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Abstract
Data-intensive science comes with increased risks concerning quality and reliability of data, and while trust in science has 
traditionally been framed as a matter of scientists being expected to adhere to certain technical and moral norms for behav-
iour, emerging discourses of open science present openness and transparency as substitutes for established trust mechanisms. 
By ensuring access to all available information, quality becomes a matter of informed judgement by the users, and trust 
no longer seems necessary. This strategy does not, however, take into consideration the networks of professionals already 
enabling data-intensive science by providing high-quality data. In the life sciences, biological data- and knowledge bases 
managed by expert biocurators have become crucial for data-intensive research. In this paper, I will use the case of biocura-
tors to argue that openness and transparency will not diminish the need for trust in data-intensive science. On the contrary, 
data-intensive science requires a reconfiguration of existing trust mechanisms in order to include those who take care of and 
manage scientific data after its production.
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Introduction

In 2010, the European Commision’s High-Level Group on 
Scientific Data stated that “[w]e are on the verge of a great 
new leap in scientific capability, fueled by data” (European 
Commission 2010, p. 9). Ten years later, terms like “data-
driven science”, “data-intensive science”, and “e-science” 
are gaining traction within what is sometimes described as 
a paradigmatic shift in the conditions for knowledge produc-
tion. One of the key factors of this shift is the combination 
and integration of the enormous amounts of data being gen-
erated. Another factor is the belief that the data will speak 
for itself through computational analyses without the need 
for prior theories, models or hypotheses (Kitchin 2014). 
Although the claims of a new and “theory-free” science 
generating knowledge from Big Data have been questioned 
by both scientists and philosophers of science (e.g., Kitchin 
2014; Leonelli 2016), there are still enough changes tak-
ing place to warrant the label “data intensive” science. New 
technologies for data generation, dissemination and inter-
pretation are reshaping scientific knowledge infrastructures 

and data has gained status as a valuable scientific output in 
its own right (Leonelli 2016).

According to philosopher of science Sabina Leonelli, 
data-intensive science requires more trust as the distrib-
uted nature of data dissemination systems limits the ability 
of individuals to understand the systems as a whole (Leo-
nelli 2016). However, scientific trust is already challenged 
(e.g.,Barber 1987; Sarewitz 2016). As Richard Horton, 
editor-in-chief of the scientific journal The Lancet, argues, 
something seems to be wrong with the way science is cur-
rently conducted:

The case against science is straightforward: much of 
the scientific literature, perhaps half, may simply be 
untrue. Afflicted by studies with small sample sizes, 
tiny effects, invalid exploratory analyses, and flagrant 
conflicts of interest, together with an obsession for pur-
suing fashionable trends of dubious importance, sci-
ence has taken a turn towards darkness (Horton 2015, 
p. 1380).

In other words, it seems as if science cannot be completely 
trusted. Or, rather, that scientists do not necessarily adhere 
to the technical and moral norms that are a prerequisite for 
believable knowledge claims (Barber 1987). *	 Ane Møller Gabrielsen 

	 ane.gabrielsen@ntnu.no

1	 NTNU University Library, Trondheim, Norway

http://orcid.org/0000-0002-2470-3451
http://crossmark.crossref.org/dialog/?doi=10.1007/s11019-020-09960-5&domain=pdf


498	 A. M. Gabrielsen 

1 3

The risks are even higher with data-intensive science. In 
order to fully utilize the enormous amounts of data, science 
policies call for data sharing, but sharing of large quantities 
of information through digital technologies comes with its 
own challenges. When the amounts of available informa-
tion increase, so does the risk of inaccuracies, flaws and 
even fraud as researchers “have no real way of knowing for 
sure if, on the other end of the line, they will find man or 
machine, collaborator or competitor, reliable partner or con-
artist, careful archivist or data slob” (European Commission 
2010, p. 17).

In current European science policies, openness is pre-
sented as a means to more credible and reliable science 
(European Commission 2016). Through openness and 
transparency, data will be available for validation, scientific 
integrity will be encouraged and public trust in science will 
eventually be restored. In other words, in addition to ena-
bling data-intensive science by making data and informa-
tion accessible, openness is supposed to mend the situation 
described by Horton above. However, implicit in this claim 
is also the premise that there is no longer really any need to 
trust anyone as everything will be transparent and accessible 
for scrutiny.

The life sciences are often perceived to be in the fore-
front of data-intensive science (Nielsen 2011; Leonelli 
2016). Biological databases have become central for bio-
logical research (Kersey and Apweiler 2006; Leonelli 2013) 
and these databases are usually populated and managed by 
expert biocurators. In this paper, I will use the example of 
biocurators to argue that data-intensive science requires 
not a dismissal, but a reconfiguration of scientific trust. As 
trust is a complex phenomenon, I will start by giving a short 
overview of some important approaches to scientific trust 
followed by an equally short analysis of how trust is framed 
in European visions and policies concerning data-intensive 
science.

