
RESEARCH ARTICLE

Circumpolar diversification of the Ixodes uriae

tick virome

John H.-O. PetterssonID
1,2*, Patrik EllströmID

3, Jiaxin Ling1, Ingela Nilsson4,

Sven BergströmID
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Abstract

Ticks (order: Ixodida) are a highly diverse and ecologically important group of ectoparasitic

blood-feeding organisms. One such species, the seabird tick (Ixodes uriae), is widely distrib-

uted around the circumpolar regions of the northern and southern hemispheres. It has been

suggested that Ix. uriae spread from the southern to the northern circumpolar region millions

of years ago and has remained isolated in these regions ever since. Such a profound bio-

graphic subdivision provides a unique opportunity to determine whether viruses associated

with ticks exhibit the same evolutionary patterns as their hosts. To test this, we collected Ix.

uriae specimens near a Gentoo penguin (Pygoscelis papua) colony at Neko harbour, Ant-

arctica, and from migratory birds—the Razorbill (Alca torda) and the Common murre (Uria

aalge)—on Bonden island, northern Sweden. Through meta-transcriptomic next-generation

sequencing we identified 16 RNA viruses, seven of which were novel. Notably, we detected

the same species, Ronne virus, and two closely related species, Bonden virus and Piguzov

virus, in both hemispheres indicating that there have been at least two cross-circumpolar

dispersal events. Similarly, we identified viruses discovered previously in other locations

several decades ago, including Gadgets Gully virus, Taggert virus and Okhotskiy virus. By

identifying the same or closely related viruses in geographically disjunct sampling locations

we provide evidence for virus dispersal within and between the circumpolar regions. In

marked contrast, our phylogenetic analysis revealed no movement of the Ix. uriae tick hosts

between the same locations. Combined, these data suggest that migratory birds are respon-

sible for the movement of viruses at both local and global scales.

Author summary

As host populations diverge, so may those microorganisms, including viruses, that are

dependent on those hosts. To examine this key issue in host-microbe evolution we
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compared the co-phylogenies of the seabird tick, Ixodes uriae, and their RNA viruses sam-

pled from the far northern and southern hemispheres. Despite the huge geographic dis-

tance between them, phylogeographic analysis reveals that the same and closely related

viruses were found both within and between the northern and southern circumpolar

regions, most likely reflecting transfer by virus-infected migratory birds. In contrast,

genomic data suggested that the Ix. uriae populations were phylogenetically distinct

between the northern and southern hemispheres. This work emphasises the importance

of migratory birds and ticks as vectors and sources of virus dispersal and introduction at

both the local and global scales.

Introduction

Following the physical separation of a population into geographically isolated sub-populations

(i.e. vicariance) genetic changes unique to each sub-population will accumulate. Given a suffi-

cient period of time, such process may result in marked genetic separation. By combining phy-

logenetic and geographical information—that is, phylogeography [1,2]—it is possible to infer

the spatial and evolutionary relationships among such subdivided populations. The analyses of

these populations may include inferences on the direction of dispersal between subpopulations

and if there have been multiple introductions into a particular geographic region. A recently

colonised area is expected to exhibit less genetic diversity than the source population [1,2].

As host populations diverge, so will any microorganisms, including viruses, that are depen-

dent on their hosts. Accordingly, analysis of genome sequence data from these microorgan-

isms can provide additional, and sometimes more detailed, information about the

evolutionary and epidemiological history of the host species [3,4]. Phylogenetic resolution of

the patterns and processes of host-pathogen co-divergence is particularly strong in the case of

RNA viruses in which mutational changes accumulate far more rapidly than in their hosts [4].

For example, analysis of the phylogeny of feline immunodeficiency virus (FIV) provided

important information on the recent population and demographic history of its feline host,

the cougar Puma concolor, that was not apparent in host genetic data [5].

