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Identification of modified peptides using
localization-aware open search
Fengchao Yu 1, Guo Ci Teo 1, Andy T. Kong1, Sarah E. Haynes 1, Dmitry M. Avtonomov1,

Daniel J. Geiszler 1 & Alexey I. Nesvizhskii 1,2✉

Identification of post-translationally or chemically modified peptides in mass spectrometry-

based proteomics experiments is a crucial yet challenging task. We have recently introduced

a fragment ion indexing method and the MSFragger search engine to empower an open

search strategy for comprehensive analysis of modified peptides. However, this strategy does

not consider fragment ions shifted by unknown modifications, preventing modification

localization and limiting the sensitivity of the search. Here we present a localization-aware

open search method, in which both modification-containing (shifted) and regular fragment

ions are indexed and used in scoring. We also implement a fast mass calibration and opti-

mization method, allowing optimization of the mass tolerances and other key search para-

meters. We demonstrate that MSFragger with mass calibration and localization-aware open

search identifies modified peptides with significantly higher sensitivity and accuracy. Com-

paring MSFragger to other modification-focused tools (pFind3, MetaMorpheus, and Tag-

Graph) shows that MSFragger remains an excellent option for fast, comprehensive, and

sensitive searches for modified peptides in shotgun proteomics data.
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Analysis of protein posttranslational modifications (PTMs)
is key to understanding biological systems. Shotgun pro-
teomics, in which proteins are enzymatically digested and

analyzed via liquid chromatography–tandem mass spectrometry
(LC-MS/MS), is one of the most widely used approaches to
analyze PTMs1. Biologically relevant PTMs amenable to MS-
based analysis include phosphorylation, acetylation, glycosylation,
many less common modifications, and even novel PTMs that are
still being discovered2,3. Furthermore, MS-based proteomic
datasets contain a large number of peptides harboring chemical
modifications introduced at the sample preparation stage4,5.
Searching for these many possible modifications using conven-
tional database search tools has proven impractical. As a result, a
number of specialized computational strategies for identification
of modified peptides have been proposed, such as alignment-
based approaches, sequence tag-based methods, and spectral
library searching (reviewed in 2016 by Fu6), including the latest
generation of modification-focused tools7–13. Due to the large
search space, most tools limit the allowed delta masses to a
predefined list (e.g., UniMod14) and/or use a two-step search
approach.

In our recent work, we introduced a fragment ion indexing
strategy and an ultrafast database search engine MSFragger15.
This advance enabled a practical implementation of the open
search strategy, where large mass differences are allowed between
unmodified peptide sequences and experimentally observed pre-
cursors. Owing to its fast speed and ease of incorporation into
existing workflows, MSFragger and its open search strategy for
comprehensive PTM analysis have quickly gained wide adoption
in the proteomics community. Applications have included
detection of RNA crosslinks on RNA binding proteins16, com-
prehensive PTM searching in metaproteomics studies17 and
clinical samples18, quality control and checks for unexpected
modifications19, and proteogenomics20.

Despite its success, the straightforward open search strategy
has one significant limitation in that it does not attempt to use
modification-containing (mass shifted) fragment ions in scoring.
Thus, as much as half of the useful spectral information may be
ignored. This is particularly true for non-labile modifications,
where fragment ions retain the modification after dissociation of
the precursor peptide, and especially when the modification is
located in the C-terminal region of the peptide (eliminating the
strongest fragment ions, y ions, from scoring). In addition,
without using these shifted ions, the delta mass in open search
could not be localized within the identified peptide. A number of
studies7,10,13,21 tried to address this issue by using com-
plementary peaks: transforming each experimental peak by sub-
tracting it from the precursor mass. These complementary peaks
are used together with the original peaks in matching and scoring.
This approach—available as an option in MSFragger since its
original release—is able to match more fragment ions15. How-
ever, it also increases the likelihood of false matching due to
doubling the noise peaks and also generating unmatchable peaks
by transforming modification-free peaks into modification-
containing peaks. Tang et al.13 attempted to alleviate the noise
problem by dividing each spectrum into small regions, and using
complementary peak matching only in the spectral region
deemed most likely to contain shifted ions.

Here we propose a refined open search strategy, and a shifted
ion index to be used alongside the existing regular fragment ion
index in scoring. In this dual indexing strategy, both shifted and
regular fragments can be effectively—without increasing the noise
—matched and scored to localize unknown modifications, sig-
nificantly improving sensitivity and accuracy of the results. We
refer to our strategy as localization-aware open search, and
implement it in MSFragger as a default open search option.

Results
Shifted ion indexing enables localization-aware open search. In
conventional open searching, fragment ions containing unknown
modifications are not used in peak matching and scoring, and
thus only half of all theoretical fragment ions can be matched to
an experimental spectrum. We introduce the concept of shifted
ions to describe fragment ions with unknown modifications, and
call fragment ions without unknown modifications regular ions.
Corresponding peaks in the experimental spectrum are called
shifted and regular peaks, respectively. Shifted ions cannot be
indexed by the existing method, which prevents localization and
scoring of unknown modifications in open search. Here, we
propose a shifted ion indexing method (Fig. 1a) that facilitates
fast matching of those ions against shifted peaks, achieving
localization-aware open search.

Given a theoretical spectrum, each fragment ion, including N-
terminal ions (e.g., a-, b-, or c- ions) and C-terminal ions (e.g., x-,
y-, or z- ions), is subtracted from the calculated peptide mass. The
subtraction-processed ions are efficiently indexed to generate a
shifted ion index. Peaks in each experimental spectrum are
similarly subtracted from the observed precursor mass. We show
in Fig. 1a and in “Methods” how matching subtraction-processed
peaks against subtraction-processed ions is equivalent to match-
ing shifted peaks against shifted ions. Note that this approach is
different from the complementary ion approach that matches all
peaks’ original and complementary versions against
unshifted ions.

