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Deep neural networks enable quantitative
movement analysis using single-camera videos
Łukasz Kidziński 1,4✉, Bryan Yang1,4, Jennifer L. Hicks1, Apoorva Rajagopal1, Scott L. Delp1 &

Michael H. Schwartz2,3✉

Many neurological and musculoskeletal diseases impair movement, which limits people’s

function and social participation. Quantitative assessment of motion is critical to medical

decision-making but is currently possible only with expensive motion capture systems and

highly trained personnel. Here, we present a method for predicting clinically relevant motion

parameters from an ordinary video of a patient. Our machine learning models predict

parameters include walking speed (r= 0.73), cadence (r= 0.79), knee flexion angle at

maximum extension (r= 0.83), and Gait Deviation Index (GDI), a comprehensive metric of

gait impairment (r= 0.75). These correlation values approach the theoretical limits for

accuracy imposed by natural variability in these metrics within our patient population. Our

methods for quantifying gait pathology with commodity cameras increase access to quan-

titative motion analysis in clinics and at home and enable researchers to conduct large-scale

studies of neurological and musculoskeletal disorders.
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Gait metrics, such as walking speed, cadence, symmetry,
and gait variability are valuable clinical measurements in
conditions such as Parkinson’s disease1, osteoarthritis2,

stroke3, cerebral palsy4, multiple sclerosis5, and muscular dys-
trophy6. Laboratory-based optical motion capture is the current
gold standard for clinical motion analysis (Fig. 1a); it is used to
diagnose pathological motion, plan treatment, and monitor out-
comes. Unfortunately, economic and time constraints inhibit the
routine collection of this valuable, high-quality data. Further,
motion data collected in a laboratory may fail to capture how
individuals move in natural settings. Recent advances in machine
learning, along with the ubiquity and low cost of wearable sensors
and smartphones, have positioned us to overcome the limitations
of laboratory-based motion analysis. Researchers have trained
machine learning models to estimate gait parameters7,8 or detect
the presence of disease9, but current models often rely on data
generated by specialized hardware such as optical motion capture
equipment, inertial measurement units, or depth cameras10,11.

Standard video has the potential to be a low-cost, easy-to-use
alternative to monitor motion. Modern computational methods,
including deep learning12, along with large publicly available
datasets13 have enabled pose estimation algorithms, such as
OpenPose14, to produce estimates of body pose from standard
video across varying lighting, activity, age, skin color, and angle-
of-view15. Human pose estimation software, including OpenPose,
outputs estimates of the two-dimensional (2D) image-plane
positions of joints (e.g., ankles and knees) and other anatomical
locations (e.g., heels and pelvis) in each frame of a video (Fig. 1b).
These estimates of 2D planar projections are too noisy and biased,
due to manually annotated ground truth and planar projection
errors, to be used directly for extracting clinically meaningful
information such as three-dimensional (3D) gait metrics or
treatment indications16. Investigators recently predicted cadence

from 2D planar projections17, but their study included a popu-
lation of only two impaired subjects and required carefully
engineered features, limiting generalizability. Moreover, for pre-
dictions that are not directly explained by physical phenomena,
such as clinical decisions, feature engineering is particularly dif-
ficult. To overcome these limitations, we used deep neural net-
works (machine learning models that employ multiple artificial
neural network layers to learn complex, and potentially nonlinear,
relationships between inputs and outputs), which have been
shown to be an effective tool for making robust predictions in an
impaired population compared with methods using hand-
engineered features18. Our method capitalizes on 2D pose esti-
mates from video to predict (i) quantitative gait metrics com-
monly used in clinical gait analysis, and (ii) clinical decisions.