Ticks (order Ixodida) are among the most diverse groups of ectoparasites. There are close

to 900 species of both soft- and hard-bodied ticks within the Ixodida [6,7], of which the genus

Ixodes is the most species rich group with nearly 250 species [6,8–10]. Within this genus, Ix.

uriae is the only known tick with a circumpolar distribution in both the northern and southern

hemispheres. This species parasitizes close to 100 different vertebrate species, the majority of

which are seabirds that breed in dense colonies [11]. In the northern hemisphere, the most

commonly recorded hosts are birds of the order Charadriiformes, mainly Alcidae and Laridae,
and in the southern hemisphere they are mainly species of the Spheniciformes and Procellarii-

formes [11–14]. Like most hard ticks, Ix. uriae has three active life-stages (larva, nymph and

adult) whose questing behaviour is most prevalent during the summer months with a peak

during June–July in the northern hemisphere and December–January in the southern hemi-

sphere [15–18]. Each active stage takes a single blood-meal from a host during 3–12 days

depending on the tick’s life-stage. The duration of the life cycle depends on environmental

temperatures and may last from three to seven years, among the longest seen in ticks

[13,15,19,20]. Importantly, and perhaps as a consequence of its host and habitat adaptation, Ix.

uriae can tolerate temperatures as low as -30˚C and as high as +40˚C [21], forming aggrega-

tions in moist rocky microhabitats [17,21]. Ix. uriae is a well-known vector of multiple differ-

ent viruses and bacteria, including Borrelia burgdorferi sensu lato [22,23], the agent of Lyme
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disease, and Gadgets Gully virus [24,25] amongst others (reviewed in [11]). However, although

some viruses and bacteria may have zoonotic potential and humans are bitten by Ix. uriae,
there is limited evidence for human disease associated with Ix. uriae transmission [11].

Data from both mitochondrial and nuclear genes suggest that Ix. uriae diverged from its

most recent common ancestor, Ix. holocyclus, approximately 91 million years ago, and that the

Ix. uriae species complex shared a common ancestor some 22 million years ago [26]. Subse-

quently, Ix. uriae was introduced, possibly twice, into the northern hemisphere from the likely

ancestral Australasian population approximately 10 million years ago [26]. Thereafter, both

the southern and northern populations diversified into geographically structured subpopula-

tions with no evidence of dispersal between them [26]. However, as some birds can migrate

long distances, it is important to determine whether there has been any recent viral dispersal

between the two polar regions and if there is any gene flow between the two Ix. uriae sub-pop-

ulations. Here, by comparing the viromes of Ix. uriae collected from seabirds–the Common

murres’ (Uria aalge) and Razorbills’ (Alca torda)–from the northern hemisphere and from

around a penguin (Pygoscelis papua) colony in the southern hemisphere, we investigated

whether there has been virus dispersal either within or between the northern and southern

hemispheres.

Results

In total, we generated 16 RNA sequencing libraries from 33 ticks, all of which were engorged

adult female Ix. uriae individuals: 10 libraries using two tick individuals from the southern

hemisphere, and six libraries from the northern hemisphere comprising five with two tick

individuals and one with three tick individuals (S1 Table). These libraries were sequenced to a

high depth and assembled de novo. Across the libraries as a whole we identified 16 RNA

viruses, seven of which were novel based on RNA-dependent RNA polymerase (RdRp)

sequence similarity. The viruses identified belong to the following orders/families: Bunyavir-
ales (N = 5),Hepeviridae (N = 2), Flavivirus (genus) (N = 1),Mononegavirales (N = 1), Ortho-
myxoviridae (N = 2), Picornaviridae (N = 1), Reoviridae (N = 2) and Tombusviridae (N = 2)

(Fig 1).

The individual viruses discovered were at abundance levels ranging from 3 to 10,203 reads

per million and the total viral abundance per library, approximated from all virus RdRp reads

mapped in positive libraries, varied between 14–12,257 reads per million. Correspondingly,

the abundance of Ix. uriae, approximated via the host COX1 gene, varied between 1,359–8,101

reads per million (Table 1). Four viruses—Gadgets Gully virus (Flavivirus), Taggert virus

(Bunyavirales), Neko harbour virus (Orthomyxoviridae) and Upmeje virus (Tombusviridae)—
were highly abundant (i.e. abundance levels above 1,000 reads per million or more than 0.1%

of the total number of reads per library). Indeed, Gadgets Gully virus, Taggert virus and

Upmeje virus were more abundant than the host COX1 gene (Table 1), reaching 1,704, 1,768

and 10,203 reads per million, respectively, suggesting that they are tick-associated viruses.

However, any definitive tick-association of these viruses will need to be determined in future

studies.

