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A B S T R A C T   

Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its 
emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, 
leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about 
COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of 
imaging and artificial intelligence in COVID-19 patients—specifically, those with comorbidities. 

This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID- 
19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid 
patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial 
injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, 
ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can 
be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based 
AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical 
resources for detection and diagnosis.   

We conclude that imaging and AI-based tissue characterization, 
when considered alongside COVID-19 symptoms and their pre-test 
probabilities, offer a compelling solution for assessing the risk of co-
morbid patients. These methods show the potential to become an inte-
gral part of tracking and improving the healthcare system, both during 
the pandemic and beyond. 

1. Introduction 

In December 2019, a novel coronavirus referred to as “severe acute 
respiratory distress syndrome coronavirus 2” (SARS-CoV-2) [1] 
appeared in Wuhan, the capital of Hubei Province in PR China. The 
disease caused by the virus was initially named “novel coronavirus 
pneumonia” (NCP) by the Chinese government but was subsequently 
renamed “coronavirus disease 2019” (COVID-19) by the World Health 

Fig. 1. World map showing COVID-19 spread over 213 countries (courtesy: John Hopkins University).  
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Organization (WHO). On January 30th, 2020, it was declared a public 
health emergency of international concern (PHEIC) [2]. It is believed 
that SARS-CoV-2 is primarily transmitted through saliva droplets or 
nasal discharge [3]. The first evidence of human-to-human transmission 
was found by Jasper Fuk-Woo Chan et al. in their study at The University 
of Hong Kong-Shenzhen Hospital [4]. Due to its contagiousness (Ro =
2.7), the virus has reached epidemic levels, affecting 213 countries and 
causing over 10 million infections and more than 500,000 deaths as of 
July 1st, 2020 [5] (shown in Fig. 1). 

Recent literature suggests that patients with pre-existing diseases are 
likely to experience severe complications from COVID-19 [6–10]. In one 
study on admitted diabetic (48, 24.9%) and non-diabetic (145, 75.1%) 
COVID-19 patients, the mortality rate (81.3% vs. 47.6%) and the rate of 
admission to the intensive care unit (ICU) (66.7% vs. 41.4%) were 
significantly higher for diabetic patients. Diabetic patients also experi-
enced severe inflammatory responses and cardiac, hepatic, and renal 
coagulopathy [11]. The prevalence of heart and brain injuries was also 
higher in COVID-19 patients with concomitant chronic conditions like 
diabetes, kidney disease, dyslipidemia, hypertension [12–15], chronic 
obstructive pulmonary disease (COPD), and cardiovascular diseases 
[16]. Recent studies have shown that SARS-CoV-2 invades the thin lin-
ing of the epithelial cells of the arteries, leading to atherosclerosis 
[17–19] and arterial inflammatory disease—one of the major causes of 
cardiovascular diseases (CVDs), which also causes heart and brain in-
juries [12,20,21]. This could be due to a reduced expression of 
angiotensin-converting enzyme 2 (ACE2), causing endothelial dysfunc-
tion, which, in turn, aggravates existing atherosclerosis [22,23]. It has 
also been observed that comorbid patients, when subjected to 
image-screening, show mild to severe pre-test probability (PTP) for 
COVID-19 [24]. The conventional cardiovascular risk factors (CCVRF) 
in these comorbid patients appear strongly correlated either to their 
heart imaging or to surrogate biomarkers of coronary artery disease, 
such as carotid artery disease. Both imaging and biomarkers could be 
helpful in severity predictions for COVID-19 [25–30]. Fig. 2 illustrates 
the associations between SARS-CoV-2 and other comorbidities, such as 
diabetes, as well as the comparative survival rates for COVID-19 patients 
with and without diabetes. 

ACE2 expression causes scars in the vessels and can even rupture the 
walls of the arteries [31–34]. For this reason, CCVRF should be 
considered alongside imaging in patients who present with COVID-19 
and many comorbidities [35]. The second stage is the one at which a 
patient is most severely affected by COVID-19 and has the highest 
probability of cardiac injury or release of troponin T (TnT). Imaging has 
been shown to offer benefits in monitoring the tissue scars caused by 
COVID-19 [35–39]. 

