Skip to main content
. 2020 Jul 30;8(7):e17784. doi: 10.2196/17784

Table 3.

The metrics for training and cross-validation on the 2012 to 2017 data set.

Model AUCa (95% CIb) Accuracy (95% CI) Precision Recall F1 score
NBc 0.908 (0.882-0.934) 0.870 (0.839-0.898) 0.734 0.865 0.794
DTd 0.870 (0.839-0.901) 0.865 (0.833-0.893) 0.715 0.885 0.791
RFe 0.961 (0.944-0.978) 0.896 (0.867-0.921) 0.794 0.865 0.828
SVMf 0.947 (0.925-0.969) 0.900 (0.872-0.924) 0.859 0.782 0.819
MLPg 0.957 (0.938-0.976) 0.917 (0.890-0.939) 0.828 0.897 0.862
CNNrh 0.984 (0.972-0.995) 0.946 (0.924-0.964) 0.938 0.872 0.904
CNNwi 0.988 (0.977-0.999) 0.959 (0.939-0.974) 0.947 0.910 0.928
LSTMrj 0.982 (0.972-0.992) 0.943 (0.920-0.961) 0.919 0.878 0.898
LSTMwk 0.975 (0.960-0.990) 0.937 (0.913-0.956) 0.918 0.859 0.887

aAUC: area under the receiver operating characteristic curve.

bCI: 95% confidence intervals for the AUC.

cNB: naïve Bayes.

dDT: decision tree.

eRF: random forest.

fSVM: support vector machine.

gMLP: multilayer perceptron.

hCNNr: convolutional neural network with randomly initialized word embeddings.

iCNNw: convolutional neural network with Word2vec word embeddings.

jLSTMr: long short-term memory with randomly initialized word embeddings.

kLSTMw: long short-term memory with Word2vec word embeddings.