Circumpolar virome comparison

Of the 16 viruses identified, nine were found in Ix. uriae ticks sampled from a Gentoo penguin

(Pygoscelis papua) colony at Neko harbour, Antarctica, and seven were found from Ix. uriae
ticks collected from Razorbill (Alca torda) and Common murre (Uria aalge) seabirds on Bon-

den island in the Gulf of Bothnia, northern Sweden (Fig 1, Table 1, S1 Table). The geographical

separation of the different virus species’ was confirmed when there was no overlap of
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individual virus contigs between the two sampling sites (i.e. a particular virus or virus variant

was only found in the northern or southern hemisphere sampling site, but not both) (Table 1).

This analysis revealed that the majority of viruses were found either in the northern or south-

ern hemisphere Ix. uriae sequence libraries, but not both (Table 1, S2 Table). Notably, how-

ever, we identified two variants of Ronne virus (Bunyavirales) in both Antarctica and northern

Sweden (Fig 1, Table 1). Ronne virus has been previously identified from ticks in Antarctica

[27]. One variant of Ronne virus identified here, also sampled from Antarctica, was highly sim-

ilar (99.9% amino acid similarity; 99.7% nucleotide similarity) to that previously identified,

whereas the second variant, recovered from ticks collected from the north of Sweden, was

more divergent in sequence (93.2% amino acid similarity; 80.3% nucleotide similarity). Such

genomic similarity is indicative of a relatively recent dispersal event between the northern and

southern tick populations, although the direction of migration remains to be determined. Sim-

ilarly, we identified a novel bunyavirus, Bonden virus, from northern Sweden that is the closest

known relative (90.3% amino acid similarity; 78.8% nucleotide similarity) of Piguzov virus

Fig 1. Phylogenetic analysis of all the viruses identified here within their respective virus groups, including representative publicly available viruses. Viruses

identified in the current and a related study (27) are indicated, with red and blue circles for viruses identified from the southern and northern circumpolar regions,

respectively. Numbers on branches indicate Shimodaira–Hasegawa (SH) support values (only branches with SH support�80% are indicated) and branch lengths are

scaled according to the number of amino acid substitutions per site. All phylogenetic trees were mid-point rooted for clarity only.

https://doi.org/10.1371/journal.ppat.1008759.g001
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identified from Ix. uriae in Antarctica (Fig 1) [27]. Although it is unclear when these two

viruses diverged, they clearly point to an historical dispersal event between the two poles.

It was also notable that we identified both Taggert virus (Bunyaviridae) and Gadgets Gully

virus (Flaviviridae) from the Neko harbour sampling site. Both these viruses have previously

been found on Macquarie island, south-east of the Australian continent [24,25,28]. From

northern Sweden we identified Avalon virus (Bunyaviridae) and Okhotskiy virus (Reoviridae),
previously isolated from Ix. uriae from the Great island, Newfoundland, Canada, and from

islands around the sea of Okhotsk, respectively [29–31]. The finding of Avalon virus, Gadgets

Gully virus, Okhotskiy virus and Taggert virus at these new locations again indicates that there

has been widespread geographical dispersal of viruses within each hemisphere. Although there

was some tentative signal for the presence of Avalon virus in two tick libraries from the south-

ern sampling site (dark grey cells, Table 1), these likely represent false-positives due to incor-

rect genomic mapping as some sequence motifs are similar to those in Taggert virus that is

highly abundant in these libraries.

Less clear is whether the divergence of these variants justifies their classification as new

virus species. For example, the variant of Gadgets Gully virus identified here shares 92.7%

amino acid similarity and 80.7% nucleotide similarity to the currently available genome

(YP_009345034.1) originally isolated in 1976 [24]. Given the commonly applied rules for spe-

cies delineation (< 90% amino acid similarity and/or < 80% nucleotide similarity), the Gad-

gets Gully variant detected here is on the cusp of being considered a new species. In addition,

Table 1. Presence and estimates of virus abundance across libraries.

Ixodes uriae, Antarctica Ixodes uriae, northern Sweden

Virus name (abbreviation) IU1 IU2 IU3 IU4 IU5 IU6 IU7 IU8 IU9 IU10 IU15 IU16 IU17 IU18 IU19 IU20 IH 0.1%