Multiple modalities can be utilized to determine whether a patient 
has the sequelae of COVID-19, including magnetic resonance imaging 
[40], computed tomography [41], and ultrasound [41–44]. The 
advantage of these imaging modalities is the visual access they provide 
to the scar tissue caused by the disease. A disadvantage, however, is 
their inability to provide a “risk assessment.” The application of artificial 
intelligence (AI) can enhance the information provided by these imaging 
modalities, resulting in a more accurate characterization of the tissue 
and the disease process [45–51]. The combination of AI and medical 
imaging has been shown to improve diagnosis and risk stratification, 
speed up patient evaluation, enhance disease monitoring, and accelerate 
early intervention [40,48,52–57]. Thus, this review will focus on the use 
of AI-based tissue characterization of images of comorbid patients 
affected by COVID-19. 

The layout of this paper is as follows: Section 2 presents the patho-
physiology of the four pathways leading to brain and heart injury. 
Section 3 summarizes the evidence related to the use of imaging during 
the COVID-19 pandemic. Section 4 elaborates on the use of AI-based 
tissue characterization for risk assessment. Finally, the paper con-
cludes with a critical discussion. 

2. The pathophysiology of SAR-CoV-2 leading to brain and heart 
injury 

Several studies suggest that SARS-CoV-2 uses the ACE2 receptor to 
gain access to cells by binding to the SPIKE protein (‘S’ protein) on their 
surface [58–60] (see Fig. 2). ACE2 and angiotensin-converting enzyme 1 
(ACE1) are homolog carboxypeptidase enzymes that have different vital 
functions in the renin-angiotensin-aldosterone system (RAAS) pathway 
[61]. ACE2 is widely expressed in myocardial cells [61], type 2 pneu-
mocytes, enterocytes, and astrocytes (in the brain) [15,62,63]. Thus, it is 
recognized as a cause of extra-pulmonary complications. 

Fig. 3 shows the overall picture of how SARS-CoV-2 causes brain and 
heart injuries via four different pathways. These include (i) the neuronal 
pathway, (ii) the hypoxia pathway, (iii) the RAAS pathway, and (iv) the 
immune pathway. We will discuss these pathways and the injuries they 
lead to, which may manifest as viral encephalitis, infectious toxic en-
cephalopathy, or acute cerebrovascular disease. 

(i) The Neuronal Pathway (Fig. 3, the pathway I): Recent epidemi-
ological studies have demonstrated similarities at the genomic 
level between SARS-CoV-1, MERS, and SARS-CoV-2 [6,64,65]. 
Meanwhile, previous experimental studies have shown that beta 
coronaviruses in general—such as SARS-CoV-1 and MERS—can 
spread into and directly infect the brain when inhaled as droplets 

Fig. 2. (a) Association of SARS-CoV-2, with other comorbidities, and (b) comparison of the mortality rate of diabetic and non-diabetic COVID-19 patients 
(reproduced with permission [11]). 
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via the nasal epithelium [66,67]. Fig. 3 depicts the olfactory 
nerve and the olfactory bulb [68–70]—labeled as “a” and “b,” 
respectively—on the image of the sagittal brain in the neuronal 
pathway. Based on recent reports, we are aware that patients 
infected by SARS-CoV-2 show symptoms of dysgeusia (loss of 
taste) and anosmia (loss of smell) [64,71–73]. Bohmwald et al. 
further validate that coronaviruses that infect through the ol-
factory nerve and bulb can reach the brain and cerebrovascular 
fluid (CSF) within seven days. Additionally, these viruses have 
been observed to cause inflammation and demyelination [74]. 
The authors demonstrated in an experimental study of mice that 
removing the olfactory bulb from the pathway can lead to the 
restriction of CoV in the central nervous system (CNS) [74]. 
Based on this evidence, we believe that the neuronal pathway is 
one possible track for SARS-CoV-2.  