Trust in science

Although several disciplines have taken different angles at 
conceptualizing trust without reaching any consensus (Misz-
tal 1996), a common understanding is trust as a certain kind 
of positive assumptions or expectations about others and 
their actions (Luhmann 2000; Barber 1987; Hendriks et al. 
2016). Trust, understood in this manner, is therefore a matter 
of interpersonal trust; it concerns relations between people. 
Although trust is considered essential for almost any kind 
of social cooperation and interaction, it is often viewed as 
redundant in science. Robert Merton’s famous account of the 
scientific ethos includes organized skepticism (Merton 1942) 
and scientific knowledge is often assumed to be evidence-
based and emerging only after rounds of systemic distrust 

where all inaccuracies and false claims have been washed 
away and eliminated. Trust, on the other hand, involves a 
certain level of vulnerability and risk of disappointment; it 
does not offer any sort of guarantee that people will live up 
to the expectations. Quite the contrary, as philosopher Onora 
O’Neill points out; when outcomes are guaranteed, trust is 
redundant (O’Neill 2002).

However, as philosopher John Hardwig argues in “The 
Role of Trust in Knowledge” (Hardwig 1991), trust is not 
only necessary in science; it might be even more epistemi-
cally important than empirical data and logical arguments. 
As the traditional mechanisms for ensuring reliability—peer 
review and replication—have proved to be insufficient in 
order to detect fraud and poor-quality research, Hardwig 
argues that researchers are left with no option than to trust 
fellow scientists in order to be able to produce new knowl-
edge (Hardwig 1991). Without trust, scientists would be left 
in in “experimenter’s regress”, constantly forced to replicate 
experiments in order to verify them (Bijker et al. 2016) and 
scientific knowledge therefore rests on a foundation built on 
the trustworthiness of members of epistemic communities 
(Hardwig 1991).

In “Trust in Science” (1987), sociologist Bernhard Bar-
ber argues that trust in science is not much different from 
trust elsewhere in society and distinguishes between two 
relevant types of trust: One concerning the expectation that 
someone will competently perform an assigned task, the 
other concerning the expectation that someone will observe 
and fulfill their fiduciary obligations and responsibilities 
and put them above their own interests (Barber 1987). In 
other words, scientists must be expected to adhere to certain 
technical and moral norms and criteria in order to produce 
believable knowledge claims. Furthermore, according to 
Barber, trust also concerns those who assess and evaluate 
scientific knowledge claims; they must be believed to be 
both competent and responsible in order to be trustworthy 
(ibid.). Trust in science thus depends on a chain of assumed 
trustworthy elements starting with the original knowledge 
producers and ending with review by assumed trustworthy 
peers before publication. Although obvious failure or vio-
lation of the norms could be met by formal sanctions like 
withdrawal of funding or even legal action, Barber notes that 
the scientific community prefers to rely on social processes, 
like informal sanctioning by colleagues, in order to maintain 
trust (Barber 1987).

Data‑intensive science: openness replacing 
trust?

According to Barber, there has been no substantial change 
in the formal and informal maintenance of scientific trust 
relations since the academies rose to forefront of scientific 
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power in the eighteenth century (Barber 1987). Science, 
however, has changed since Barber made his observations. 
Data is now considered a valuable scientific output beyond 
its original cause for production, and according to some, 
we are at the verge of a fourth scientific paradigm of data-
intensive science enabled by new digital technologies for 
data production, sharing and analysis (Hey et al. 2009).

In order to utilize the enormous amounts of data, calls for 
openness and sharing are becoming increasingly common, 
both in science policies and in scholarly communities. Open 
Data is considered to be a fundamental element of Open 
Science, which again is presented as “a systemic change to 
the way science and research have been carried out for the 
last fifty years” (European Commission 2016). It is impor-
tant to note that in addition to increasing efficiency and col-
laboration by making data and information readily available, 
Open Science is also expected to enhance transparency and 
accountability (Levin and Leonelli 2017) and therefore also 
the potential trustworthiness of research. By having access 
to all the underlying data, everyone will be able to check and 
validate results, and by having access to sufficient metadata, 
i.e., additional information about the data and how it was 
produced, potential reusers will be able to make informed 
judgements about the quality and reliability of the data itself 
(European Commission 2018a).

In Europe, the quest for Open Science is manifesting 
through The European Open Science Cloud, “a trusted, open 
environment for the scientific community for storing, sharing 
and re-using scientific data and results” (European Commis-
sion 2018a, p. 16). A key concept for the envisioned cloud 
is trusted repositories; certified digital repositories that ful-
fill certain requirements (European Commission 2018a). 
In addition to providing full transparency of their services, 
trusted repositories should also provide FAIR compliancy 
in order to provide the best conditions for quality control 
and subsequent reuse (European Commission 2018b). The 
FAIR-principles (Findable, Accessible, Interoperable and 
Reusable) advocate the consistent use of identifiers, stand-
ards and metadata in machine-readable formats (Wilkinson 
et al. 2016) that in turn will enable users to assess quality 
and reliability. As stated in the European Commission report 
Turning FAIR into Reality:

The rich metadata and provenance information 
required to achieve Reusability should include details 
that address data assessability. It is important to pro-
vide information that allows potential (re)users to 
judge the accuracy, reliability and quality of the data, 
and to determine whether these data meet their needs 
(European Commission 2018b, p. 22).