We also propose a workflow (Fig. 1b) combining shifted and
regular ion indexes to facilitate fast matching to both kinds of
peaks while suppressing false matches. Both shifted and regular
ion indexes are generated in advance given a sequence database.
Given a tandem mass (MS/MS) spectrum, MSFragger matches
peaks against the regular ion index and shifted ion index
separately. Then, it evaluates the top-scoring candidate from the
regular ion matching only. If there is a large difference between
the precursor mass and the calculated mass (by default, outside of
−1.5 to 3.5 Da interval), MSFragger considers the possibility that
the peptide is modified. It then combines shifted ion matches
with the regular ion matches to calculate a hyperscore15,22

(“Methods”). The new top-scoring candidate is then compared
with the old top-scoring candidate, and the highest scoring of
these is picked as the final hit. For simplicity, we refer
to MSFragger without shifted ion index as MSFragger regular
OS, and refer to MSFragger with shifted ion index as
MSFragger LOS.

Since the quality of peak matching is highly dependent on the
precision of precursor and fragment masses, we developed mass
calibration and parameter optimization to improve peak match-
ing. In the following sections, we first show that mass calibration
and parameter optimization help reduce random matches in both
shifted and regular ion matching. Then, we demonstrate the
power of localization-aware open search in terms of sensitivity,
precision, and speed.

Mass calibration and parameter optimization. In shifted ion
indexing and matching, the accuracy of pt− pi (see Fig. 1a) is
dependent on the precursor mass precision and the accuracy of
peak matching is dependent on the fragment mass precision.
However, some systematic mass deviation within MS and MS/MS
spectra is often unavoidable and can diminish database search
results. Thus, we developed a method (see “Methods”) to increase
both precursor and fragment mass precision by correcting sys-
tematic mass deviation, which further increased the accuracy of
matching shifted peaks. MSFragger first searches a given spectral
file with a relatively small search space. Then, it picks the peptide-
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spectrum matches (PSMs) with expectation values smaller than
0.001 and divides them into two sets. The first set is used to build
two calibration profiles (precursor mass and fragment mass) and
the second set is used to evaluate the performance of the cali-
bration. A calibration profile is a 2-D matrix of mass errors in the
retention time and m/z dimensions. For each PSM in the first set,
MSFragger calculates the precursor mass error and assigns it to
the neighbors in the precursor mass calibration profile (Fig. 1c).
After processing all PSMs in the first set, MSFragger corrects all
PSMs’ precursor masses with the final calibration profile. It also
calibrates fragment masses with a similar method (see
“Methods”).

To compare the performance of our mass calibration method,
we used well-known tools as benchmarks. We used eight fractions
from Doll et al.23 (PXD006675), a dataset that displays systematic
mass deviation, to compare calibration performance among
MaxQuant24 (version 1.6.10.43), mzRefiner25 (from ProteoWi-
zard version 3.0.19311 64-bit), MetaMorpheus11 (version
0.0.303), and MSFragger (version 2.2). MaxQuant reports mass
errors (in msms.txt) for identified spectra only, while the others
report mass error for all scans. Only the subset of scans identified

by MaxQuant was therefore used to compare calibration
performance across the different tools.

For each PSM, we calculated the relative precursor mass
deviation by comparing observed mass to theoretical mass.
Figure 2a displays the precursor mass deviation from one of the
eight fractions across m/z and retention time. Other seven
fractions have similar results. In each plot, the smoothed moving
average line (dark gray) shows the trend of precursor mass
deviation across m/z and retention time. Plots in the left column
display the original data without mass calibration, where the
observed mass deviates significantly from theoretical values. In
the right column, data are shown after calibration by MSFragger.
Supplementary Fig. 1a shows original mass errors and calibrated
ones from all tools. All four tools (MaxQuant, mzRefiner,
MetaMorpheus, and MSFragger) reduce precursor mass errors,
but MSFragger and MaxQuant yielded the smallest mass errors
and most uniform distributions across m/z and retention time.

We also calculated relative fragment mass deviation by
comparing observed and calculated mass from each matched
fragment peak (Fig. 2b and Supplementary Fig. 1b). Original data
(left column) show large deviation in the observed fragment mass,
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Fig. 1 Overview of the localization-aware open search strategy. a Generation and use of shifted ion index using b-ions as an example. Each fragment peak
in a theoretical spectrum (top, in orange) is subtracted from the calculated peptide mass to generate the shifted ion index. The fragment peaks can be N-
terminal (e.g., a-, b-, or c-ions) or C-terminal (e.g., x-, y-, or z-ions). Each fragment peak in an experimental spectrum (bottom, in blue) is similarly
subtracted from the observed precursor mass, yielding the subtraction-processed spectrum. The subtraction-processed spectrum is then compared with
the shifted ion index, and fragments containing a modification (star) are matched (middle, dashed lines). b Overview of MSFragger search. Both shifted and
regular ion indexes are generated from a sequence database. For each MS/MS spectrum, the original peaks are matched against the regular ion index to
generate list 1. In the meantime, MSFragger matches the subtraction-processed peaks against the shifted ion index. If the top-scored candidate has a
calculated mass significantly different from the spectrum’s precursor mass, matched peaks from the regular and shifted ion matching are combined,
duplicate matches are removed, and modifications are localized using both the shifted and regular peaks to generate list 2. The top-scored PSM from list 2
is then compared with list 1, and the top-scoring hit is selected as the final hit. c Assigning mass errors to neighboring cells to build calibration profiles. The
upper plane is a duplicate of the blue cell in the lower plane, and other three orange cells are its neighbors. The black dot in the top plane is the location of a
specific peak with mass error d, which is assigned to the four cells weighted by the normalized distances to the boundaries (x and y).
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and a nonlinear trend with respect to m/z. After calibration by
MSFragger (right column), mass errors are corrected and much of
the non-linearity is removed. Supplementary Fig. 1b shows
similar plots from all tools except MaxQuant, which does not
calibrate fragment masses. mzRefiner and MetaMorpheus correct
the deviation to some extent, but MSFragger results in the
smallest and most consistent mass error.