(ii) The Hypoxia Pathway (Fig. 3, pathway II): In this pathway, 
decreased levels of ACE2 proliferate in the lung parenchyma cells 
after the coronavirus has passed through, causing exaggerated 
neutrophils accumulation, enhanced vascular permeability, and 
the formation of diffuse alveolar and interstitial exudates. This 
ultimately leads to pulmonary edema and acute respiratory 
distress syndrome (ARDS) [75]. ARDS is characterized by severe 
abnormalities in blood gas composition resulting from an oxygen 
and carbon dioxide mismatch, which leads to low blood oxygen 
levels [76,77]. This ongoing hypoxia can lead to myocardial 

ischemia and heart injury [78,79] (see Fig. 3, pathway II-A). 
Hypoxia in the brain increases anaerobic metabolism in the 
mitochondria of the brain cells [80], leading to cerebral vasodi-
latation, edema, and impaired flow. This can result in cerebral 
ischemia and acute cerebrovascular diseases such as acute 
ischemic stroke [71,80] (see Fig. 3, pathway II-B).  

(iii) The RAAS Pathway after SARS-CoV-2 (Fig. 3, pathway III): The 
RAAS pathway is crucial in regulating blood pressure, as well as 
the balance of fluid and electrolytes. Any disturbance in this 
pathway can trigger the pathogenesis of cardiovascular diseases 
[15]. Before a SARS-CoV-2 infection triggers the RAAS, Angio-
tensin I (Ang I) cleaves to Angiotensin II (Ang II) via ACE1. Ang II 
causes vasospasm. It is also a pro-inflammatory agent with pro-
thrombotic and proliferative effects that are detrimental to 
vascular tone and hemostasis [77,80]. Thus, as a 
counter-regulatory mechanism, ACE2 degrades Ang II and gen-
erates Ang (1–7), which counteracts the negative impacts of Ang 
II [75,78]. Both ACE2 and Ang (1–7) have cardio-cerebral 
vascular protective effects [61]. After the triggering of 
SARS-CoV-2 infection, its results are in the deregulation of RAAS 
causing heart and brain injury in two different pathways. The 
main culprit is an increase in Ang II, which is caused by the 
decrease in ACE2 levels (Fig. 3, pathway III-A). First, an increase 
in Ang II levels stimulates the adrenal cortex of the kidney, 
resulting in an increased production of aldosterone. Aldosterone 

Fig. 3. We have shown in four pathways how COVID-19 can cause Brain and heart injury. Brain image in pathway I: http://debuglies.com/2020/01/23/olfactory-d 
isturbances-have-implications-in-mental-and-emotional-well-being-health/(Courtesy of Debug Lies). 
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is a steroid hormone that causes sodium and water reabsorption 
to increase at the distal tubule and collecting duct of the nephron 
[81]. This reabsorption increases blood volume and causes an 
elevation in blood pressure, which results in the endothelial 
dysfunction that causes brain and heart injury [82]. The second 
effect of an increase in Ang II levels (i.e., as a consequence of 
decreased ACE2 levels) is endothelial dysfunction leading to 
intimal damage in the arterial walls [21], which can be seen 
during the imaging of the arterial wall (see Fig. 3, pathway III-B). 
This pathway can also trigger a cytokine storm, as high levels of 
Ang II can cause an increase in pro-inflammatory cytokines (see 
the bridge line between the RAAS and immune pathways).  

(iv) The Immune Pathway (Fig. 3, pathway IV): Several recent studies 
have reported SARS-Cov-2 viral pneumonia [7,77,83,84] having 
an exaggerated inflammatory response known as a “cytokine 
storm.” This response appears to present at advanced stages of 
severe COVID-19, with increased levels of inflammatory cyto-
kines leading to multiple-organ failure [85–87]. The rise in in-
flammatory markers—including IL-6, IL-7, IL-12, IL-15, IL-22, 
TNF-α, and CXCL-10—results in the destabilization of plaque. 
This, in turn, can cause plaque rupture, resulting in heart and 
brain injury [74,78,88]. 