We designed machine learning models to predict clinical gait
metrics from trajectories of 2D body poses extracted from videos
using OpenPose (Fig. 1b and Supplementary Movie 1). Our
models were trained on 1792 videos of 1026 unique patients with
cerebral palsy. These videos, along with gold-standard optical
motion capture data, were collected as part of a clinical gait
analysis. Measures derived from the optical motion capture data
served as ground-truth labels for each visit (see Methods). We
predicted visit-level gait metrics (i.e., values averaged over mul-
tiple strides from multiple experimental trials), since the videos
and gold-standard optical motion capture were collected con-
temporaneously but not simultaneously. These visit-level esti-
mates of values, such as average speed or cadence, are widely
adopted in clinical practice. We tested convolutional neural net-
work (CNN), random forest (RF), and ridge regression (RR)
models, with the same fixed set of input signals for each model. In
the CNN models, we input raw time series; in the other two
models (which are not designed for time-series input), we input
summary statistics such as mean and percentile. We present the
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Fig. 1 Comparison of the current clinical workflow with our video-based workflow. a In the current clinical workflow, a physical therapist first takes a
number of anthropometric measurements and places reflective markers on the patient’s body. Several specialized cameras track the positions of these
markers, which are later reconstructed into 3D position time series. These signals are converted to joint angles as a function of time and are subsequently
processed with algorithms and tools unique to each clinic or laboratory. b In our proposed workflow, data are collected using a single commodity camera.
We use the OpenPose14 algorithm to extract trajectories of keypoints from a sagittal-plane video. We present an example input frame, and then the same
frame with detected keypoints overlaid. To illustrate the detected pose, the keypoints are connected. Next, these signals are fed into a neural network that
extracts clinically relevant metrics. Note that this workflow does not require manual data processing or specialized hardware, allowing monitoring at home.
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CNN results since in all cases, the CNN performed as well or
better than the other models (Fig. 2); however, more thorough
feature engineering specific to each prediction task could improve
performance for all model types. Our models, trajectories of
anatomic keypoints derived using OpenPose, and ground-truth
labels are freely shared at http://github.com/stanfordnmbl/
mobile-gaitlab/.

Results
Predicting common gait metrics. We first sought to determine
visit-level average walking speed, cadence, and knee flexion angle
at maximum extension from a 15 s sagittal-plane walking video.
These gait metrics are routinely used as part of diagnostics and
treatment planning for cerebral palsy4 and many other disorders,
including Parkinson’s disease19,20, Alzheimer’s disease21,22,
osteoarthritis2,23, stroke3,24, non-Alzheimer’s dementia25, multi-
ple sclerosis5,26, and muscular dystrophy6. The walking speed,
cadence, and knee flexion at maximum extension predicted from

video by our best models had correlations of 0.73, 0.79, and, 0.83,
respectively, with the ground-truth motion capture data (Table 1
and Fig. 3a–c).

Our model’s predictive performance for walking speed was
close to the theoretical upper bound given intra-patient stride-to-
stride variability. Variability of gait metrics can be decomposed
into inter-patient and intra-patient (stride-to-stride) variability27.
The correlation between our model and ground-truth walking
speed was 0.73; thus, our model explained 53% of the observed
variance. In the cerebral palsy population, intra-patient stride-to-
stride variability in walking speed typically accounts for about
25% of the observed variance in walking speed28. Therefore, we
do not expect the variance explained to exceed 75% because our
video and ground-truth motion capture data were not collected
simultaneously, making it infeasible to capture stride-to-stride
variability. The remaining 22% of variability likely represented
some additional trial-to-trial variability, along with inter-patient
variability that the model failed to capture.

Our predictions of knee flexion angle at maximum extension
within the gait cycle, a key biomechanical parameter in clinical
decision-making, had a correlation of 0.83 with the correspond-
ing ground-truth motion capture data (Fig. 3c). For comparison,
the knee flexion angle at maximum extension directly computed
from the thigh and shank vectors defined by the hip, knee, and
ankle keypoints of OpenPose had a correlation of only 0.51 with
the ground-truth value, possibly due in part to the fixed position
of the camera and associated projection errors. This implies that
information contained in other variables used by our model had
substantial predictive power.