After mass calibration, fragment mass tolerance and the
number of most intense peaks used (top-N) can both be updated
to reduce the chance of matching noisy peaks. Taking advantage
of MSFragger’s fast search speed, we developed a parameter
optimization procedure (see “Methods” for details) to try
different values for these settings and find the best-performing
ones for the analysis at hand.

We used three Orbitrap datasets and one Bruker timsTOF
PASEF dataset to test parameter optimization performance. The
files used in this section can be found in Supplementary Data 1,
and MSFragger parameters used in the database searches are
described in “Methods”. To test the automatic parameter
optimization procedure, we performed separate searches (after
mass calibration) with each combination of fragment match
tolerance and number of top-N peaks mentioned in “Methods”.
Then, we compared the results to a search with parameter
optimization turned on. Combinations of six fragment mass
tolerances and five values of top-N peaks were tested. Figure 2c
shows the number of PSMs from each of the four datasets with
spectrum FDR < 0.01. A benchmark search without calibration or
parameter optimization was also performed with 20 ppm
fragment mass tolerance and 100 top-N peaks. The numbers of
PSMs from the benchmark search for each dataset were 666,052
(PXD001468), 176,290 (PXD004940), 175,537 (PXD006675), and
459,608 (PXD010012).

Mass calibration alone improves search results for every
dataset, which can be seen by comparing the benchmark values
to the cells corresponding to 20 ppm fragment mass tolerance and
100 top-N peaks in Fig. 2c. The black boxes show that the
automatic parameter optimization procedure successfully finds
settings leading to high sensitivity in all cases. On average, the
relative gain in PSMs (i.e., the difference divided by the
benchmark value) from mass calibration coupled with parameter
optimization is 10%.

Sensitivity and precision of localization-aware open search. We
tested the ability of the localization-aware open search to detect
peptides with both simulated and real modifications. A dataset
containing 24 fractions from Chick et al.5 (PXD001468) was used
to test the ability of each open search tool to correctly identify
random amino acid substitutions by generating a simulated
dataset according to the procedure detailed in “Methods”. Briefly,
roughly half of the spectra in this dataset were unmodified while
the other half contained a single random amino acid replacement,
representing unknown modifications. A high confidence list
was first curated by taking PSMs found by both Comet26 and MS-
GF+27. Then, we randomly picked half of the high confidence list
for single amino acid replacement. Using the high confidence list
as ground truth, we classified the results of the four tools, i.e.,
MSFragger (version 2.2, with regular OS and LOS), MetaMor-
pheus (version 0.0.303, with and without deconvolute pre-
cursors), pFind38 (version 3.1.5, with and without mixture
spectra), and TagGraph9 (version 1.8), into the three types: Type
1 (the same or similar sequence was identified), Type 2 (a dif-
ferent peptide was identified but it was found in another scan
from the high confidence list), and Type 3 (a different peptide was

443,344 447,628 449,672 456,554 458,473

460,950 466,593 469,802 478,165 480,302

467,956 473,878 478,083 487,423 490,068

466,142 472,159 475,958 486,239 488,366

461,340 466,932 470,661 481,306 483,125

455,046 460,265 463,962 474,379 475,793

7

10

15

20

25

30

100 125 150 175 200

177,404 175,993 174,594 172,068 169,800

187,859 187,878 186,747 185,025 182,420

186,672 187,771 186,794 186,572 185,507

175,942 177,092 177,400 178,418 179,161

169,808 171,947 170,684 169,731 169,597

166,585 167,654 167,151 165,864 165,544

7

10

15

20

25

30

100 125 150 175 200

PXD006675

PXD010012

F
ra

gm
en

t t
ol

er
an

ce
 (

pp
m

)
Top-N peaks

F
ra

gm
en

t t
ol

er
an

ce
 (

pp
m

)

c

192,150 195,738 197,897 206,867 208,040

190,449 194,008 196,079 205,219 206,373

185,651 189,955 193,045 202,788 204,263

179,120 183,890 186,688 198,917 200,785

172,101 177,026 180,696 194,112 196,472

167,897 171,703 173,994 189,553 190,633

684,212 689,785 692,148 699,303 699,698

694,857 701,221 703,343 711,617 712,485

688,876 694,939 697,803 707,488 707,684

674,713 680,507 682,821 692,355 691,809

662,826 667,419 668,920 674,642 673,429

650,766 655,582 656,017 659,181 657,642

PXD004940

PXD001468

100 125 150 175 200

Top-N peaks

100 125 150 175 200

7

10

15

20

25

30

7

10

15

20

25

30

a
E

rr
or

 (
pp

m
)

b

E
rr

or
 (

pp
m

)
E

rr
or

 (
pp

m
)

E
rr

or
 (

pp
m

)

Retention time (min) Retention time (min)

Retention time (min) Retention time (min)

Uncalibrated

200

0

100

0 25 50 75 100 0 25 50 75 100

300 500 700 900 1100 1300 1500 1700 1900

25 50 75 100 0 25 50 75 100

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

400 600 800 1000
m /z

m /z
100 300 500 700 900 1100 1300 1500 1700 1900

m /z

1200 1400 1600 200 400 600 800 1000
m /z

1200 1400 1600

MSFragger

Uncalibrated MSFragger

Uncalibrated MSFragger

Uncalibrated MSFragger
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identified and that sequence was not found in the list of high
confidence PSMs). Leucine and isoleucine were considered the
same for this purpose since they have identical mass. We
observed that some spectra resulted in the same score for a
peptide and its substring (Supplementary Data 2), and such cases
were classified as Type 1.