Ronne virus (RONV) 14 24 19 16 21 22 4 0 4 7 1 3 6 1 1 1 1

Ronne virus (RONV) 1 3 2 2 2 2 1 0 0 1 10 24 69 7 9 3 3

Bonden virus (BONV) 0 1 0 0 1 0 1 0 0 0 7 13 45 3 4 1 2

Taggert virus (TAGV) 1 4 1 5 1 971 2175 0 1768 1 5 1 1 1 1 1 103

Avalon virus (AVAV) 0 0 0 1 0 11 25 0 21 0 312 0 0 0 0 0 15

Ubmeje virus (UBEV 0 0 0 0 0 0 0 0 0 0 17 203 1 0 0 41 13

Gadgets Gully virus (GGYV) 0 0 0 3 0 0 0 0 1704 0 0 0 1 0 0 0 75

Bulatov virus (BULV) 0 70 88 101 39 0 35 8 12 92 0 0 0 0 0 0 5

Vovk virus (VOVV) 0 14 13 136 24 0 236 3 90 11 0 0 0 0 0 0 4

Umea virus (UMEV) 1 0 1 0 0 1 0 0 0 1 73 506 1438 135 92 15 66

Uumaja virus (UUMV) 1 0 0 1 0 0 0 0 0 1 59 233 502 44 54 80 23

Neke harbour virus (NEHV) 0 0 1 0 2008 0 0 0 2 85 0 1 0 0 0 1 95

Gerbovich virus (GERV) 0 369 3 0 552 0 0 0 3 0 0 0 0 0 0 0 26

Fennes virus (FENV) 0 0 12 61 0 14 0 0 172 0 0 0 0 0 0 0 8

Okhotskiy virus (OKHV) 0 0 0 0 0 0 0 0 0 0 0 296 0 0 0 0 19

Upmeje virus (UPEV) 3 2 2 2 2 1 1 0 2 1 2 2 10203 2 573 661 469

Paradise bay virus (PABV) 4 0 0 0 0 0 0 115 0 0 0 0 0 0 0 0 48

Ix. uriae COX1 1548 2555 2967 1359 3520 2824 3747 2598 1505 1807 8101 4678 1964 3179 4819 4580

Total virus��� 14 476 132 315 2645 1006 2449 1231 3750 110 478 1275 12257 189 732 765

Abundance values are expressed as reads per million (see Materials and Methods)

IH 0.1% is the assumed index-hopping cut-off in relation to the most abundant library.

� Values in bold indicate libraries with an abundance greater than 1000 reads per million.

�� Libraries in bold within a square indicate abundance levels greater than that of the host.

��� Total virus abundance for a single library as reads per million.

https://doi.org/10.1371/journal.ppat.1008759.t001
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as the original variant of Gadgets Gully virus(CSIRO122) was isolated in 1976 from Ix. uriae
collected from Macquarie island, more than 40 years before those identified here, it is likely

that this virus has circulated in this geographic for several decades. Similarly, one of the origi-

nal variants of Okhotskiy virus isolated in 1972 (ATW68806.1) and that sequenced here share

97.7% amino acid and 87.6% nucleotide similarity in the VP1 (RdRp) segment, also compatible

with the idea that this virus has circulated in situ for more than 40 years. Regardless of how

and when these viruses transferred to new locations, it is evident that there has been circumpo-

lar dispersal of Ix. uriae associated viruses.

Virus–host co-evolution and migration

To better understand virus–tick co-evolution, the host mitochondrial genome of Ix. uriae was

mined from all sequence libraries, and a phylogenetic analysis performed on two sets of repre-

sentative outgroup and ingroup ixodid species: one utilising complete mitochondrial genome

(Fig 2) and a second comprising all mitochondrial gene sequences regardless of length (S1

Fig). For comparison, we performed a phylogenetic analysis of RdRp sequences from a sub-set

of closely related bunyaviruses found at either the northern or the southern sampling sites.

Although our Ix. uriae sequences only represent a small portion of the distributional range of

both circumpolar regions that this species inhabits, the results obtained are in agreement with

those of previous studies in identifying two distinct tick populations with no evidence of dis-

persal between the northern and southern hemispheres (Fig 2, S1 Fig) [26,32,33]. In addition,

we observed longer branch lengths in the Antarctic Ix. uriaemitochondrial sequences than

those from northern Sweden, and the average number of nucleotide differences per site (π)

was greater in the southern (complete genomes [mean and SE]: 44.04 ± 3.51; all mitochondrial

data [mean and SE]: 18.57 ± 2.77) than the northern population (complete genomes [mean

and SE]: 12.95 ± 2.18; all mitochondrial data [mean and SE]: 4.51 ± 1.08). Although more data

is clearly needed, these patterns of genetic diversity are compatible with the idea that the south-

ern circumpolar population represents the ancestral population.