According to Grand et al., Open Science has the potential 
to become a new “trust technology” benefiting both the sci-
entific community and the public by complementing or even 

replacing existing trust systems (Grand et al. 2012). How-
ever, as O’Neill (2002) points out, openness does not neces-
sarily increase trust. As already mentioned, trust involves 
positive expectations about the actions of others that may 
or may not be accurate and involves quite a bit of risk that 
these expectations may be wrong. Openness aims to limit 
this risk, thereby making trust in other peoples’ actions and 
intentions redundant. In the Open Science-scenario, there is 
no real need to trust anyone as everything will be available 
for checking and validation, and in this sense, Open Science 
is therefore rather a “trust-no-one-technology”.

Biocuration: enabling data‑intensive biology

Due to new technologies for generation of biological data, 
the life sciences are said to be well on their way to becoming 
data-driven, or data-intensive. As an article in Nature put it: 
“Biologists are joining the big-data club” (Marx 2013, p. 
255). According to Leonelli, this does not necessarily mean 
that the life sciences are entering a data-driven paradigm 
where knowledge is extracted from large amounts of data 
without previous hypotheses, but rather that they are turning 
towards a data-centric approach to science “within which 
efforts to mobilize, integrate, and visualize data are valued 
as contributions to discovery in their own right and not as a 
mere by-product of efforts to create and test scientific theo-
ries” (Leonelli 2016, p. 1).

Although biological databases have existed since the 
1960s, the “data deluge” of the life sciences started in the 
1990s when the Human Genome Project was officially 
launched and gave rise to a massive amount of publicly 
available sequence data. In a short piece in Nature 1991, 
molecular biologist Walter Gilbert at Harvard University 
claimed that biology was facing a paradigm shift: The soon-
to-be-realized knowledge of all the genes would guide all 
future biological research, and the vessel for the shift would 
be the biological databases (Gilbert 1991). Gilbert saw the 
potential of the “flood of knowledge” that would soon be 
available, but also understood that it came with challenges: 
“The next tenfold increase in the amount of information in 
the databases will divide the world into haves and have-nots, 
unless each of us connects to that information and learns 
how to sift through it for the parts we need” (Gilbert 1991, 
p. 99).

This sifting is currently the responsibility of biocurators; 
“professional scientists who collect, annotate, and validate 
information that is housed within biological databases” 
(Research Information Network 2010). Although their num-
ber is rather small, the importance of biocurator efforts is 
invaluable due to the impact curated databases have had as 
almost every form of life science research involves the use 
of biological databases in one way or another, whether it is 
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for looking up information on a certain gene or molecular 
interaction, fuelling analyses of large amounts of sequence 
data, or enabling computational models simulating the pro-
cesses of biological systems.

According to Leonelli, the core task of biocuration lies in 
the decontextualization and recontextualization of data—the 
processes where data is detached from their original context 
through standardized terms and then provided with meta-
data, “reliability labels”, which allow the user to understand 
and evaluate how the data was produced (Leonelli 2016). As 
already mentioned, metadata is considered to be crucial for 
the possibility to assess the reliability of the data as it pro-
vides users with information to make informed judgements 
(e.g., Leonelli 2016; Marchionini et al 2012). In addition, 
biocurators might provide data with their own confidence 
rankings, giving the users an instant sense of the reliability 
(Leonelli 2016). In other words, biocurators provide services 
that allow users to get access to quality-checked information 
in addition to providing them with the tools for making their 
own evaluations when necessary.

Although important enough, biocuration involves more 
than providing metadata and confidence rankings in the 
correct formats. Beyond the issue of how to deal with the 
“data deluge” lies the even more complex question of how 
to incorporate new research output with what is already 
known. As Attwood et al. comment, new information is 
useless unless it is “stored and organized in ways that allow 
us to access it, to analyse it, to annotate it and to relate it to 
other information” (Attwood et al 2009, p. 318) and in addi-
tion to serving as archives for research data output, several 
biological databases are so-called added-value databases, 
or knowledgebases, which “build on archival resources by 
providing expert curation, annotation, reanalysis, and inte-
gration of archived experimental data” (Cook et al 2019, p. 
D17). A large part of biocuration work therefore consists 
of reading papers and translating relevant information into 
computer-readable formats, thereby enabling computational 
integration with new research output (Howe et al 2008).