There were 211,415 substitution-containing and 197,377
substitution-free PSMs in the high confidence list. The numbers
of substitution-containing and substitution-free PSMs identified
by each tool are shown in Fig. 3a. PSMs were filtered with
spectrum FDR < 0.01. With shifted ion indexing and matching,
MSFragger LOS identified about 65% more substitution-
containing PSMs (134,413 vs. 81,648), with only a minimal loss
of substitution-free PSMs (178,958 vs. 178,966) compared with
MSFragger with regular OS. The precision (defined here as the
fraction of the total reported PSMs that are Type 1 or Type 2, i.e.,
likely correct) of substitution-containing and substitution-free
PSMs also increased, from 0.9294 to 0.9623 and 0.9755 to 0.9838,
respectively. Note that most of the improvement can be attributed
to the use of shifted ions and localization-aware open search, with
smaller additional gain resulting from the mass calibration and
parameter optimization steps (Supplementary Fig. 2). The
mixture spectra feature of pFind3 and the deconvolute precursors
feature in MetaMorpheus duplicate a spectrum into multiple
spectra with different precursor masses. Without considering
those additional spectra, MSFragger identified the most PSMs
among all tools. It is also important to note that both pFind3 and
MetaMorpheus restrict the delta masses to a predefined list (e.g.,
UniMod14), which is different from MSFragger’s unrestricted
open search approach. pFind3 with mixture spectra and
MetaMorpheus with deconvolute precursors produce more Type 2
PSMs than other tools. This likely because most spectra belonging
to the Type 2 category are chimeric, as supported by analysis of
precursor ion purities (Supplementary Fig. 3). The peptide index
file from this search is roughly 72MB.

A phosphorylation-enriched dataset containing six LC-MS files
from Espadas et al.28 (PXD004940) was used to assess recovery of
phosphorylated peptide identifications. From this dataset, we
selected high confidence phosphorylated PSMs by taking the
PSMs identified by both Comet and MS-GF+ (“Methods”),
resulting in a list of 26,878 high confidence PSMs from 5796
phosphorylated peptides. We then used MSFragger (version 2.2,
with regular OS and LOS) to analyze the dataset and compared
with MetaMorpheus (version 0.0.3030, with and without
deconvolute precursors), pFind3 (version 3.1.5, with and without
mixture spectra), and TagGraph (version 1.8). The searches were
performed without specifying phosphorylation or oxidation as
variable modifications. PSMs were filtered with spectrum FDR <
0.01. To investigate the ability of each tool to correctly identify
phosphorylated peptides, we compared the sequence identified
for each spectrum to the high confidence list, again classifying
each into the three types mentioned previously. Figure 3a shows
that MSFragger LOS identifies ~19% more PSMs than with
regular OS (23,828 vs. 20,072), resulting in the largest number of
PSMs among all tools. The precision also increased slightly from
MSFragger regular OS to LOS (0.9838 vs. 0.9728). Supplementary
Fig. 2 shows that mass calibration and parameter optimization
also contribute to improve performance of MSFragger LOS. The
peptide index file from this search is roughly 1 GB.

Application to large-scale HEK293 cell lysate data. We used a
large-scale dataset5 from HEK293 cell lysate to demonstrate that
localization-aware open search can find more PTMs, analyzing
the dataset with MSFragger (version 2.2) with regular OS and
LOS. PTM-Shepherd29 (version 0.2.14) was used to summarize
the delta masses identified from the FDR-filtered search results
from both MSFragger regular OS and MSFragger LOS. Given a
delta mass and all corresponding PSMs, PTM-Shepherd reports
the number of PSMs where the mass shift could be successfully
localized. It also reports the number of PSMs from
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Fig. 3 Comparison of search results and run times across tools. a Numbers of identified PSMs from MSFragger open search (MSFragger OS), MSFragger
with localization-aware open search (MSFragger LOS), pFind3, pFind3 with mixture spectra (pFind*), MetaMorpheus, MetaMorpheus with precursor
deconvolution (MetaMorpheus^), and TagGraph. Green indicates PSMs that agree with the high confidence list (Type 1). Yellow indicates PSMs with a
different sequence, but one identified by other spectra in the high confidence list (Type 2). Red indicates spectra with a sequence that is not found in the
high confidence list (Type 3). Left: numbers of substitution-containing PSMs from searching the simulated data. Middle: numbers of substitution-free PSMs
from searching the simulated data. Right: numbers of phospho-containing PSMs from the phosphorylation-enriched data. b Average time (in minutes)
taken by each tool to perform open search analysis on one representative mzML file.
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MSFragger regular OS and LOS searches. These reports are found
in Supplementary Data 3. From the summarized delta masses, we
made a scatter plot (Fig. 4) depicting the relationship between
localization rate and percentage of changed PSM counts from
MSFragger regular OS to MSFragger LOS. Delta masses outside of
[−3.5, 3.5] Da with at least 200 PSMs were included.

Overall, MSFragger LOS finds more PSMs from almost all delta
masses. PSMs with oxidation, methylation, formylation, water
loss, and aminoethylbenzenesulfonylation increased by over 50%,
while the increase in PSMs with phosphorylation was smaller due
to its labile nature (and thus few fragments containing the
modification). Spectra corresponding to PSMs with the unchar-
acterized delta mass of 301.986 Da had virtually no shifted
fragments15, resulting in a small loss in the number of PSMs for
this modification in MSFragger LOS. Similarly, we observed a
slight decrease in the identification sensitivity of MSFragger LOS
toward modification-free PSMs (Supplementary Data 3). This was
expected, since such PSMs do not benefit from the inclusion of
shifted ions in scoring. We also observed that MSFragger LOS
helped to identify the correct delta mass/sequence combinations,
alleviating some of the previous criticism of the open search
strategy11. For example, the MSFragger regular OS found 407
PSMs with a ~189.047 Da delta mass, most of them placed on the
N-terminus (Supplementary Data 3). The correct interpretation
of these PSMs is N-terminal acetylation in combination with
methionine oxidation (Supplementary Fig. 4). With MSFragger
LOS, the number of such incorrectly interpreted PSMs was
reduced to just 26.

MSFragger LOS maintains fast search speed. We compared the
open search run times of MSFragger (version 2.2), MetaMor-
pheus (version 0.0.303), pFind3 (version 3.1.5), and TagGraph
(version 1.8) using eight fractions from Doll et al.23

(PXD006675), which contain ~80,000 tandem mass spectra in
each run. All tasks were run on a desktop workstation with Intel
Core i7-8700 (6 CPU cores, 3.2 GHz) with 32 GB memory. All
tools were set to use 12 logical cores, except for TagGraph, which
only supports single threading. We did not use the deconvolute
precursors and mixture spectra options in MetaMorpheus and
pFind3 for fair comparison. Note that both pFind3 and

MetaMorpheus limit the searched delta masses to a predefined list
(e.g., UniMod), while MSFragger searches the whole delta
mass range.