The phylogenetic analysis of a subset of closely related bunyaviruses reveals several patterns

of geographic dispersal (Fig 2). The clade that includes Avalon virus, Paramushir virus and

Taggert virus suggests that Ix. uriae-associated viruses moves within the circumpolar regions

Fig 2. Phylogenetic analysis of near complete host mitochondrial genome data (mined from each library) and of closely related bunyaviruses found at either the southern

(red colour) or northern (blue colour) circumpolar sampling sites. Lines connect viruses with their sampling locations. Numbers on branches indicate SH support values

(only branches with SH support�80% are indicated) and branch lengths are scaled according to the number of amino acid substitutions per site. All phylogenetic trees

were midpoint-rooted for clarity only.

https://doi.org/10.1371/journal.ppat.1008759.g002
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inhabited by Ix. uriae. For example, Avalon virus, closely related to Paramushir virus [34], has

been found at the Great island, Newfoundland, Canada [29], along the coast of Brittany, France

[35], and now in the northern part of Sweden. As noted earlier, there are also indications of move-

ment between the northern and southern circumpolar regions. Indeed, the close phylogenetic

relationships of both Bonden virus and Ronne virus to southern circumpolar viruses clearly dem-

onstrate that viruses are able to move between these two highly disjunct regions. More generally,

that there are several different bird species, many of which are known hosts for Ix. uriae [11], that

have migratory routes within and between the circumpolar regions [36] and cover the geographi-

cal distribution of Ix. uriae, suggests that Ix. uriae associated viruses are being transported by

migratory birds within and between the circumpolar regions. Hence, it is possible that these

viruses may be present in all regions with permanent populations of Ix. uriae.

Novel and previously identified RNA viruses

We identified a number of other novel and previously identified RNA viruses. For example,

Bulatov virus and Vovk virus (Hepeviridae) have previously been identified in Antarctic ticks

[27] and were also discovered here (Fig 1, Table 1). They share a common ancestor and are rel-

atively similar genetically (86.5% amino acid identity), but are in themselves divergent, sharing

only 35.1% and 36.8% amino acid similarity, respectively, to the tick-borne tetravirus like virus

(AII01815). Umea virus (Mononegavirales) was discovered in several of the tick libraries from

northern Sweden and was relatively abundant (1,438 reads per million) in one library

(Table 1). It shares a most recent common ancestor with Genoa virus (Fig 1) identified from

Ix. holocyclus ticks from Australia [37], but is again relatively divergent (56.4% amino acid sim-

ilarity). Similarly, Ubmeje virus (Bunyavirales) was identified in several libraries from north-

ern Sweden, although it was not abundant (Table 1). Ubmeje virus shared only ~35.8% and

35.9% amino acid identity to Bronnoya virus and Ixodes scapularis bunyavirus, both previ-

ously observed in ixodid ticks [38,39], and which together form a monophyletic group (Fig 1).

In the Antarctic sequence libraries we observed Gerbovich virus (Picornaviridae) that has

previously been described in this region [27]. The two variants are very similar in sequence

(99.7% amino acid similarity, 99.3% nucleotide similarity), but have only 56.5% amino acid

similarity with their closest relative, Hubei tick virus 1, identified a pool of ticks from China

(Fig 1) [40]. Aside from Okhotskiy virus (Reoviridae) described above, we also identified

Fennes virus in the Antarctic sequence libraries, with near identical sequence similarity (99.8%

amino acid similarity, 100% nucleotide similarity) to the sequence of this virus identified pre-

viously [27]. Fennes virus represents a highly divergent lineage, sharing only 31.0% amino acid

similarity with Shelly headland virus discovered in Ix. holocyclus ticks from Australia [37].

Two novel orthomyxoviruses were identified: Uumaja virus from northern Sweden and

Neko harbour virus from Antarctica (Fig 1, Table 1). Uumaja virus is most closely related to

Zambezi tick virus 1, identified in a Rhipicpehalus sp. tick collected in Mozambique [41]. Neko

harbour virus was found to be abundant (more than 2,000 reads per million) in a single library

(Table 1) and clusters with Aransas Bay virus [42], to which it was most similar (82.7% amino

acid similarity), as well as Jos virus [43], Thogoto thogotovirus [44] and Upolu virus [42]. All

these viruses are tick-derived and originate from different continents. This pattern is indicative

of a long-term association between ticks and these viruses.