3. The role of imaging in comorbid patients with COVID-19 

As the previous section discussed, COVID-19 uses four pathways (i.e., 
neuronal, hypoxia, RAAS, and immune) to cause critical heart and brain 
injuries in patients with comorbidities. The prevalence of myocardial 
injury and brain injury caused by COVID-19 [37,68–70,80,85–87, 
89–91] points to a need for increased use of medical imaging to expedite 
assessments, differential diagnoses, and patient management [35,36,92] 
with proper safety measures [93–97]. The seriousness of a patient’s 
COVID-19 symptoms helps to determine which imaging modality is 
appropriate: portable or non-portable, and invasive or non-invasive. 
B-Mode ultrasound imaging is portable and can be used for low-risk 
patients. Meanwhile, X-ray, magnetic resonance imaging [40] and 
computed tomography [41] are non-portable and can be used for 
medium-risk patients. Intravascular ultrasound (IVUS) [98] and ven-
triculography are invasive imaging modalities used in highly critical 

cases [42,43,99,100]. Amongst all the imaging modalities, ultrasound is 
noteworthy because it is radiation-free, portable, quick, repeatable, 
inexpensive, and can be performed in isolation, thus lowering the 
chance of spreading the COVID-19 infection [101,102]. 

There are several examples of medical imaging that have led to 
proper treatment and healthcare management during the pandemic, 
ultimately reducing the mortality rate. X-ray imaging of the chest has 
demonstrated irregular, patchy, hazy, reticular, and widespread ground- 
glass opacities, indicating the progression of COVID-19 at various stages; 
this information can support the healthcare team in developing the most 
appropriate treatment plan [103]. Chest CT scans of 21 COVID-19 pa-
tients revealed in almost 18 (86%) of the patients that the disease was 
affecting at least one of the five lobes of their lungs [104]. Chest MRI 
scans of 11 COVID-19 patients showed pulmonary tissue consolidation 
in six (50%), diffusion-restricted regions in six (50%), and lung damage 
in seven (58%) [105]. Meanwhile, heart MRI studies of 26 recovered 
patients showed that 14 (54%) of the patients had myocardial edema. At 
the same time, late gadolinium enhancement was found in 8 (31%), 
implying that COVID-19–related cardiac injury is longstanding and re-
quires frequent monitoring even after recovery [106]. In a different 
study, MR scans of a COVID-19 patient revealed myocardial inflamma-
tion, signifying myocardial injury due to a cytokine storm related to the 
SARS-CoV2 infection (as discussed in Section 2, Pathway IV) [107]. 
Several studies have also evaluated the effects of COVID-19 on the brain. 
In one, MRI scans revealed hemorrhagic rim enhancing lesions within 
the bilateral thalami, medial temporal lobes, and subinsular regions 
[108] (shown in Fig. 4). In another, brain MRI scans were completed for 
27 patients, 12 (44%) of which produced abnormal findings [109]. 
Additionally, evidence of liver injury (27%) and gall bladder abnor-
mality (83%) was found in a joint CT and ultrasound study of the 
abdomen [110]. Recent MRI scans of COVID-19 patients’ olfactory bulbs 
have revealed the cause of olfactory function loss to be the interaction 
between SARS-CoV2 and the ACE2 protein expressed by the olfactory 
epithelium, which leads to inflammatory obstruction [111]. 

Invasive imaging is another option for diagnosing COVID-19 patients 
who have critical comorbidities. In one such study, IVUS, along with 
stenting, was performed with precautions on a COVID-19 patient with 
myocardial infarction [112] (shown in Fig. 5). A detailed discussion of 
precautions is included in section 5. In another study, takotsubo 

Fig. 4. MRI scan of COVID-19 patient showing hemorrhage. MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and 
thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on 
postcontrast images (D, H) (reproduced with permission [108]). 
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syndrome, a form of myocardial injury triggered by COVID-19, was 
detected using ventriculography [113]. In various studies, the medical 
imaging of COVID-19 patients had been crucial to ascertaining the 
extent of tissue damage and critical infection, although there were no 
visible symptoms [39,114]. Therefore, medical imaging is the preferred 
way to ascertain the extent of cardiac and brain tissue damage 
throughout the lifetime of COVID-19 patients. COVID-19 patients with 
comorbidities are especially vulnerable, and so they need to be screened 
through medical imaging from the first day of their diagnosis. Medical 
imaging can help patients with deep vein thrombosis (DVT), as they are 
highly susceptible to severe tissue damage from COVID-19. A study 
showed that COVID-19 patients suffering from DVT had a worse prog-
nosis than patients without DVT. Patients with DVT were admitted to the 
ICU more frequently (18.2%), discharged less frequently (48.5%), and 
suffered more deaths (38.5%) than those without DVT [115]. 