Figure 3b shows the average time (in minutes) taken by each
tool to analyze one mzML file. Also listed is the run time of
MSFragger without mass calibration, parameter optimization, or
shifted ion index. MSFragger uses Philosopher30 (2.0.0) to
perform validation via PeptideProphet and generate reports,
which we categorize as post-processing. pFind3 needs pParse31 to
preprocess spectral files and TagGraph requires de novo
sequencing result from PEAKS X32 as input, and we categorized
these tasks as pre-processing. Though pFind3 was also able to
analyze a single mzML file in 20 min, MSFragger had the shortest
run time overall.

Discussion
In summary, searching MS/MS spectra for modified peptides has
traditionally been challenging due to large search space, with long
computational analysis times and increased rate of false matches.
In our earlier work we addressed this challenge with a highly
efficient fragment ion indexing strategy and MSFragger software.
Here we further extended our strategy with the introduction of a
shifted ion index and localization-aware open search, providing a
significant boost in the number of identified modified peptides.
We have also implemented additional improvements to
MSFragger software, such as mass calibration and fast parameter
optimization. Although here we focused on modified peptides
only, we found that other applications of MSFragger, including
conventional closed searches and mass offset searches for specific
PTMs such as N-linked and O-linked glycosylation, benefit sig-
nificantly from these developments as well.

Methods
Datasets. The datasets used here were downloaded from ProteomeXchange33,
with the accession numbers PXD001468 (HEK293 cell lysate; Q-Exactive Orbitrap
mass spectrometer)5, PXD004940 (HeLa cell lysate; Orbitrap Fusion Lumos mass
spectrometer)28, PXD006675 (human heart tissue samples; Q-Exactive HF Orbi-
trap mass spectrometer)23, and PXD010012 (HeLa cell lysate; timsTOF Pro mass
spectrometer)34. Supplementary Data 1 describes the selected files used from each
dataset. Details regarding sample preparation and data acquisition for each dataset
can be found in the corresponding publications. Files in mzML spectral format
were used for all experiments except for the mass calibration comparison, where
the vendor’s raw format was used as it works best for MaxQuant.

Precursor and fragment mass calibration. We developed a supervised non-
parametric approach to calibrate precursor and fragment masses. MSFragger first
searches the spectral file according to the parameters (with slight changes) and
database provided by the user. It takes high scoring PSMs (those with expectation
value below 0.001) and divides them into two equal-sized sets: the first set is used to
build both precursor and fragment mass profiles and the second (validation) set is
used to evaluate the performance of the calibration. To build a precursor profile,
MSFragger traces MS1 peaks to get three extracted ion chromatograms (XICs)
corresponding to 0, +1, and +2 13C isotopes for each precursor ion. To trace each
isotope’s XIC, MSFragger first collects all relevant peaks around the precursor m/z
and retention time. Then, it performs a Gaussian smoothing and tries to link
adjacent peaks starting from the PSM’s precursor peak. It also tries to find
boundaries using a logic similar to MaxQuant24: the intensity of a boundary needs
to be smaller than c ×min(I1,I2), where c is a constant (0.5 in MSFragger), I1 and I2
are the intensities of the adjacent apexes. After tracing the XICs, MSFragger cal-
culates an intensity-weighted mass d0t;mt

corresponding to retention time t and
observed m/z value mt, using the following equation:

d0t;mt ¼
1
3

X2

i¼0

Pu
j¼l mi;j �mt � i ´ 1:0033548378
� �

´ Ii;j
Pu

j¼l Ii;j
; ð1Þ

where i is the number of the 13C isotopic peak, l is the first-traced peak index, μ is
the last-traced peak index, mi,j is the m/z value of jth peak from ith XIC, mt is the
precursor m/z at retention time t, and Ii,j is the intensity of jth peak from ith XIC.

Then, the total relative deviation can be calculated as

dt;mt
¼

106 ´ mt �mc þ d0t;mt

� �

mc
; ð2Þ
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where d0t;mt
is the total relative deviation (in ppm) at retention time t and precursor

mt; mc is the theoretical m/z according to the matched peptide sequence.
Intuitively, d0t;mt

can be treated as the deviation from an ion’s measured m/z to
the precursor m/z stored in one of the ion’s MS/MS scans. The numerator of the
right side of Eq. (2) can be treated as the deviation from an ion’s measured m/z to
its theoretical m/z. Thus, dt;mt

is the systematic relative deviation at retention time t
and m/z mt.

With dt;mt
, MSFragger builds a profile, which is in the form of a X-by-Y matrix

P reflecting the relative deviation over the whole range of retention time and m/z.
In order to avoid overfitting, the retention time and m/z are divided into coarse
grids, which results in X= ceil(max(t)/5) and Y= ceil(max(mt)/200). The index of
the cell is [floor(t/5),floor(mt/200)]. Each dt;mt

contributes to its neighboring cells
with weights as illustrated in Fig. 1c. The upper plane is a duplicate of the blue cell
in the lower plane, and the other three orange cells represent its neighbors. The
black dot in the top plane is the location of dt;mt

(d in the figure), which is assigned
to the four cells (lower plane in Fig. 1c) weighted by the normalized distances to the
boundaries of the neighboring cells (x and y). Similarly, another X-by-Y matrix is
created to record the total weight of each cell received. The final mass deviation of a
cell is the weighted mass deviations from the first matrix divided by the total weight
from the second matrix. Take a scan with retention time located at 2nd row and
precursor m/z located at 5th column for example. Its precursor mass error is 10
ppm, normalized distance to the horizontal boundary is 0.3, and normalized
distance to the vertical boundary is 0.5. For the first matrix, 10 × (1− 0.3) × (1−
0.5) ppm is added to the cell with coordinate [2, 5], 10 × (1− 0.3) × 0.5 ppm is
added to the cell with coordinate [2, 6], 10 × 0.3 × (1− 0.5) ppm is added to the cell
with coordinate [3, 5], and 10 × 0.3 × 0.5 ppm is added to the cell with coordinate
[3, 6]. Similarly, (1− 0.3) × (1− 0.5), (1− 0.3) × 0.5, 0.3 × 1− 0.5, and 0.3 × 0.5 are
added to [2, 5], [2, 6], [3, 5], and [3, 6] cells in the second matrix. After processing
all selected scans, MSFragger divides each cell in the first matrix by the
corresponding cell in the second matrix to get the final mass deviation of the
profile.