Finally, we identified two novel and divergent viruses within the Tombusviridae: Paradise

bay virus from Antarctica and Upmeje virus from the northern Sweden (Fig 1, Table 1). Para-

dise bay virus grouped with Hypsignathus monstrosus tombus-like virus 2 (50.9% amino acid

similarity), a virus sequenced from blood samples of Hammer-headed fruit bats (Hypsignathus
monstrosus) collected in the Republic of the Congo [45]. Upmeje virus was found to be highly
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divergent, sharing only 35.2% amino acid similarity with Sanxia water strider virus 14 and did

obviously cluster with any other virus (Fig 1). It is noteworthy that Upmeje virus was the most

abundant in our study, attaining more than 10,000 reads per million, some five times greater

than the host marker gene abundance in the same library (Table 1).

Discussion

Ticks are the most important blood-feeding arthropods in temperate and polar regions [46–

54]. Their ability to adapt to harsh, climatologically variable environments and a wide array of

vertebrate hosts has enabled them to become established in many habitats and geographic

locations. In addition, ticks are well-known vectors of multiple viruses, including those that

are known pathogens of humans and other animals, as well as viruses considered or likely to

be symbionts [37,38,55]. We studied the virome of the seabird tick, Ix. uriae, that is distributed

across both circumpolar regions, as a means to understand virome composition, host–virus

co-divergence and the long-distance dispersal of tick-borne viruses. In particular, we assessed

whether we could infer dispersal events within and between the southern and northern cir-

cumpolar regions that are separated by a substantial geographic distances.

Overall, we identified 16 RNA viruses of which seven were novel. Of the nine viruses previ-

ously discovered, several have previously been documented in Ix. uriae and some have been

shown to have pathogenic properties to either birds and/or humans [56,57]. For example, Gad-

gets Gully virus was originally found on Macquarie island, south-west of New Zealand, in the

1970s [24,58], again from ticks collected there in 2002 [25], and now in ticks collected in 2018

at Neko harbour, Antarctica. The level of diversity between those sequences determined previ-

ously and that in the present study suggests that Gadgets Gully virus has been maintained in

circumpolar regions for several decades, if not centuries. Similarly, we identified Avalon virus,

previously found in Canada and France, in the ticks collected at Bonden island, Sweden. This

supports the idea that viruses are being transported within the circumpolar regions inhabited

by Ix. uriae. These viruses could either be transported with the ticks carried by seabirds during

migration or directly by infected birds. Indeed, several well-known bird-hosts of Ix. uriae have

circumpolar migration patterns. For example, in the southern ocean, birds of the order Procel-

lariiformes show circumpolar migration involving many stopover sites [59,60]. In the arctic

region, many Charadriiform birds undertake seasonal long distance longitudinal migrations.

Similarly, the Black legged kittiwake (Rissa tridactyla), Atlantic puffin (Fratercula arctica) and

Thick billed murre (Uria lomvia) all show seasonal movements between the eastern and west-

ern north Atlantic [61,62].

We also saw evidence of historic movement of viruses between the northern and southern

circumpolar regions. In particular, our phylogenetic analysis revealed that Bonden virus, iden-

tified in ticks from northern Sweden, was closely related to Piguzov virus from Antarctica [27].

Similarly, Ronne virus, present in Antarctica, was also found in northern Sweden (Figs 1 and

2). The close evolutionary relationship of viruses from the northern and southern circumpolar

regions suggests that they have moved between the poles after the Ix. uriae population diverged

into two sub-populations. In addition, as the northern and southern Ix. uriae populations are

phylogenetically distinct [26], it seems likely that it is viruses rather than the ticks that are

transferred between the two polar regions. This, in turn, implies that it is virus-infected migra-

tory birds that transport viruses between the poles. Although some birds species migrate very

long distances, few are known to move between the Arctic and Antarctic regions. The Arctic

tern (Sterna paradisaea) performs the longest migration of any avian species, traveling the dis-

tance between Antarctica to southern Greenland, approximately 24,000 km, in around 40 days

[63]. Although there are no records of Ix. uriae on this species, it is likely that they can become
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infested as they breed in dense colonies near bird species that are well-known hosts of Ix.

uriae. As noted above, Procellariiform birds are long distance migrators and a study using geo-

locators of the Short-tailed shearwater (Ardenna tenuirostris) revealed that this species

migrated to south of the Antarctic Polar Front after their breeding period in Tasmania, and

following a stopover migrated northward to spend the Arctic summer in a location as far

north as the Bering sea [64]. Although the Short-tailed shearwater can migrate the distance in

as little as 11–16 days, it remains almost exclusively at sea, only touching land during the

breeding season. Hence, tick dispersal by this species seems unlikely. The Sooty shearwater

(Ardenna grisea) also undertakes long distance trans-equatorial migrations [65], and other

Procellariiform birds breeding in the Antarctic region, such as the Black-browed albatross

(Thalassarche melanophris) and the South polar skua (Stercorarius maccormicki), have been

occasionally observed in the Arctic region. As both the nymph and adult tick can feed for up

to 12 days [13,66], these birds could theoretically act as vehicles for inter-polar virus spread.