Although medical imaging can be very useful to patients and doctors 
alike, the exponential pandemic curve, inadequate medical facilities 
[116–118], and a limited number of radiologists make the assessment, 
diagnosis, and management processes challenging, tedious, and 
error-prone. Therefore, although medical imaging can make diagnoses 
faster, as stated above, it will be of limited use. Given this fact, new age 
techniques such as artificial intelligence (AI) [119–121] applications in 

medical imaging for tissue characterization can make computer-aided 
assessments and diagnoses faster. The main reason for this is that the 
AI can be scaled up to match the pandemic curve, thereby meeting the 
immediate demands of medical image diagnoses during the COVID-19 
pandemic. 

AI-based tests can categorize the nature of a patient’s risk in one of 
the categories namely no-risk, low, low-medium (LM), high-medium 
(HM), low-high (LH), or high-high (HH) risk depending on the pa-
tient’s symptoms and their severity [120,122] as shown in Fig. 6. The 
imaging modality also varies with the degree of risk as follows: no im-
aging for no-risk, portable imaging for low and LM risk, non-portable 
imaging for HM and LH, and invasive imaging for HH. A probability 
(PTP) is performed to accurately interpret diagnostic results to catego-
rize the patient into one of the four groups [123–126]. After that, for 
no-risk patients, non-imaging biomarkers can be collected for risk 
assessment using AI-based data protocols. For low-risk patients, portable 
2D/3D imaging, such as ultrasound, is used, whereas non-portable and 
invasive 2D/3D imaging such as MRI/CT/X-Ray/echocardiography can 
be used for LM patients. For HH patients, invasive imaging techniques 
such as IVUS and ventriculography can be used. Based on the data 
provided by various 2D/3D scans, AI-based medical imaging is applied 
for risk assessment. Further treatment is then planned based on this 

Fig. 5. Application of chest CT and IVUS for a COVID-19 patient suffering from myocardial infarction (a) Chest CT scan with viral pneumonia showing fibrinous, 
focal exudative changes. (b) When the patient complained of chest pain, the ECG report showed the ST-segments elevations in V1–V5 lead. (c, d) CAG radiology that 
the proximal segment of LAD was occluded. (e, f) The blood flow of LAD restoration after 2 DESs was implanted. (g) The dissection distal shown by IVUS to the stent 
in LAD from 7 to 12 o’clock. (h) The low echogenic shadow with scattered higher echogenic flicker, indicating a thrombus. (i) After a DES was implanted, and the 
stent was well expanded, the dissection could not be seen (j) The thrombus disappearance after the intervention (reproduced with permission [112]). 
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imaging process. In the next section, deep learning (DL)-based medical 
imaging is proposed for medical imaging scans, particularly ultrasounds 
for COVID-19 patients. 

4. Machine learning and Deep Learning for tissue 
characterization 

Using AI and associated technologies in healthcare can significantly 
slow down diagnosis times, especially during the COVID-19 pandemic, 
as patient numbers are continually growing and there are few specialists 
available [119]. 

Although some caution must be exercised regarding its full-scale 
deployment [127], its overall usefulness in healthcare management 
during times of crisis cannot be ignored [54,55,128,129]. In general, AI 
in healthcare refers to all artificial intelligence-based technologies that 
make educated decisions regarding a patient’s diagnosis, monitoring, 
treatment, and management. The importance of AI has specifically 
increased many folds when imaging comes into play, mainly because of 
large volumetric data sizes and the extensive need to characterize and 
quantify the disease via lesion images [130–132]. Tissue imaging and its 
characterization is of prime importance since it has a direct influence on 

decisions related to COVID-19 severity for a patient [133–135]. The 
main benefit of AI methods is that the machines can be used to train (by 
mimicking the physician’s cognitive actions), and such trained models 
can be used to predict the disease’s severity in asymptomatic patients. 
Within a short period, several machine learning (ML)-based techniques 
used the power of AI to manage COVID-19 [136,137]. 