Data quality is not included in the FAIR principles and 
“trusted repositories”-approach of Open Science as it is con-
sidered too difficult to standardize (European Commission 
2018a). The Open Science Cloud will therefore “need to 
operate under the principle of let the buyer beware (caveat 
emptor) (European Commission 2018b, p. 35), and the qual-
ity and reliability of the data becomes the responsibility of 
the user. The general lack of attention to quality in data-
driven science has been noted by several scholars, including 
Bruno Strasser, who comments that

data are turned into knowledge by bioinformaticians 
and biostatisticians, most of whom have no first hand 
experience of producing the experimental data they 
are analyzing. This has contributed to an exaggerated 

trust in the quality and comparability of the data and 
to many irreproducible results (Strasser 2012, p. 86).

Biocurators, on the other hand, do have first hand experi-
ence from experimental research as they are usually trained 
biologists with additional experience and education from 
computer science or informatics (International Society for 
Biocuration 2018; Leonelli 2016). The rationale behind 
manually curated data- and knowledge bases is precisely to 
provide high-quality information so users will save time and 
avoid inaccuracies and flaws, and entries usually go through 
several thorough internal review processes and quality con-
trols (e.g., Kerrien et al. 2012; Chen et al. 2019). Manually 
curated databases are therefore generally assumed to be of 
high quality (Cusick et al. 2009; Howe et al. 2008).

Transforming insights from scientific datasets and publi-
cations into computer-readable formats is far from a matter 
of simply punching in text and numbers; data and informa-
tion must be translated into standardized vocabularies and 
formats. These standardized vocabularies affect the way bio-
logical knowledge is represented, and therefore also how 
biological entities and their interactions are conceived and 
defined by scientists (Boem 2016), and as biocurators take 
part in developing the standards and decide how to repre-
sent the data, Ankeny and Leonelli argue that biocuration 
actively influences interpretation and constitutes part of 
knowledge-creation and production in its own right (Ank-
eny and Leonelli 2015). Thus, in addition to functioning 
as reviewers and managers of information, biocurators are 
also scientific knowledge workers, actively engaging with 
the data and knowledge they are making accessible to the 
wider scientific community.

Precarious trust

In “Trust in Science”, Barber comments that factors like 
complexity, specialization and the problem of effective 
surveillance of performance places more emphasis on trust 
(Barber 1987). As biocurators are highly specialized and 
perform complex tasks that are not directly visible to the 
users, trust therefore seems to be crucial. Although Leo-
nelli notes that most users of databases are happy to trust 
the decisions of biocurators (Leonelli 2016), she also states 
that biological databases are turning into black boxes where 
important practices and decisions are hidden from the view 
of the general users (op.cit.). While the biological databases 
have become indispensable resources for biological research 
far beyond the model organism communities, the biocura-
tors themselves seem to be disappearing from the general 
view and as Burge et al. comment, “how databases are main-
tained, and by whom, is rather obscure” (Burge et al. 2012, 
p. 1).
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If trust is understood as positive expectations towards the 
actions and intentions of someone else, the issue of trust in 
biocurators becomes questionable. According to Luhmann, 
one has to distinguish between trust and confidence, the lat-
ter being the taken-for-granted assumptions that something 
will work as expected. Trust, on the other hand, requires 
a previous engagement and presupposes a situation of risk 
(Luhmann 2000). If users of biological databases are una-
ware of biocurators and their work and take the quality of 
available data for granted, which they currently seem to do 
(Bateman 2010; Baxevanis and Bateman 2015), this is not 
really a matter of trust in biocurators, but rather a form of 
confidence in absence of actual knowledge of the system and 
its participants. Furthermore, it is an absence of awareness 
of the risks concerning available data, as not all databases 
provide the same quality. Opening the black box of biologi-
cal databases in terms of making biocurators and curatorial 
processes visible is therefore undoubtedly important, and 
according to the “trusted repositories”-approach of FAIR 
and Open Science, researchers should be able to evaluate 
a database, including the trustworthiness of the associated 
biocurators, in order to decide which resource to choose. 
However, this requires users to actively look up and assess 
the information without necessarily having the competence 
to evaluate the quality of complex curatorial expertise and 
practices. This is further complicated by the fact that what 
is considered high-quality data differs between user groups 
(Wang and Strong 1996; Marchionini et al 2012) and accord-
ing to a study by Huang et al. (2015), what determines “qual-
ity” in data curation also often differs between data users and 
data curators. Transparency without the proper recognition 
and support from the scientific community, might therefore 
undermine the potential trustworthiness of biocurators.

Several scholars have pointed out how trust within sci-
ence depends on the existence of enduring communities 
with shared norms and values (Rolin 2002; Edwards 2010), 
and Olga Kennard, co-founder of the Cambridge Structural 
Database in 1965, have stated that database organizers had 
to be well-recognized in the community in order to gain trust 
(Kennard in Strasser 2011). Biocuration originated in the 
tight-knit model organism communities where the databases 
themselves became important mechanisms for fostering of 
collective trust, both within and between model organism 
communities (Leonelli and Ankeny 2012).