Predicting comprehensive clinical gait measures. Next, we built
models to determine comprehensive clinical measures of motor
performance, namely the Gait Deviation Index (GDI)29 and the
Gross Motor Function Classification System (GMFCS) score30, a
measure of self-initiated movement with emphasis on sitting,
transfers, and mobility. These metrics are routinely used in clinics
to plan treatment and track progression of disorders. Assessing
GDI requires full time-series data of 3D joint kinematics mea-
sured with motion capture and a biomechanical model, and
assessing GMFCS requires trained and experienced medical
personnel. To predict GDI and GMFCS from videos, we used the
same training algorithms and machine learning model structure
that we used for predicting speed, cadence, and knee flexion angle
(see Methods).

The accuracies of our GDI and GMFCS predictions were close
to the theoretical upper bound given previously reported variability
for these measures, indicating that our video analysis could be used
as a quantitative assessment of gait outside of a clinic. We
predicted visit-level GDI with correlation 0.75 (Fig. 3d), while the
intraclass correlation coefficient for visits of the same patient is
reported to be 0.81 (0.73–0.89, 95% confidence interval)31 in
children with cerebral palsy (see Methods). Despite the fact
that GDI is derived from 3D joint angles, correlations between
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Fig. 2 Comparison of prediction accuracy for models using video signals.
We compare three methods: convolutional neural network (CNN), random
forest, and ridge regression. To predict each of the four gait metrics (speed,
cadence, GDI, and knee flexion angle at maximum extension), we trained a
model on a training set, choosing the best parameters on the validation set.
The reported values of bars are the correlation coefficients between the
true and predicted values for each metric, evaluated on the test set. Error
bars represent standard errors derived using bootstrapping (n= 200
bootstrapping trials).

Table 1 Model accuracy in predicting continuous visit-level parameters.

True vs. predicted correlation (95% CI) Mean bias (95% CI; p value) Mean absolute error

Walking speed (m/s) 0.73 (0.66–0.79) 0.00 (−0.02–0.02; 0.93) 0.13
Cadence (strides/s) 0.79 (0.73–0.84) 0.01 (0.00–0.02; 0.10) 0.08
Knee flexion (degrees) 0.83 (0.78–0.87) 0.33 (−0.40–1.06; 0.38) 4.8
Gait Deviation Index 0.75 (0.68–0.81) 0.54 (−0.33–1.42; 0.22) 6.5

We measured performance of the CNN model for four walking parameters: walking speed, cadence, knee flexion at maximum extension, and Gait Deviation Index (GDI). All statistics were derived from
predictions on the test set, i.e., visits that the model has never seen. Bias was computed by subtracting predicted value from observed value. Correlations are reported with 95% confidence interval (CI).
All predictions had correlations with true values above 0.73. For perspective, stride-to-stride correlation for GDI is reported to be 0.73–0.8931, which is comparable with our estimator. We used a two-
sided t-test to check if predictions were biased. In each case there was no statistical evidence for rejecting the null hypothesis (no bias).
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Fig. 3 Convolution neural network (CNN) model performance. We evaluated the correlation, r, between the true gait metric values from motion capture
data and the predicted values from the video keypoint time-series data and our model. Our model predicted (a) speed, (b) cadence, (c) knee flexion angle
at maximum extension, and (d) Gait Deviation Index. We also did a post-hoc analysis to predict (e) asymmetry in GDI, as well as longitudinal changes in
(f) knee flexion angle at maximum extension and (g) GDI. In all plots, the straight blue line corresponds to the best linear fit to predicted vs. observed data
while light bands correspond to the 95% confidence interval for the regression curve derived using bootstrapping (n= 200 bootstrapping trials).
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these joint angles enabled us to predict GDI with high accuracy
from 2D video. We predicted GMFCS with weighted kappa of
0.71 (Table 2); inter-rater variability of GMFCS is reported to be
0.76–0.8132, and agreement between a physician and a parent is
0.48–0.6733. The predicted GMFCS scores were correct 66% of
the time and always within 1 of the true score. The largest rate of
misclassifications occurred while differentiating between GMFCS
levels I and II, but this is unsurprising as more information than
can be gleaned from a simple 10 m walking task (e.g., about the
patient’s mobility over a wider range of tasks, terrain, and time) is
typically needed to distinguish between these two levels.