4.1. ML and DL architectures 

ML Architecture: ML is a two-stage process. In stage I, different fea-
tures are extracted from the lesion COVID images; the extractions are 
then operated on by an ML statistical model (called a training system), to 
generate offline coefficients. These coefficients are then transformed by 
the test lesion images, which yield an intelligent classification or infer-
ence. A typical ML system for predicting risk class is shown in Fig. 7. 
CUSIP is an image-based phenotype that uses the event equivalent gold 
standard (EEGS) [57,138,139] model. 

DL Architecture: DL refers to a visual cortex that imitates multiple 
layers of a neural network applied directly to tissue images to extract 
features and for characterization purposes [54]. The convolution neural 
network (CNN) [140] (shown in Fig. 8) is one such DL network 

Fig. 6. Role of AI-based risk assessment on COVID-19 patients having comorbidity.  
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architecture that is widely used to characterize medical images. It per-
forms a series of convolution max-pooling operations to extract features 
and perform characterizations. ML and DL both follow the supervised 
learning approach by which models are trained using offline data. 

As discussed in previous sections, there are four pathways through 
which a COVID-19 infection leads to heart and brain injuries. AI can be 
used via medical imaging to detect the extent of tissue damage in these 
pathways and help medical professionals to develop an effective treat-
ment plan for patients. There are several instances in which the AI 
paradigm has been used for tissue characterization based on medical 
images during the pandemic as well as during standard times. Some uses 
of AI are described organ-wise following a proposed model for charac-
terizing DL-based tissues. 

4.2. ML Architecture used for tissue characterization for stroke risk 
stratification 

Two types of tissue characterization that can be carried out using AI: 
(i) ML-based [63,141], and (ii) DL-based [142]. Various ML-based 
technologies have been developed to classify symptomatic and asymp-
tomatic plaque from ultrasound images. For example, an ML-based 

technique based on support vector machines (SVM) was developed to 
characterize the symptomatic and asymptomatic plaques of 346 carotid 
scans that indicated the presence of plaque [143,144]. SVM classifiers 
work by determining the maximum margin between two data clusters. 
First, a texture analysis [145] is used to extract the features (i.e., stan-
dard deviation, entropy, symmetry, and run percentage) in the feature 
extraction phase [146]. SVM with a radial basis function (RBF) kernel 
was then applied to the features to characterize the plaque tissue lesions. 
The performance accuracy was 82.4%. The higher-order spectra [130] 
domain provides evidence of compelling tissue characterization features 
related. 

In other work, an SVM-based (RBF kernel) classifier [46] was 
developed using a combination of HOS [130,147], discrete wavelet 
transforms (DWTs) [148], and texture features [146] taken from 146 
patient scans. This classifier’s accuracy was 91.7%. Polynomial kernels 
of order two were used to characterize tissues when adapting 
DWT-based features, yielding an accuracy of 83.7%. Several combina-
tions of classifiers were applied to two different carotid plaque cohorts 
(Portugal and the UK) comprising 346 scans. The focus was to compare 
and contrast different classifiers, such as SVM [45], the Gaussian 
mixture model (GMM) [149], radial basis probabilistic neural network 

Fig. 7. Typical low-cost machine learning architecture utilizing the EEGS model.  
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(RBPNN) [150], decision tree (DT) [151], k-nearest neighbor (KNN) 
[152], naive Bayes classifier (NBC) [153], and fuzzy classifier [154]. The 
main features used were trace transform [155], fuzzy gray level 
co-occurrence matrix (FGLCM) [156], and fuzzy run-length matrix 
(FRLM) [157]. The highest fuzzy classifier accuracy achieved for the 
Portugal cohort was 93.1%, while the NBC and SVM-RBF kernel per-
formed equally (85.3%). Different methods for CVD risk stratification 
using the AI paradigm for plaque characterization have been published 
[27,28,158]. 