The model organism communities, including the data-
base curators, fit the definition of epistemic communities. 
According to Peter M. Haas, “[a]n epistemic community is a 
network of professionals with recognized expertise and com-
petence in a particular domain and an authoritative claim 
to policy-relevant knowledge within that domain or issue-
area” (Haas 1992, p. 3). These communities may consist of 
members from different disciplines and backgrounds where 
the members share certain beliefs, values, and notions of 

validity pertaining to the knowledge and practices in ques-
tion, as well as a “common policy enterprise-that is, a set 
of common practices associated with a set of problems to 
which their professional competence is directed” (ibid.).

As the model organism database curators often had back-
ground as laboratory scientists from the community, they 
were viewed as community members, sharing its interests 
and values (Leonelli and Ankeny 2012). Unlike the first 
database curators, however, professional biocurators of 
today do not necessarily belong to clearly defined epistemic 
communities. As the life sciences are becoming increasingly 
interdisciplinary, “communities” are globally distributed and 
even resources that focus on specific molecules, processes or 
organisms serve a variety of different epistemic cultures and 
communities (Leonelli 2016; Oliver et al 2016). According 
to Leonelli and Ankeny, this allowed the community data-
base curators to become the authorities, reflecting

a form of ceding of responsibility for these types of 
activities away from individual researchers or particu-
lar laboratories, and even away from the communities 
as previously conceptualized as informally-organized 
entities, to the databases as the recognized, formal 
levels of organisation which promote key community 
functions (Leonelli and Ankeny 2012, p. 34).

However, this authority is not necessarily recognized and 
acknowledged beyond the database itself. With regards to 
competence, biocurator expertise is currently not acknowl-
edged by the scientific community. Unlike the closely related 
field of bioinformatics, there is no formalized degree pro-
grams for biocuration (Sanderson 2011) and biocurators tend 
to be classified as technical staff or service workers (Ankeny 
and Leonelli 2015).

As Barber notes, assumed competence is not enough 
to be perceived as trustworthy; it also requires fulfillment 
of normative obligations to colleagues, institution and the 
community (Barber 1987). Thus, when curation work is 
detached from research communities, the loyalties of bio-
curators could also come under scrutiny. Biocurators operate 
in arenas that may seem removed from actual science, and 
in Data-centric biology (2016) Leonelli gives an example of 
how biologists displayed mistrust for the work of biocurators 
when informed of their practices, complaining that they were 
biased towards the needs and wishes of computer scientists 
and not biologists.

Beyond transparency: reconfiguring trust 
in data‑intensive science

As mentioned in the introduction, Leonelli argues that data-
intensive science requires more trust, not less, due to the 
complexity of the data dissemination systems (Leonelli 
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2016). Although transparency and metadata might limit the 
need for trust in data producers, trust in those who curate 
data seems to be unavoidable for data-intensive science as 
users need to believe that data curators are making good 
decisions on their behalf in order to be able to rely on data- 
and knowledge bases. The question should therefore not be 
how to diminish the need for trust in data-intensive science, 
but rather how to facilitate trust in those who take care of, 
i.e., curate, data after its production.

In her account of trust in science, philosopher Kristina 
Rolin claims that a trustworthy moral and epistemic char-
acter “is a community achievement and not merely an indi-
vidual achievement” (Rolin 2002, p. 101) and argues that 
scientific trust involves “trust in the community’s ability to 
facilitate inclusive and responsive dialogue based on shared 
standards of argumentation” (Rolin 2002, p. 100). Commu-
nity dialogue thus seems to be the key condition for facilitat-
ing and maintaining trust, but as noted earlier, biocurators 
are no longer connected to specific epistemic communities 
with clearly defined boundaries. As Leonelli and Ankeny 
(2012) note, cross-species research is now the norm, and the 
identity politics previously characterizing model organism 
communities is being challenged as anyone interested can 
access the databases.

On the other hand, the professionalization of the curator 
role has opened up for the emergence of new identity: the 
biocurator, who is not necessarily associated with a spe-
cific research community, but with a database or even with 
a biocuration community. A possible solution could there-
fore be to view the biocurator community as an epistemic 
community in its own right, i.e., as a “a network of profes-
sionals with recognized expertise and competence in a par-
ticular domain and an authoritative claim to policy-relevant 
knowledge within that domain or issue-area” (Haas 1992, 
p. 3). It would then be the responsibility of the biocuration 
community to maintain formal and informal trust relations 
and to facilitate dialogue both within the community itself 
as well as with different user groups. There are already steps 
being taken in this direction; biocurators have been meeting 
regularly since 2003 (Harding 2006), and in 2009, the Inter-
national Society for Biocuration (ISB) was founded in order 
to provide a forum for networking and to promote increased 
awareness of biocuration and biological databases (Bateman 
2010). Through various forms of outreach, the ISB encour-
ages user communities to collaborate with biocurators, for 
instance through community curation, where researchers do 
the initial curation and professional biocurators takes care of 
quality control (International Society for Biocuration 2018).