We reasoned that remaining unexplained variability in GDI
may be due to unobserved information from the frontal and
transverse planes. To test this, we computed correlations between
the GDI prediction model’s residuals and parameters that are not
captured by OpenPose from the sagittal view. We found that the
residuals between true and predicted GDI were correlated with
the patient’s mean foot progression angle (p < 10−4) and mean
hip adduction during gait (p < 10−4) as measured by optical

motion capture (Fig. 4). This, along with the higher correlation
observed for predicting sagittal-plane knee kinematics, suggests
that GDI estimation could be improved with additional views of
the patient’s gait.

Predicting longitudinal gait changes and surgical events. A
post-hoc analysis using the predicted gait metrics from single gait
visits showed that we partially captured gait asymmetry and long-
itudinal changes for individual patients. Gait asymmetry may arise
from impairments in motor control, asymmetric orthopedic
deformity, and asymmetric pain, and can be used to inform clinical
decisions34. Longitudinal changes can inform clinicians about
progression of symptoms and long-term benefits of treatment, since
the lack of longitudinal data makes analysis of long-term effects of
treatment difficult35. We used predicted values from the models
described earlier to estimate asymmetry and longitudinal changes,
and thus did not train new models for this task. Our predicted gait
asymmetry, specifically, the difference in GDI between the two
limbs, correlated with the true asymmetry with r= 0.43 (Fig. 3e);
this lower correlation is expected because we estimate asymmetry as
a difference between two noisy predictions of GDI for the left and
right limbs. We predicted longitudinal change assuming the true
baselines measured in the clinic are known and future values are to
be estimated. This framework approximates the use of videos to
monitor patients at home after an initial in-clinic gait analysis. The
change in knee flexion at maximum extension angle correlated with
the true change with r= 0.83 (Fig. 3f), while the change in GDI
over time correlated with r= 0.59 (Fig. 3g). In the case where we
did not use baseline GDI in the model, correlations between the
difference in model-predicted values and difference in ground-truth
clinic-measured values were 0.68 for knee flexion at maximum
extension and 0.40 for GDI.

Finally, we sought to predict whether a patient would have
surgery in the future, since accurate prediction of treatment might

Table 2 Model accuracy in predicting the Gross Motor
Function Classification System (GMFCS) score.

True I True II True III True IV

Predicted I 50 21 0 0
Predicted II 26 47 1 0
Predicted III 0 8 22 4
Predicted IV 0 0 1 0

The GMFCS score is derived from an expert clinical rater assessing walking, sitting, and use of
assistive devices for mobility. The confusion matrix presents our GMFCS prediction based solely
on videos in the test set. Prediction using our CNN model has Cohen’s kappa= 0.71, which is
close to the intra-rater variability in GMFCS. In addition, misclassifications were exclusively by
only one level (e.g., True I never predicted to be III or IV).
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enable remote screenings in locations with limited access to
specialty healthcare. We predicted treatment decisions—specifi-
cally, whether a patient received a single-event multilevel surgery
(SEMLS) following the analyzed clinical gait visit. This analysis
revealed that patient videos contain information that is distinct
from GDI and predictive of SEMLS decisions. Our model
predicted whether a patient received a SEMLS with Area Under
the Receiver Operating Characteristics Curve (AUC) of 0.71
(Fig. 5a). The CNN model slightly outperformed a logistic
regression model based on GDI from motion capture (AUC 0.68).
An ensemble of our CNN model and the GDI logistic regression
model-predicted SEMLS with AUC 0.73, suggesting there is some
additional information in GDI compared with our CNN model.
We found that residuals of the SEMLS prediction from our CNN
model were correlated with GDI with r= 0.51 (Fig. 5b), further
validating that the two signals have some uncorrelated predictive
information.