Since each element in the profile reflects the relative deviation from an ion’s
measured m/z to its theoretical m/z, given mt from one of the ion’s tandem mass
spectra, the calibrated m̂t can be calculated using

m̂t ¼
mt

1þ Pbt=5c;bmt=200c �
d0t;mt

´ 106

mc

� �
´ 10�6

: ð3Þ

In Eq. (3), Pbt=5c;bmt=200c �
d0t;mt

´ 106

mc

� �
is equivalent to the relative deviation

from the precursor m/z to the theoretical m/z.
If there were no MS1 scans in the given spectral data (e.g., MGF file were used

as input), MSFragger would skip the peak tracing step and Eq. (1). Thus, Eq. (2)
could be simplified to

dt;mt
¼ 106 ´ mt �mcð Þ

mc
; ð4Þ

and Eq. (3) could also be simplified to

m̂t ¼
mt

1þ P t=5b c; mt=200b c ´ 10�6
: ð5Þ

Building a fragment profile and calibrating the fragment m/z are similar to the
above approaches except that there is no peak tracking step, and Eqs. (4) and (5)
are used in profile building and mass calibration.

After calibrating precursor m/z and fragment m/z for all scans, MSFragger uses
the validation set to estimate the median and median absolute deviation (MAD) of
mass deviation. Since the calibration profile is built solely using the first set, the
estimated median and MAD can be treated as an independent evaluation of the
mass calibration accuracy.

Parameter optimization procedure. After calibrating the precursor m/z and
fragment m/z, the fragment mass tolerance can be narrowed to reduce random
matches without sacrificing sensitivity. The number of topmost intense peaks
retained for matching can also be adjusted accordingly. We noticed that the
standard deviation (SD) and MAD of the mass errors were sensitive to the initial
search tolerances. Wider initial tolerances, which contain more outliers, resulted in
larger SD and MAD. Taking advantage of MSFragger’s fast searching speed, we
developed an empirical approach to find better parameters through simplified
searches on the spectra (i.e., first search).

We preset a certain number of candidate fragment mass tolerances for high and
low mass resolution MS/MS data. In the version of MSFragger used in this work,
these values were set to 7, 10, 15, 20, 25, and 30 ppm; and 100, 200, 300, 400, and
500 ppm for high and low mass accuracy MS/MS spectra, respectively. We also
predefine possible numbers of peaks to be used for matching, values of 100, 125,
150, 175, and 200 here. Instead of trying all possible combinations of these
parameters (e.g., 6 × 5 or 5 × 5), we assumed that the effects of the parameters were
independent of each other, an assumption we verified with numerous independent
experiments. With this assumption, MSFragger tries different parameters
sequentially and picks the combination with the highest estimated sensitivity
(number of identifications at 1% spectrum FDR, estimated internally by MSFragger

using the expectation value as the only score and the target-decoy strategy). We
also found that there is only one maximum in the sensitivity with respect to a
particular parameter. Thus, for each parameter, MSFragger skips the rest of the
candidate parameters after a maximum estimated sensitivity is achieved.
MSFragger also checks whether performing intensity transformation (square root)
and/or removing precursor peaks prior to computing the hyperscore improves the
annotation result. This process requires multiple repeated searches (up to
13 searches using the tested parameter settings described). However, this can be
done quickly for most searches, or can be turned off for time-consuming searches
such as nonspecific digestion. Finally, MSFragger uses the updated parameters to
perform the main search.

Shifted ion indexing, matching, and delta mass localization. Both regular and
shifted fragment ion indexes are generated in advance given a sequence database.
The shifted ion index is generated as follows: suppose there is an unknown-
modification-containing MS/MS spectrum with precursor mass pt and shifted
peaks with masses pi, where i ϵ [1,M]. Given a peptide with total mass mt and
regular (not containing the unknown modification) fragment ion masses mj where
j ϵ [1,N], we can assume

pt �mt � pi �mj ; ð6Þ
where ≈ indicates that a tolerance (e.g., 20 ppm) is applied to this equivalence. The
regular fragment ion can be either N-terminal ions or C-terminal ions. Equation
(6) can be easily transformed to

pt � pi � mt �mj : ð7Þ
Equation (7) shows that we can match a shifted peak in the experimental

spectrum against a regular theoretical ion by subtracting the peak’s mass from its
precursor mass as long as we perform a similar transformation (Fig. 1a). With this
strategy, we can decouple the spectrum-wise process from the database-wise
process, which enables us to build a shifted ion index before processing any spectral
data. Given an MS/MS spectrum, MSFragger matches experimental peaks against a
regular ion index, then against a shifted ion index. With regular ion matching
coupled with shifted ion matching, the final outcome is the same as matching the
experimental spectrum against a theoretical spectrum with certain peaks shifted
according to the mass difference between the precursor mass and the calculated
peptide mass. Because the indexes are built in advance, the matching and scoring
can be performed rapidly.

