −1·33, −0·64 <0·0001 −0·86 −1·24, −0·50 <0·0001 −0·58 −1·00, −0·16 0·007 −0·71 −1·18, −0·23 0·004
SAA −0·63 −0·96, −0·30 0·0002 −0·56 −0·94, −0·19 0·003 −0·52 −0·91, −0·12 0·01 −0·68 −1·13, −0·23 0·003
IL-8 −0·25 −0·45, −0·04 0·02 −026 −0·48, −0·04 0·02 −0·12 −0·36, 0·13 0·34 −0·16 −0·43, 0·11 0·24
IL-6 −0·74 −1·00, −0·48 <0·0001 −0·69 −0·97, −0·40 <0·0001 −0·20 −0·52, 0·13 0·24 −0·24 −0·60, 0·11 0·17
TNFα −0·18 −0·32, −0·05 0·009 −0·15 −0·30, −0·003 0·045 −0·23 −0·39, −0·07 0·005 −0·2 −0·38, −0·03 0·02
Inflammation biomarkers One-carbon metabolites
apABG
pABG
Simple
Full
Simple
Full
β 95% CI P β 95% CI P β 95% CI P β 95% CI P

CRP 0·10 −0·44, 0·64 0·71 0·05 −0·52, 0·63 0·90 0·29 −0·08, 0·66 0·13 0·39 −0·03, 0·80 0·07
SAA −0·14 −0·65, 0·37 0·59 −0·17 −0·72, 0·38 0·54 0·14 −0·20, 0·49 0·42 0·19 −0·20, 0·58 0·34
IL-8 −0·02 −0·33, 0·29 0·89 −0·04 −0·36, 0·28 0·82 0·67 0·46, 0·87 <0·0001 0·58 0·36, 0·81 <0·0001
IL-6 0·86 0·46, 1·25 <0·0001 0·93 0·53, 1·33 <0·0001 0·18 −0·10, 0·47 0·21 0·11 −0·20, 0·41 0·49
TNFα −0·07 −0·28, 0·13 0·48 −0·09 −0·31, 0·12 0·12 0·17 0·03, 0·32 0·02 0·12 −0·04, 0·27 0·13

PLP, pyridoxal-5’-phosphate; mTHF, 5-methyl-tetrahydrofolate; CRP, C-reactive protein; SAA, serum amyloid A; apABG, acetyl-para-aminobenzoylglutamic acid; pABG, para-aminobenzoylglutamic acid.

*

Biomarker values were log2-transformed to meet the normality assumptions for linear regression models.

Simple model: multivariable linear regression model, adjusted for: age group (<60, 60 to <70 and ≥70 years) and patient sex.

Full model: multivariable linear regression model, adjusted for: age group, patient sex, BMI category, cancer stage and site, physical activity, multivitamin intake and smoking status.