Discussion
Our models can help parents and clinicians assess early symp-
toms of neurological disorders and enable low-cost surveillance of
disease progression. For example, GMFCS predictions from our
model had better agreement with clinicians’ assessments than did
parents’ assessments. Our methods are dramatically lower in cost
than optical motion capture and do not require specialized
equipment or training. A therapist or technician need not place
markers on a patient, and our models allow the use of commodity
hardware (i.e., a single video camera). In our experiments, we
downsampled the videos to 640 × 480 resolution, a resolution
available in most modern mobile phone cameras. In fact, the most
recent smartphones are equipped with cameras that record videos
in 3840 × 2160 resolution at 60 frames per second.

For a robust, production-ready deployment of our models or to
extend our models to other patient populations, practitioners
would have to address several limitations of our study. First, to
use our current models to assess the same set of gait parameters

in children with cerebral palsy, the protocol used in the clinic
must be closely followed, including similar camera angles and
subject clothing. For deployment under more lax collection
protocols, the methods should be tested with new videos recorded
by naive users. Second, our study only used sagittal-plane video,
making it difficult to capture signals visible mainly in other
planes, such as step width. A similar framework to the one we
describe in this study could be used to build models that incor-
porate videos from multiple planes. Third, since videos and
motion capture data were collected separately, we could only
design our models to capture visit-level parameters. For some
applications, stride-wise parameters might be required. With
additional data, researchers could test whether our models are
suitable for this stride-level prediction, or, if needed, could train
new models using a similar framework. In this study, we had
access to a large dataset to train our CNN model; if extending our
approach to a task where more limited data are available, more
extensive feature engineering and classical machine learning
models might lead to better results. Finally, the dataset we used
was from a single clinical center, and the robustness of our
models should be tested with data from other centers. For
example, clinical decisions on SEMLS are subjective and must be
interpreted in the context of the clinic in which the data was
acquired.

Our approach shows the potential for using of video-based
pose estimation to predict gait metrics, which could enable
community-based measurement and fast and easy quantitative
motion analysis of patients in their natural environment. We
demonstrated the workflow on children with cerebral palsy and a
specific set of gait metrics, but the same method can be applied to
any patient population and metric (e.g., step width, maximum hip
flexion, and metabolic expenditure). Cost-efficient measurements
outside of the clinic can complement and improve clinical prac-
tice, enabling clinicians to remotely track rehabilitation or post-
surgery outcome and researchers to conduct epidemiological scale
clinical studies. This is a significant leap forward from controlled
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laboratory tests and allows virtually limitless repeated measures
and longitudinal tracking.

Methods
We analyzed clinical gait analysis videos from patients seen at Gillette Children’s
Specialty Healthcare. For each video, we used OpenPose14 to extract time series of
anatomical landmarks. Next, we preprocessed these time series to create features
for supervised machine learning models. We trained CNN, RF, and RR models to
predict gait parameters and clinical decisions, and evaluated model performance on
a held-out test set.

Dataset. We analyzed a dataset of 1792 videos of 1026 unique patients diagnosed
with cerebral palsy seen for a clinical gait analysis at Gillette Children’s Specialty
Healthcare between 1994 and 2015. Average patient age was 11 years (standard
deviation, 5.9). Average height and mass were 133 cm (s.d., 22) and 34 kg (s.d., 17),
respectively. About half (473) of these patients had multiple gait visits, allowing us
to assess the ability of our models to detect longitudinal changes in gait.

For each patient, optical motion capture (Vicon Motion Systems36) data were
collected to measure 3D lower extremity joint kinematics and compute gait
metrics37. These motion capture data were used as ground-truth training labels and
were collected at the same visit as the videos, though not simultaneously. While the
video system in the gait analysis laboratory has changed multiple times, our post-
hoc analysis showed no statistical evidence that these changes affected predictions
of our models.