The shifted ion index adds peaks to each spectrum comparison. Although most
of the added peaks are not noise, the chance of random matches may still be
increased due to increased search space. We proposed a workflow to coordinate
shifted ion matching with regular ion matching (Fig. 1b) to mitigate this potential
increase in false fragment ion matches. MSFragger records the matched peaks from
regular and shifted ion matching during the search. Then, it calculates hyperscores
using the peaks from the regular ion matching only and picks the top-scoring
candidate. If the mass difference between the precursor mass and the candidate’s
calculated mass falls outside a predefined range (−1.5 to 3.5 Da by default),
MSFragger calculates another list of hyperscores by combining the peaks from both
regular and shifted ion matching. In this way, MSFragger tries all possible modified
locations one-by-one by taking the regular ion matched peaks up to that location
and shifted ion matched peaks from that location. In the meantime, MSFragger
also tries to avoid double counting caused by overlapped matches. Since MSFragger
has already recorded all matched peaks beforehand, this procedure can be
processed very fast. The higher scoring one from the two top candidates (one from
regular ion matching only, the other from both regular and shifted ion matching)
are selected as the final hit. As part of the process, MSFragger also localizes the
delta mass to the most probable location(s) within the identified peptide. It takes
the location(s) with the highest score as the localized site(s). MSFragger reports the
localization results, including a delta score between the best and the second-best
localized residues, in a tab-delimited (tsv) file. This delta score can be used as a
confidence measure of localization.

Mass calibration and parameter optimization analysis. We used eight fractions
from Doll et al.23 (PXD006675) to demonstrate the performance of mass calibra-
tion. MaxQuant24 (1.6.10.43), mzRefiner25 (from ProteoWizard 3.0.19311 64-bit),
and MetaMorpheus35 (0.0.303) were used for comparison. We observed that
MaxQuant and MetaMorpheus performed better with the raw file format, so we
used raw files for all tools in this comparison. MaxQuant reports the calibrated
precursor mass error only for FDR-filtered PSMs in the msms.txt file. Thus, for a
fair comparison, we compared only this set of scans for all tools. MaxQuant
calibrates precursor masses only. For the other three tools, both precursor mass
and fragment mass calibration were evaluated. Since all eight fractions gave similar
results, we only show the result from fraction “20160901_QEp2_SoDo_SA_LC12-
13_PV8-frac3” for simplicity.

We used the datasets listed in Supplementary Data 1 to demonstrate the
performance of MSFragger’s parameter optimization procedure. All analyses in this
manuscript were performed using MSFragger (version 2.2). We first used
MSFragger to analyze these datasets without mass calibration and parameter
optimization as a benchmark. A database of reviewed human proteins and
common contaminants from UniProt36 (downloaded on Sep. 30, 2019; 20463
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proteins) was used. Decoy proteins were generated and added to the database by
reversing the target proteins. The benchmark run fragment mass tolerance was set
to 20 ppm, and number of top-N peaks used for matching was set to 100. The
precursor tolerance range was set to (−150 to 500 Da). 12C/13C isotope errors were
not allowed (set to 0), which is default for all open searches. The peptide mass
range was set from 500 to 5000 Da, and peptides of length 7 to 50 residues were
allowed. One missed cleavage per peptide was allowed. Acetylation of protein N-
termini and oxidation of methionine were specified as variable modifications.
Carbamidomethylation of cysteine was specified as a fixed modification. The
searches were performed in the MSFragger LOS mode (localize_delta_mass
parameter set to 1). MSFragger search results were processed using
PeptideProphet37 using the Philosopher toolkit (version 2.0.0), and PSM were
filtered to 1% FDR using the target-decoy strategy implemented as part of the
Philosopher filter command.

Comparing with the benchmark run (calibrate_mass parameter set to 0),
MSFragger was also run with both mass calibration and parameter optimization
turned on (calibrate_mass parameter set to 2), trying all combinations of different
fragment mass tolerances and top-N peaks as described above. For each dataset, a
6 × 5 matrix was generated whose rows and columns correspond to different
fragment mass tolerances and numbers of top-N peaks kept for matching,
respectively (Fig. 2c).

Analysis using simulated data. We generated a simulated dataset with peptides
containing random amino acid substitutions (MS/MS spectra themselves were not
modified in any way). This approach was used by Na et al.10 and Yu et al.7. We
extensively improved it by making it closer to a real application and the confident
list more reliable. We first generated a high confidence PSM list using Comet26

(version 2019012) and MS-GF+27 (version 20190703) using all 24 fractions from
the HeLa data published by Chick et al.5 (PXD001468). In these searches, precursor
mass tolerance was set to 50 ppm. A database of reviewed human proteins and
common contaminants from UniProt36 (downloaded on September 30, 2019; 20463
proteins) was used. Decoy sequences were generated by reversing the target
sequences. For Comet, the fragment bin tolerance was set to 0.02 Th. For MS-GF+,
the instrument type was set to 3 (i.e., Q-Exactive). Acetylation of protein N-ter-
mini and oxidation of methionine were specified as a variable modification.
Carbamidomethylation of cysteine was specified as a fixed modification. There was
no isotope error correction applied. The peptide mass range was set from 500 to
5000Da, and peptides with length 7 to 50 residues were allowed. One missed
cleavage per peptide was allowed. Both Comet and MS-GF+ search results were
processed using PeptideProphet37 and ProteinProphet38 using the Philosopher30

toolkit. PSMs were filtered using both spectrum and protein FDR of 1% using
Philosopher filter command to generate a high confidence PSM list. This non-
redundant peptide list was split into two subsets. In the first, one amino acid in each
peptide sequence was substituted with a different residue to simulate a modification-
containing peptide (substitution-containing subset). The second subset remained
unchanged (substitution-free subset). All corresponding sequences were modified in
the original protein sequence database accordingly. There were 211,415
substitution-containing and 197,377 substitution-free PSMs in the high confidence
list at 1% PSM and protein FDR.

