Table 3.
The metrics for training and cross-validation on the 2012 to 2017 data set.
Model | AUCa (95% CIb) | Accuracy (95% CI) | Precision | Recall | F1 score |
NBc | 0.908 (0.882-0.934) | 0.870 (0.839-0.898) | 0.734 | 0.865 | 0.794 |
DTd | 0.870 (0.839-0.901) | 0.865 (0.833-0.893) | 0.715 | 0.885 | 0.791 |
RFe | 0.961 (0.944-0.978) | 0.896 (0.867-0.921) | 0.794 | 0.865 | 0.828 |
SVMf | 0.947 (0.925-0.969) | 0.900 (0.872-0.924) | 0.859 | 0.782 | 0.819 |
MLPg | 0.957 (0.938-0.976) | 0.917 (0.890-0.939) | 0.828 | 0.897 | 0.862 |
CNNrh | 0.984 (0.972-0.995) | 0.946 (0.924-0.964) | 0.938 | 0.872 | 0.904 |
CNNwi | 0.988 (0.977-0.999) | 0.959 (0.939-0.974) | 0.947 | 0.910 | 0.928 |
LSTMrj | 0.982 (0.972-0.992) | 0.943 (0.920-0.961) | 0.919 | 0.878 | 0.898 |
LSTMwk | 0.975 (0.960-0.990) | 0.937 (0.913-0.956) | 0.918 | 0.859 | 0.887 |
aAUC: area under the receiver operating characteristic curve.
bCI: 95% confidence intervals for the AUC.
cNB: naïve Bayes.
dDT: decision tree.
eRF: random forest.
fSVM: support vector machine.
gMLP: multilayer perceptron.
hCNNr: convolutional neural network with randomly initialized word embeddings.
iCNNw: convolutional neural network with Word2vec word embeddings.
jLSTMr: long short-term memory with randomly initialized word embeddings.
kLSTMw: long short-term memory with Word2vec word embeddings.