Ground-truth metrics of walking speed, cadence, knee flexion angle at
maximum extension, and GDI were computed from optical motion capture data
following standard biomechanics practices38,39. The data collection protocol at
Gillette Children’s Specialty Healthcare is described in detail by Schwartz et al.40.
Briefly, physical therapists placed reflective markers on patients’ anatomical
landmarks. Specialized, high-frequency cameras and motion capture software
tracked the 3D positions of these markers as patients walked over ground.
Engineers semi-manually postprocessed these data to fill missing marker
measurements, segment data by gait cycle, and compute 3D joint kinematics. These
processed data were used to compute gait metrics of interest—specifically, speed,
cadence, knee flexion angle at maximum extension, and GDI—per patient and
per limb.

The GMFCS score was rated by a physical therapist, based on the observation of
the child’s function and an interview with the child’s parents or guardians. For
some visits, surgical recommendations were also recorded.

Videos were collected during the same lab visit as ground-truth motion capture
labels, but during a separate walking session without markers. The same protocol
was used; i.e., the patient was asked to walk back and forth along a 10 m path 3–5
times. The patient was recorded with a camera ~3–4 m from the line of walking of
the patient. The camera was operated by an engineer who rotated it along its
vertical axis to follow the patient. Subjects were asked to wear minimal comfortable
clothing.

Raw videos in MP4 format with Advanced Video Coding encoding41 were
collected at a resolution of 1280 × 960 and frame rate of 29.97 frames per second.
We downsampled videos to 640 × 480, imitating lower-end commodity cameras
and matching the resolution of the training data of OpenPose. For each trial we had
500 frames, corresponding to around 16 s of walking.

The study was approved by the University of Minnesota Institutional Review
Board (IRB). Patients, and guardians, where appropriate, gave informed written
consent at the clinical visit for their data to be included. In accordance with IRB
guidelines, all patient data were de-identified prior to any analysis.

Extracting keypoints with OpenPose. For each frame in a video, OpenPose
returned 2D image-plane coordinates of 25 keypoints together with prediction
confidence of each point for each detected person. Reported points were the
estimated (x, y) coordinates, in pixels, of the centers of the torso, nose, and pelvis,
and centers of the left and right shoulders, elbows, hands, hips, knees, ankles, heels,
first and fifth toes, ears, and eyes. Note that OpenPose explicitly distinguished right
and left keypoints.

We only analyzed videos with one person visible. After excluding 1443 cases
where OpenPose failed to detect patients or where more than one person was
visible, the dataset included 1792 videos of 1026 patients. For each video, we
worked with a 25-dimensional time series of keypoints across all frames. We
centered each univariate time series by subtracting the coordinates of the right hip
and scaled all values by dividing by the Euclidean distance between the right hip
and the right shoulder. We then smoothed the time series using a one-dimensional
unit-variance Gaussian filter. Since some of the downstream machine learning
algorithms do not accept missing data, we imputed missing observations using
linear interpolation.

For the clinical metrics where values for the right and left limb were computed
separately (GDI, knee flexion angle at maximum extension, and SEMLS), we used
the time series of keypoints (knee, ankle, heel, and first toe) of the given limb as
predictors. Other derived time series, such as the difference in x position between
the ipsilateral and contralateral ankle, or joint angles (for knee and ankle), were
also computed separately for each limb. We ensured that the training, validation,

and test sets contained datapoints coming from different patients. For clinical
metrics that were independent of side (speed, cadence, GMFCS), we trained using
keypoints from both limbs along with side-independent keypoints and each trial
was a single datapoint.

Patients walked back and forth starting with the camera facing their right side.
For consistency, and to simplify training, we mirrored the frames and the labels
when the patient reversed their walking direction and we kept track of this
orientation. As a result, all the walking was aligned so that the camera was always
pointing at the right side or a mirrored version of the left side.

Hand-engineered time series. We found two derived time series helpful for
improving the performance of the neural network model. The first time series was
the difference between the x-coordinates (horizontal image-plane coordinates) of
the left and right ankles throughout time, which approximated the 3D distance
between ankle centers. The second time series was the image-plane angle formed by
the ankle, knee, and hip keypoints. Specifically, we computed the angle between the
vector from the knee to the hip and the vector from the knee to the ankle. This
value approximated the true knee flexion angle.