As life science research depends on high-quality bio-
logical databases, the construction of an epistemic com-
munity capable of ensuring the trustworthiness of its mem-
bers should not be an issue left solely to biocurators but 
receive support and recognition from the greater scientific 

community which they serve. Currently, biological data-
bases and biocurators are facing challenges regarding the 
general lack of recognition and funding allocated to curation 
activities. The maintenance of existing data and informa-
tion is seldom considered as important as the generation 
of new, and funding for both model organism databases 
and other types of databases is in constant danger of being 
reduced (Chen et al. 2019). By recognizing biocuration as 
an important and necessary part of the scientific process 
and by ensuring proper funding and representation, policy 
makers, funders and the greater scientific community could 
therefore facilitate the reconfiguration of existing scientific 
trust mechanisms and support biocurators as trustworthy 
scientific actors.

Concluding remarks

As science is becoming more data-intensive and collabora-
tive, the issue of trust is becoming more challenging than 
ever. With the increasing importance of databases and the 
detachment of data and information from its original con-
text, the scientific trust chain should also include those who 
take care of data after its production, but in current science 
policies, the importance of trust is diminished in favor of 
openness and transparency. Data curation is seldom men-
tioned, and when it is, it seems to be considered a mainly 
technical task. Added-value curation like biocuration, how-
ever, involves enriching and transforming original data and 
literature, and requires considerable scientific expertise. 
Openness and transparency are therefore not in any way 
making trust redundant. Quite the contrary; as the levels of 
knowledge, judgement and skills necessary for scientific data 
curation are revealed, the need for robust relations of trust 
within data-intensive science seems to be more pertinent 
than ever.

With its deep and complex level of curation, biocuration 
might not be representative for the majority of the vast body 
of digital data curation practices currently taking place in 
different scientific domains. However, as the life sciences 
are often used as an example of successful and promising 
data-intensive infrastructures, they could serve as an exam-
ple of how trust needs to be reinforced in order to make 
data-intensive science succeed across disciplinary borders. 
At the moment, neither current nor envisioned life sciences 
are equipped with mechanisms to secure and maintain this 
trust, but as one important function of trust is to reduce 
transaction costs, the investments in facilitating trust in 
databases and digital curators would be easily returned by 
the time and effort saved on having immediate access to 
high-quality data.

Trust in science should therefore not be diminished, but 
rather rethought and reconfigured. Policymakers as well 
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as funding agencies and the greater scientific community 
should award attention and authority to digital curator com-
munities, and mechanisms to establish and maintain trust in 
digital data curators should be embedded in the envisioned 
infrastructures for data-intensive science. Such a recon-
figuration of trust will, however, require a more nuanced 
understanding of how data-intensive science works and of 
the importance of digital curation than currently seen in 
the strategies and policies promoting open data-intensive 
science.

Acknowledgements  Open Access funding provided by NTNU Nor-
wegian University of Science and Technology (incl St. Olavs Hospital 
- Trondheim University Hospital).

Funding  This study was funded by Norges Forskningsråd (Grant No. 
247727).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Ankeny, Rachel A., and Sabina Leonelli. 2015. Valuing data in post-
genomic biology: How data donation and curation practices chal-
lenge the scientific publication system. In Postgenomics: Perspec-
tives on biology after the genome, ed. Sarah S. Richardson and 
Hallam Stevens, 126–149. Durham and London: Duke University 
Press.

Attwood, Teresa K., Douglas B. Kell, Philip McDermott, James Marsh, 
Steve R. Pettifer, and David Thorne. 2009. Calling international 
rescue: Knowledge lost in literature and data landslide! Biochemi-
cal Journal 424 (3): 317–333.

Barber, Bernard. 1987. Trust in science. Minerva 25 (1–2): 123–134.
Bateman, Alex. 2010. Curators of the world unite: The International 

Society of Biocuration. Bioinformatics 26 (8): 991. https​://doi.
org/10.1093/bioin​forma​tics/btq10​1.

Baxevanis, Andreas D., and Alex Bateman. 2015. The importance of 
biological databases in biological discovery. Current Protocols in 
Bioinformatics 50 (1): 1–8.

Bijker, Else M., Robert W. Sauerwein, and Wiebe E. Bijker. 2016. 
Controlled human malaria infection trials: How tandems of trust 
and control construct scientific knowledge. Social Studies of Sci-
ence 46 (1): 56–86.

Boem, Federico. 2016. Orienteering tools: Biomedical research with 
ontologies. Humana. Mente Journal of Philosophical Studies 9 
(30): 37–65.

Burge, Sarah, Teresa K. Attwood, Alex Bateman, Tanya Z. Berardini, 
Michael Cherry, Claire O’Donovan, and Pascale Gaudet. 2012. 

Biocurators and biocuration: Surveying the 21st century chal-
lenges. Database. https​://doi.org/10.1093/datab​ase/bar05​9.