Hence, although the Ix. uriae phylogeny suggests that there has been no movement of ticks

among the southern and northern circumpolar regions, it cannot be excluded that there are as

yet unsampled locations in either region where population admixture could occur.

Under what circumstances could a tick then be transferred between the two polar-regions?

Unless a journey is made directly between the polar-regions, which is theoretically possible in

the case of Short-tailed shearwater, it would be necessary to occur sequentially both with

respect to bird stop-over and tick life-stage development. For example, a nymph would initially

latch onto the host shortly prior the bird migration, feed for the entire duration of the flight,

and develop to the next life-stage during the stop-over. The adult tick would then need to find

a new host to continue its journey. Given the long distances and time during which tick and

virus have to survive, such events are unlikely to take place in one migration step. At the same

time, that we could identify two clear cases of cross-circumpolar dispersal of closely related

viruses from such a small sample of viruses indicates that cross-circumpolar transmission may

not be infrequent.

The finding of several previously discovered and novel viruses that are known or likely to be

tick-associated raises interesting questions about how these viruses are maintained in nature. In

the northern circumpolar distribution the tick life cycle can last up to seven years depending on

host availability and temperature, and ticks may spend up to eleven months of the year off the

host in aggregations formed in moist environments [13,15,17].For viruses to be maintained and

transmitted yearly within the tick population, it is arguable that unless the bird hosts develop a

chronic viral infection that lasts for a year, or that these viruses are transmitted via other routes

than via blood (i.e. directly between hosts), the maintenance of these viruses at a particular loca-

tion is to a large extent driven by tick behaviour and presence. For example, in the case of tick-

borne encephalitis virus, it is hypothesised that Ix. ricinus acts as both the virus reservoir and

vector [67,68]. In particular, the behaviour of Ix. uriae forming off-host aggregations, combined

with the occasionally relatively short questing period for specific hosts [15,19,69], suggests that

the tick non-viraemic co-feeding and trans-stadial transmission [49,67,70,71] of viruses are

important mechanisms for the establishment and maintenance of viruses in circumpolar envi-

ronments. However, despite the key role played by ticks, our study suggests that it is the avian

host that likely functions as the dispersal agent of viruses among the circumpolar regions.

In sum, we have shown that the seabird tick Ix. uriae harbours an extensive diversity of

viruses belonging to several different families and orders of RNA viruses, and that there has

been a transfer of viruses both within and between the northern and the southern circumpolar

regions. As such, we stress the importance of the millions of birds that each year migrate across

the globe and that have the capacity to transfer viruses to and from adjacent and distant geo-

graphical areas.
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Materials and methods

Tick collection and total RNA extraction

Adult female Ix. uriae ticks were collected during 2016–2017 from the Bonden island bird sta-

tion in northern Sweden (lat/long: 63.433617, 20.038344) and from the ground around a Gen-

too penguin (Pygoscelis papua) colony at Neko harbour, Antarctica (lat/long: -64.824066,

-62.665999), during 2018. All ticks were morphologically keyed to species [72] and were subse-

quently stored in -80˚C until further processing. Prior to total RNA extraction, ticks were

washed in PBS buffer two times and then pooled (S1 Table). Total RNA from 16 tick pools was

then extracted using the RNeasy Plus Universal kit (Qiagen) following the manufacturer’s

instructions.

Sequence library construction and sequencing

Sequencing libraries, data generation and analysis was performed as previously described

[38,73]. Briefly, ribosomal RNA (rRNA) was depleted from the total RNA extracts using the

Ribo-Zero Gold (human-mouse-rat) kit (Illumina) following the manufacturer’s instructions.