Architecture and training of CNNs. CNNs are a type of neural network that use
parameter sharing and sparse connectivity to constrain the model architecture and
reduce the number of parameters that need to be learned12. In our case, the CNN
model is a parameterized mapping from a fixed-length time-series data (i.e., ana-
tomical keypoints) to an outcome metric (e.g., speed). The key advantage of CNNs
over classical machine learning models was the ability to build accurate models
without extensive feature engineering.

The key building block of our model was a 1-D convolutional layer. The input
to a 1-D convolutional layer consisted of a T ×D set of neurons, where T was the
number of points in the time dimension and D was the depth (in our case, the
dimension of the multivariate time-series input into the model). Each 1-D
convolutional layer learned the weights of a set of filters of a given length. For
instance, suppose we chose to learn filters of length F in our convolutional layer.
Each filter connected only the neurons in a local region of time (but extending
through the entire depth) to a given neuron in the output layer. Thus, each filter
consisted of FD+ 1 weights (we included the bias term here), so the total number
of parameters to an output layer of depth D2 was (FD+ 1)D2. Our model
architecture is illustrated in Fig. 6.

Each convolutional layer had 32 filters and a filter length of eight. We used the
rectified linear unit (ReLU), defined as f(x)=max(0, x), as the activation function
after each convolutional layer. After ReLU, we applied batch normalization
(empirically, we found this to have slightly better performance than applying batch
normalization before ReLU). We defined a k-convolution block as k 1D
convolution layers followed by a max pooling layer and a dropout layer with rate
0.5 (see Fig. 6). We used a mini batch size of 32 and RMSProp (implemented in
keras software; keras.io/optimizers) as the optimizer. We experimented with k ∈ {1,
2, 3}-convolution blocks to identify sufficient model complexity to capture higher
order relations in the time series. After extensive experimentation, we settled on an
architecture with k= 3.

After selecting the architecture, we did a random search on a small grid to tune
the initial learning rate of RMSProp and the learning rate decay schedule. We also
searched over different values of the L2 regularization weight (λ) to apply to the last
four convolutional layers. We applied early stopping to iterations of the random
search that had problems converging. The final optimal setting of parameters was
an initial learning rate of 10−3, decaying the learning rate by 20% every 10 epochs,
and setting λ= 3.16 × 103 for the L2 regularization. Regularization (both L2 and
dropout) is fundamental for our training procedure since our final CNN model has
47,840 trainable parameters, i.e., at the order of magnitude of the training sample.

Our input volume had dimension 124 × 12. The depth was only 12 because
preliminary analysis indicated that dropping several of the time series improved
performance. We used the same set of features for all models to further simplify
feature engineering. The features we used were the normalized (x, y) image-plane
coordinates of ankles, knees, hips, first (big) toes, projected angles of the ankle and
knee flexion, the distance between the first toe and ankle, and the distance between
left ankle and right ankle. Our interpretation of this finding was that some time
series, such as the x-coordinate of the left ear, were too noisy to be helpful.

We trained the CNN on 124-frame segments from the videos. We augmented
the time-series data using a method sometimes referred to as window slicing, which
allowed us to generate many training segments from each video. By covering a
variety of starting timepoints, this approach also made the model more robust to
variations in the initial frame. From each input time series, X, with length 500 in
the time dimension and an associated clinical metric (e.g., GDI), y, we extracted
overlapping segments of 124 frames in length, with each segment separated by 31
frames. Thus for a given datapoint (y, X), we constructed the segments (y, X[:, 0:
124]), (y, X[:, 31: 155]), …, (y, X[:, 372: 496]). Note that each video segment was
labeled with the same ground-truth clinical metric (y). We also dropped any
segments that had more than 25% of their data missing. For a given video Xj, we

use the notation X ið Þ
j , j= 1, 2, …, c(i) to refer to its derived segments, where 1 ≤ c