Chen, Qingyu, Ramona Britto, Ivan Erill, Constance Jeffery, Arthur 
Liberzon, Michele Magrane, Jun-Ichi Onami, et al. 2019. Qual-
ity matters: Biocuration experts on the impact of duplication and 
other data quality issues in biological databases. JAMA. https​://
doi.org/10.1101/78803​4.

Cook, Charles E., Oana Stroe, Guy Cochrane, Ewan Birney, and Rolf 
Apweiler. 2019. The European Bioinformatics Institute in 2020: 
Building a global infrastructure of interconnected data resources 
for the life sciences. Nucleic acids Research 48 (D1): D17–D23. 
https​://doi.org/10.1093/nar/gkz10​33.

Cusick, Michael E., Yu Haiyuan, Alex Smolyar, Kavitha Venkate-
san, Anne-Ruxandra Carvunis, Nicolas Simonis, Jean-Francois 
Rual, Heather Borick, Pascal Braun, and Matija Dreze. 2009. 
Literature-curated protein interaction datasets. Nature Methods 
6 (1): 39.

Edwards, Paul N. 2010. A vast machine: Computer models, climate 
data, and the politics of global warming. Cambridge, MA: Mit 
Press.

European Commission. 2010. Riding the wave: How Europe can gain 
from the rising tide of scientific data. Final report of the High 
Level Expert Group on Scientific Data.

European Commission. 2016. Open innovation, open science, open to 
the world a vision for Europe. Luxembourg: Luxembourg: Publi-
cations Office of the European Union.

European Commission. 2018a. Prompting an EOSC in practice. Lux-
embourg: Publications Office of the European Union. https​://doi.
org/10.2777/11265​8.

European Commission. 2018b. Turning FAIR into reality. Final Report 
and Action Plan from the European Commission Expert Group 
on FAIR Data. Luxembourg: Publications Office of the European 
Union. https​://doi.org/10.2777/1524.

Gilbert, Walter. 1991. Towards a paradigm shift in biology. Nature 
349: 6305.

Grand, Ann, Clare Wilkinson, Karen Bultitude, and Alan F.T. Winfield. 
2012. Open science: A new “trust technology”? Science Com-
munication 34 (5): 679–689.

Haas, Peter M. 1992. Introduction: Epistemic communities and inter-
national policy coordination. International Organisation 46 (1): 
1–35. https​://doi.org/10.1017/S0020​81830​00014​42.

Harding, Anne. 2006. Rise of the Bio-librarian: The field of biocuration 
expands as the data grows. The Scientist 20 (4): 82–84.

Hardwig, John. 1991. The role of trust in knowledge. The Journal of 
Philosophy 88 (12): 693–708.

Hendriks, Friederike, Dorothe Kienhues, and Rainer Bromme. 2016. 
Trust in science and the science of trust. In Trust and communica-
tion in a digitized world, ed. B. Blöbaum, 143–159. New York: 
Springer International Publishing.

Hey, T., S. Tansley, and K.J. Tolle. 2009. Jim Gray on eScience: A 
transformed scientific method. In The 4th paradigm: Data-inten-
sive scientific discovery, ed. T. Hey, S. Tansley, and K.J. Tolle. 
Redmond, WA: Microsoft Research.

Horton, Richard. 2015. Offline: What is medicine’s 5 sigma? The Lan-
cet. https​://doi.org/10.1016/S0140​-6736(15)60696​-1.

Howe, Doug, Maria Costanzo, Petra Fey, Takashi Gojobori, Linda Han-
nick, Winston Hide, David P. Hill, Renate Kania, Mary Schaeffer, 
and Susan St Pierre. 2008. Big data: The future of biocuration. 
Nature 455 (7209): 47.

Huang, Hong, Corinne Jörgensen, and Besiki Stvilia. 2015. Genomics 
data curation roles, skills and perception of data quality. Library 
and Information Science Research 37 (1): 10–20. https​://doi.
org/10.1016/j.lisr.2014.08.003.

International Society for Biocuration. 2018. Biocuration: Distilling 
data into knowledge. PLoS Biology 16 (4): e2002846. https​://doi.
org/10.1371/journ​al.pbio.20028​46.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bioinformatics/btq101
https://doi.org/10.1093/bioinformatics/btq101
https://doi.org/10.1093/database/bar059
https://doi.org/10.1101/788034
https://doi.org/10.1101/788034
https://doi.org/10.1093/nar/gkz1033
https://doi.org/10.2777/112658
https://doi.org/10.2777/112658
https://doi.org/10.2777/1524
https://doi.org/10.1017/S0020818300001442
https://doi.org/10.1016/S0140-6736(15)60696-1
https://doi.org/10.1016/j.lisr.2014.08.003
https://doi.org/10.1016/j.lisr.2014.08.003
https://doi.org/10.1371/journal.pbio.2002846
https://doi.org/10.1371/journal.pbio.2002846


504	 A. M. Gabrielsen 

1 3

Kerrien, Samuel, Bruno Aranda, Lionel Breuza, Alan Bridge, Fiona 
Broackes-Carter, Carol Chen, Margaret Duesbury, et al. 2012. 
The IntAct molecular interaction database in 2012. Nucleic Acids 
Research 40 (D1): D841. https​://doi.org/10.1093/nar/gkr10​88.