RNA sequencing libraries were then prepared for all rRNA depleted extracts using the TruSeq

total RNA library preparation protocol (Illumina) followed by paired-end (150 bp read-length)

sequencing on a single Illumina HiSeq X10 lane by the Beijing Genomics Institute, Hong

Kong. The raw sequence output was then quality trimmed with Trimmomatic v.0.36 [74]

using the default settings for paired-end sequence data and assembled de novo using Trinity

v.2.5.4 [75] with read normalisation apart from default options.

Virome analysis and presence across libraries

All de novo assembled contigs were initially screened against the complete non-redundant

nucleotide and protein databases (NCBI GenBank) using blastn v.2.6.0+ [76] and Diamond

v.0.9.15.116 [77], respectively, employing cut-off e-values of 1 × 10−5 for both methods. To fur-

ther assess the data and to identify potential endogenous viral elements, all assemblies indica-

tive of RNA virus origin were screened using the NCBI Conserved Domain Database (www.

ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) with an expected value threshold of 1 × 10−3. Rela-

tive abundance of the identified viruses was determined by comparing the mapping results of

the Ix. uriaemitochondrial cytochrome C oxidase I (COX1) gene (NC_006078.1, positions

1214–2758) against all RdRp containing contigs using Bowtie2 v.2.3.4 [78], employing the

default local setting for all libraries. Relative abundance was calculated as reads per million:

that is, the number of reads mapped to a contig divided by the total number of reads in a

library multiplied by a million. A particular virus was considered abundant if (i) it represented

>0.1% of total ribosomal RNA depleted reads in the library, equivalent to a reads per million

value of 1000 or more, and (ii) if the abundance was higher than that of the host COX1 gene

[38,73]. If the relative abundance of a virus contig was less than 1 read per million mapped, or

below the level of cross-library contamination due to index-hopping, assumed here as 0.1% of

the most abundant library for the virus in question, the library was considered negative for the

presence of the virus contig. A virus was considered novel if the RdRp region showed< 90%

amino acid or < 80% nucleotide similarity to any previously identified virus.

Virus evolutionary history

To infer the evolutionary history of all the RNA viruses identified here they were combined

with representative amino acid data sets of the RNA-dependent RNA-polymerase genes of

viruses from the orders Bunyavirales,Mononegavirales, Orthomyxovirales, the families
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Picornaviridae, Reoviridae, the Hepe-Nido-like and Tombus-Noda-like groups, and the genus

Flavivirus. These sequences were then aligned using the E-INS-i algorithm in Mafft v.7.271

[79]. To reduce alignment uncertainty, regions that aligned poorly were removed using Tri-

mAl v. v1.4.rev15 [80] under the ‘strict’ settings. Each alignment was then subjected to model

testing to determine the best-fit model of amino acid substitution using ModelFinder [81] via

IQ-TREE v.1.6.12 [82]. Finally, maximum likelihood phylogenetic trees of each data set were

estimated using the IQ-TREE package, implementing a stochastic hill-climbing nearest-neigh-

bour interchange tree search. Phylogenetic robustness was assessed using Shimodaira–Hase-

gawa (SH)-like branch supports.

Virus–tick evolutionary history

To compare the evolutionary history of Ix. uriae and a subset of closely related Bunyavirales
found at both sampling sites (see Results), the mitochondrial genome of Ix. uriae
(NC_006078.1) was used as reference for mapping with Bowtie2 v.2.3.4 [78], with local set-

tings, against all sequence libraries. Two alignments were constructed for the mitochondrial

nucleotide consensus sequences present in each library: (i) only complete Ixodidae reference

genomes (N = 24), and (ii) complete genomes of Ix uriae and Ix holocyclus (N = 19) from the

complete genome alignment combined with shorter mitochondrial gene sequences (N = 148)

taken from two previously published data sets [26,33]. Both alignments were constructed

using the G-INS-i algorithm in Mafft v.7.271 [79]. Following visual inspection of the alignment

in AliView v.1.26 [83], model testing and estimation of a maximum likelihood phylogenetic

tree was performed in IQ-TREE as described above. The corresponding virus phylogeny was

inferred using the nucleotide RdRp open reading frame sequences of a subset of bunyaviruses,

keeping the open reading frame intact and utilising the same model testing and phylogenetic

tree inference procedure as described above. All phylogenetic trees computed were visually

compared and edited with FigTree v.1.4.3 (https://github.com/rambaut/figtree/). Comparison

of genetic diversity between the northern and southern populations was undertaken by com-

puting the number of base differences per site averaged over all sequence pairs between the

two populations (i.e. π) using Mega X v.10.1.1 [84].
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