4.3. ML/DL used for vessel characterization, measurement and risk 
stratification 

Recently, Jamthikar et al. [159,160] explained the role of ML for 
CVD/stroke risk assessment within a big data framework by fusing 
image-based phenotypes and conventional risk factors for CCA and bulb 
segments [161]. In another study, the authors discussed the preventive 
cardiovascular framework for coronary artery disease management in 
ML [63] and the big data framework. Similarly, ML and DL algorithms 
have been applied to CVD risk assessments in several other areas [158, 
162]. Highly accurate techniques for lumen characterization [164], 
stenosis estimation [165], and cIMT measurement [56] have been 
developed using the deep fully convolutional network (FCN) [163] in 
segmentation models. 

4.4. AI used for chest CT and liver disease classification 

ML and DL technologies are being applied during the COVID-19 
pandemic to characterize lung CT images [166–168] with varying de-
grees of success. Kang et al. [169] applied representation learning to 
characterize non-infected chest CT scans from COVID-19 patients with 
an accuracy of 95.5%. Wang et al. [170] used a DL-based network to 
differentiate COVID-19 patients’ CT scans from scans of non-infected 
people, yielding a ROC having an AUC of 0.959. 

Different DL-based methodologies for tissue characterization and 
segmentation have been implemented to differentiate diseased (fatty 
liver) ultrasound images (with 100% accuracy) [171,172] and assess 
liver fibrosis stages using DL radionics of shear wave elastography 
[173]. This method is ideal for characterizing and classifying COVID-19 

patients. 

4.5. AI-based tissue characterization and risk stratification in lung CT 

Several studies have appeared recently in the area of lung CT clas-
sification using AI methods. They are divided into two kinds, depending 
on the number of classes used for risk stratification. The first set of 
studies compared COVID-19 pneumonia patients against non-COVID-19 
pneumonia, i.e., two-class scenarios. The second set consisted of mul-
ticlass paradigms. Wang et al. [174] used DenseNet 121 for lung mask 
creation and segmentation and used DenseNet to classify COVID-19 and 
control patients, yielding an AUC of 0.9, a sensitivity of 78.93% and a 
specificity of 89.93%. Zhang et al. [175] used a combination of lung 
segmentation combined with a classification for three classes (i.e., 
COVID-19, community pneumonia, and normal). The authors used the 
DeepLabv3 model for lung segmentation and 3D ResNet-18 for classi-
fication, yielding an accuracy of 92.49% and an AUC of 0.98. 

Other authors have applied AI in their research protocol for CT lung 
scans. Li et al. [176] recently developed a CT lung DL system to predict 
the severity and progression of COVID-19. Recently, Chen et al. [177] 
developed a UNet++ architecture for segmenting COVID-19-infected 
lung regions in CT scans. This system is accessible worldwide [178]. 
Yang et al. [179] illustrated the lung segmentation in CT images by 
identifying pulmonary parenchyma, followed by DenseNet-based clas-
sification. This method yielded an accuracy of 92% and an AUC of 0.98. 
In other work, Oh et al. [180] used X-ray CHEST images as inputs for 
segmentation and classification. The authors used DenseNet for seg-
mentation. The authors then used the same network for classification, 
adapting patch-based strategy, and demonstrating an accuracy of 
88.9%. 

4.6. AI-based plaque tissue characterization and risk stratification for 
cardiac health 

A well-implemented DL-based platform is proposed to treat COVID- 
19 patients with comorbidities (see Fig. 9). The proposed DL system is 
trained using offline data collected from COVID-19 patients across the 
globe. The data is given in the form of several ultrasound scans taken 
from COVID-19 patients with comorbidities following specific 

Fig. 8. A convolution neural network (courtesy of AtheroPoint™, CA, USA).  
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guidelines [93–97]. The ROI of the tissue is obtained from the scan using 
the AtheroEdge™ system, which can detect plaque automatically and 
segment the plaque region. Similarly, ultrasound scans are taken from 
online patients, and ROI is extracted using the same AtheroEdge™ 
system. Once the DL parameters are trained using the offline data, they 
are used to predict the plaque vulnerability of the online data obtained 
from the testing patients. The predictions are used to further assess and 
support the clinical viability of the DL system. 