Kersey, Paul, and Rolf Apweiler. 2006. Linking publication, gene and 
protein data. Nature Cell Biology 8 (11): 1183.

Kitchin, Rob. 2014. Big Data, new epistemologies and paradigm shifts. 
Big Data & Society. https​://doi.org/10.1177/20539​51714​52848​1.

Leonelli, Sabina. 2013. Why the current insistence on open access to 
scientific data? Big data, knowledge production, and the political 
economy of contemporary biology. Bulletin of Science, Technol-
ogy and Society 33 (1–2): 6–11.

Leonelli, Sabina. 2016. Data-centric biology: A philosophical study. 
Chicago: University of Chicago Press.

Leonelli, Sabina, and Rachel A. Ankeny. 2012. Re-thinking organisms: 
The impact of databases on model organism biology. Studies in 
History and Philosophy of Science Part C: Studies in History and 
Philosophy of Biological and Biomedical Sciences 43 (1): 29–36.

Levin, Nadine, and Sabina Leonelli. 2017. How does one “open” sci-
ence? Questions of value in biological research. Science, Technol-
ogy, & Human Values 42 (2): 280–305.

Luhmann, Niklas. 2000. Familiarity, confidence, trust: Problems and 
alternatives. In Trust: Making and breaking cooperative relations, 
ed. Diego Gambetta. Oxford: Basil Blackwell.

Marchionini, Gary, Christopher A Lee, Heather Bowden, and Michael 
Lesk. 2012. Curating for quality: Ensuring data quality to enable 
new science. https​://doi.org/10.25391​/nsf.68150​00.

Marx, Vivien. 2013. The BIG CHALLENGES OF BIG DATA. Nature 
498 (7453): 255.

Merton, Robert K. 1942. Science and technology in a democratic order. 
Journal of Legal and Political Sociology 1 (1): 115–126.

Misztal, Barbara. 1996. Trust in modern societies: The search for the 
bases of social order. Cambridge: Polity.

Nielsen, Michael. 2011. Reinventing discovery—The new era of net-
worked science. Princeton and Oxford: Princeton University Press.

O’Neill, Onora. 2002. Autonomy and trust in bioethics. The Gifford 
lectures. Cambridge: Cambridge University Press.

Oliver, Stephen G., Antonia Lock, Midori A. Harris, Paul Nurse, 
and Valerie Wood. 2016. Model organism databases: Essential 
resources that need the support of both funders and users. BMC 
Biology 14 (1): 49.

Research Information Network. 2010. Managing research data: A guide 
to biocuration. https​://www.rin.ac.uk/syste​m/files​/attac​hment​s/.

Rolin, Kristina. 2002. Gender and trust in science. Hypatia. https​://doi.
org/10.1111/j.1527-2001.2002.tb010​75.x.

Sanderson, Katharine. 2011. Bioinformatics: Curation generation. 
Nature 470: 295–296. https​://doi.org/10.1038/nj733​3-295a.

Sarewitz, Daniel. 2016. Saving science. The New Atlantis 49: 4–40.
Strasser, Bruno J. 2011. The experimenter’s museum: GenBank, natu-

ral history, and the moral economies of biomedicine. Isis 102 
(1): 60–96.

Strasser, Bruno J. 2012. Data-driven sciences: From wonder cabinets 
to electronic databases. Studies in History and Philosophy of Sci-
ence Part C: Studies in History and Philosophy of Biological and 
Biomedical Sciences 43 (1): 85–87.

Wang, Richard Y., and Diane M. Strong. 1996. Beyond accuracy: What 
data quality means to data consumers. Journal of Management 
Information Systems 12 (4): 5–33. https​://doi.org/10.1080/07421​
222.1996.11518​099.

Wilkinson, Mark D., Michel Dumontier, Ijsbrand Jan Aalbersberg, 
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomb-
erg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, and Philip 
E. Bourne. 2016. The FAIR guiding principles for scientific 
data management and stewardship. Scientific Data. https​://doi.
org/10.1038/sdata​.2016.18.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/nar/gkr1088
https://doi.org/10.1177/2053951714528481
https://doi.org/10.25391/nsf.6815000
http://www.rin.ac.uk/system/files/attachments/
https://doi.org/10.1111/j.1527-2001.2002.tb01075.x
https://doi.org/10.1111/j.1527-2001.2002.tb01075.x
https://doi.org/10.1038/nj7333-295a
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

	Openness and trust in data-intensive science: the case of biocuration
	Abstract
	Introduction
	Trust in science
	Data-intensive science: openness replacing trust?
	Biocuration: enabling data-intensive biology
	Precarious trust
	Beyond transparency: reconfiguring trust in data-intensive science
	Concluding remarks
	Acknowledgements 
	References