We used MSFragger (version 2.2), MetaMorpheus (version 0.0.303), pFind3
(version 3.1.5), and TagGraph (version 1.8) to search the same 24 spectral files
against the modified database. MSFragger’s precursor mass lower and upper
bounds were set to −150 and 500 Da, respectively. We used calibrate, GPTMD, and
search tasks in MetaMorpheus. The maxdelta parameter in pFind3 was set to 500
by default. Protein N-terminal acetylation was set as a variable modification, and
carbamidomethylation of cysteine was specified as a fixed modification. In all tools,
the precursor and fragment mass tolerances were set to 20 ppm. The peptide mass
range was set from 500 to 5000 Da, and peptides with length between 7 and 50
residues were allowed. One missed cleavage per peptide was allowed. For
MSFragger, this resulted in a fragment ion index of roughly 72MB. MSFragger was
run with regular OS and LOS, governed by the localize_delta_mass parameter set
to 0 or 1, respectively. For MetaMorpheus, pFind3, and TagGraph, the search
results were filtered to 1% spectrum FDR using the FDR estimation and filtering
modules of those tools. For MSFragger, the results were processed using
Philosopher as described in the last section. We observed that when the mixture
spectra option was enabled in pFind3, multiple peptides could be assigned to a
potentially chimeric spectrum, which resulted in more than one PSM for a single
spectrum. MetaMorpheus also has a similar option called deconvolute precursors.
Thus, pFind3 and MetaMorpheus searches were also repeated with these options
enabled, allowing multiple peptide annotations per spectrum.

The FDR-filtered PSM lists from each tool (from the modified database search)
were compared against the high confidence list generated using Comet and MS-GF+.
PSMs were classified into three types: Type 1 (same peptide identification allowing
exact substrings since such cases resulted in the same scores in most cases, see
Supplementary Data 2), Type 2 (a different sequence was identified but it was found
in another PSM in the high confidence list), and Type 3 (a different sequence was
identified that was not found elsewhere in the high confidence list). In the sequence
comparison, leucine and isoleucine were treated the same since they have the identical

mass. We assumed that PSMs of Type 1 or Type 2 are likely correct, and calculated,
for each tool, the precision as the fraction of all PSMs in the list that were either Type
1 or Type 2.

Analysis using phosphopeptide-enriched data. We used six files from a
phosphopeptide-enriched experiment by Espadas et al.28 (PXD004940). We first
obtained a high confidence PSM list using conventional Comet (2019012) and MS-
GF+ (20190703) searches. Precursor mass tolerance was set to 50 ppm. A database
of reviewed human proteins and common contaminants from UniProt36 (down-
loaded on Sep. 30, 2019; 20463 proteins) was used. Decoy sequences were gener-
ated by reversing the target sequences. For Comet, the fragment bin tolerance was
set to 0.02 Th. For MS-GF+, the instrument type was set to 3 (i.e., Q-Exactive).
Acetylation of protein N-termini, oxidation of methionine, and phosphorylation of
serine, threonine, and tyrosine were specified as variable modifications. Remaining
parameters and FDR filtering steps were identical to those in the simulated dataset
analysis. These search parameters resulted in an MSFragger peptide index file of
~1 GB on disk. Phosphorylated PSMs identified by both Comet and MS-GF+ were
used to generate a high confidence list of phosphopeptides. We selected a list of
26,878 high confidence PSMs from 5796 phosphorylated peptide sequences. We
then used MSFragger (version 2.2, regular OS and LOS mode), MetaMorpheus
(version 0.0.303), pFind3 (version 3.1.5), and TagGraph (version 1.8) to perform
OSs on the same six spectral files, without setting phosphorylation or oxidation as a
variable modification. For each tool, the PSMs passing the FDR filters were clas-
sified into one of the three types, and the precision was calculated as
described above.

Large-scale PTM analysis using fractionated HEK293 data. We performed two
open search analyses using HEK293 cell lysate data published by Chick et al.5

(PXD001468), one with MSFragger regular OS and the other with MSFragger LOS.
The precursor mass lower and upper bounds were set to −150 and 500 Da,
respectively. Acetylation of protein N-terminus was specified as a variable mod-
ification. Carbamidomethylation of cysteine was specified as a fixed modification. A
database of reviewed human proteins and common contaminants from UniProt36

(downloaded on September 30, 2019; 20463 proteins) was used. Decoy proteins
were generated by reversing the target proteins. The precursor and fragment mass
tolerance were set to 20 ppm. The peptide mass range was set from 500 to 5000 Da,
and peptides with between 7 and 50 residues were allowed. One missed cleavage
per peptide was allowed. Philosopher30 (version 2.0.0) coupled with PeptidePro-
phet37 and ProteinProphet38 were used to estimate FDR. PSMs were filtered with
spectrum FDR <0.01 and protein FDR <0.01. We then used PTM-Shepherd29 to
summarize the delta masses observed from the filtered PSMs. Delta masses were
annotated if they fell outside the [−3.5, 3.5] Da range and had at least 200 PSMs.

Speed comparisons. Speed comparisons were performed using MSFragger (ver-
sion 2.2, regular OS and LOS mode), MetaMorpheus (version 0.0.303), pFind3
(version 3.1.5), and TagGraph (version 1.8), each run on eight fractions from Doll
et al.23 dataset containing ~80,000 MS/MS spectra in each fraction. All tasks were
run on a desktop workstation with an Intel Core i7-8700 (12 logical cores, 3.2 GHz)
CPU and 32 GB memory. All tools were set to use 12 logical cores, except for
TagGraph, which only supports single threading. In this analysis, we did not use
the deconvolute precursors and mixture spectra options in MetaMorpheus and
pFind3 for fair comparison. For MSFragger, we performed regular OS and LOS
analysis (for MSFragger LOS, with mass calibration and parameter optimization).
For MSFragger analysis, post-search analysis using Philosopher (PeptideProphet,
filtering, and report generation) was counted as post-processing time. pFind3 needs
pParse31 to preprocess spectral files and TagGraph requires de novo sequen-
cing result from PEAKS X32 as input. These tasks were categorized as pre-
processing time.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Mass spectrometry data that support the findings of this study are available from
ProteomeXchange (http://www.proteomexchange.org/) with the identifiers PXD001468,
PXD004940, PXD006675, and PXD010012. Supplementary Data 1 describes the selected
files used from each dataset.

Code availability
The links to download MSFragger software, user guides, and tutorials are available at
https://msfragger.nesvilab.org/. MSFragger can be run as a stand-alone tool, or via the
FragPipe Graphical User Interface (https://fragpipe.nesvilab.org/).
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