5. Summary 

In this review, we summarized several imaging studies on COVID-19 
patients to explore the extent to which major organs, such as the heart 
[106,107], brain [108,109], lungs [104,105], and liver, undergo due to 
COVID-19 infection. All the imaging studies were done on COVID-19 
patients with mild to severe symptoms who were referred to the medi-
cal team for appropriate patient management. Although there are mul-
tiple imaging modalities, ultrasound is preferred over others because of 
its portability, which allows patients to stay in their isolation zones. 
Similar portability is advised for MRI [181,182] and CT [183] scanning 
to decrease the spread of infection among different isolation wards. A 
mass portable imaging test for admitting COVID-19 patients would 
allow medical practitioners to devise treatment plans quickly and help 
save lives. For patients with severe cases of COVID-19, IVUS [98] and, 
ventriculography (with proper precautions) are proposed [42,43,99, 
100]. 

The exponential pandemic curve makes it impossible to examine and 

diagnose all medical images due to the limited number of radiologists 
and scarce medical resources. In this respect, AI-based medical imaging 
can be used to examine and diagnose COVID-19 patients and help with 
risk stratification. Because AI systems can handle millions of images at a 
time, they can be scaled to make mass diagnoses to match the pandemic 
curve. 

AI is categorized into two types: ML and DL [54]. Predictions made 
by ML models depend on feature extraction algorithms. Meanwhile, DL 
models can extract features directly from medical imaging, thus making 
them clearer. We propose that a risk assessment model using AI-based 
imaging should be used. Initially, based on PTP tests [123–126], pa-
tients are categorized as wither no-risk, low-risk, LM, MH, LH, or HH 
[120,122]. Medical imaging is then performed according to the patient’s 
risk level. Finally, AI is applied to medical images to assess risk. 
DL-based tissue characterization is also proposed for ultrasound scans 
and extended to other imaging modalities. The DL-based system is 
trained using offline data and tested using online data. This system is 
capable of ascertaining the degree of tissue damage caused by a 
COVID-19 infection. 

In addition to AI, telemedicine and social media can be useful for 
monitoring patients’ health. Telemedicine can be used to track patients’ 
health using Internet of Things devices, thereby augmenting infection 
containment efforts [184]. Also, through the use of big data analytics, 
social media can be used to track patients’ health and share essential 
research findings [185–187]. 

A short note on precautions that should be taken during the medical 
imaging of COVID-19 patients. 

Fig. 9. Proposed DL-based system for tissue characterization and classification of COVID-19 severity with patients with comorbidities (courtesy of AtheroPoint™, 
CA, USA). 
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Guidelines must be followed by medical staff to prevent infection 
[188–190]. Specifically, medical staff members are required to wear eye 
protection, a disposable water-resistant gowns, and disposable gloves. 
Portable imaging equipment must be used to avoid moving patients. All 
medical equipment that needs to be touched should be disinfected after 
each use (as shown in Fig. 10 (a)). To prevent contact, imaging equip-
ment can be used outside the isolation room, and images can be taken 
through the isolation room glass (as shown in Fig. 10 (b)). A disposable 
sterile protection cover (as shown in Fig. 10 (c)) can be used to contact 
devices (e.g., ultrasound probes). 

6. Conclusion 

COVID-19 leads to brain and heart injury via four pathways (i.e., 

neuronal, hypoxia, RAAS, and immune). Portable/non-portable invasive 
imaging techniques must be carried out following proper precautions 
depending upon the level of risk associated with a patient’s symptoms. 
Although medical imaging could significantly enhance a patient’s 
chances of survival, the scarcity of trained radiologists limits its usage. 
Thus, AI techniques, such as ML- and DL-based methods, are proposed to 
speed up assessments and diagnoses based on medical imaging. COVID- 
19 causes severe health hazards in patients with comorbidities, and so a 
DL-system is proposed for COVID-19 diagnosis and risk stratification. 
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Fig. 10. a) Safety guidelines to be followed by medical staff before performing imaging (reproduced with permission [188]); (b) Images being taken through glass 
(reproduced with permission [189]); (c) disposable sterile sheath for covering probe. (reproduced with permission [190]). 
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