(i) ≤ 12 counts the number of segments that are in the dataset.
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To train the neural network models we used two loss functions: mean squared
error (for regression tasks) or cross-entropy (for classification tasks). The mean
squared error is the average squared difference between predicted and true labels.
The cross-entropy loss, L(y, p), is a distance between the true and predicted
distribution defined as

Lðy; pÞ ¼ �ðy logðpÞ þ ð1� yÞ logð1� pÞÞ; ð1Þ

where y is a true label and p is a predicted probability.
Since some videos had more segments in the training set than others (due to

different amounts of missing data), we slightly modified the mean squared error
loss function, MSE0 yi; ŷið Þ, so that videos with more available segments were not
overly emphasized during training:

MSE0 yi; ŷið Þ ¼ yi � ŷið Þ2=cðiÞ; ð2Þ

where yi is a true label, ŷi is a predicted label, and c(i) is the number of segments
available for the i-th video.

To get the final predicted gait metric for a given video, we averaged the
predicted values from the video segments. However, this averaging operation
introduced some bias towards video segments that appeared more often in training
(e.g., those in the middle of the video). We reduced this bias by fitting a linear
model on the training set, regressing true target values on predicted values. We
then used this same linear model to remove the bias of the validation set
predictions.

Ridge regression and random forest. We compared our deep learning model
with classical supervised learning models, including RR and RF. We chose to use
RR for its simplicity and its accompanying tools for interpretability and inference,
and RF for its robustness in covering nonlinear effects. Both RF and RR require
vectors of fixed length as input. The typical way to use these models in the context
of time-series data is to first extract high level characteristics of the time series, then
use them as features. In our work, we chose to compute the 10th, 25th, 50th, 75th,
and 90th percentiles, and the standard deviation of each of 12 univariate time series
used in CNNs. Note that for these methods, we used the entire 500-frame multi-
variate time series from each video rather than 124-frame segments as in
the CNNs.

RR is an example of penalized regression that combines L2 regularization with
ordinary least squares. It seeks to find weights β that minimize the cost function:

Xm

i¼1

yi � xTi β
� �2 þ α

Xp

j¼1

β2j ; ð3Þ

where xi are the input features, yi are the true labels, m is the number of
observations, and p is the number of input features.

One benefit of RR is that it allows us to trade-off between variance and bias;
lower values of α correspond to less regularization, hence greater variance and less
bias. The reverse is true for higher values of α.

The RF42 is a robust generalization of decision trees. A single decision tree
consists of a series of branches where a new observation is put through a series of
binary decisions (e.g., median ankle position <0.5 or ≥0.5). The leaves of the tree at
the end of each sequence of branches contain filtered training observations that are
then used to make a prediction on the new observation (e.g., using the mean value
of the filtered training observations). The RF is comprised of a set of decision trees;
for each decision tree in the forest, the variables used to split at each branch (e.g.,
median ankle position) are stochastically chosen, and the splitting thresholds (e.g.,
0.5) are determined accordingly. To build a forest, the user must select
hyperparameters, including the depth (i.e., number of sequential branches) of a
single tree d and total number of trees n. For inference on a new observation, RF
models use the average prediction from all trees. Trees are scale invariant and are
often a method of choice by practitioners due to their robustness and ability to
capture complex nonlinear relationships between the input features and the label to
be predicted43.

We conducted a grid search to tune hyperparameters for the RR and RF models.
Instead of doing k-fold cross validation, we used just one validation set to pick the
parameters. This was to keep the results consistent with those of the CNN, which
only used one validation set for computational reasons.

We found the best setting for the RF was n= 200, d = 10, and for the RR α= 0.
The fact that α= 0 worked best for the RR suggests that variance was not the main
bottleneck in the RR performance.

Evaluation. We split the dataset into training, validation, and test sets, such that
the test and validation sets contained 10% of all patients (i.e., 1091 patients in the
training set and 136 patients in each of the test and validation sets). We ensured
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Fig. 6 Convolutional neural network architecture. Our CNN is composed of four types of blocks. The convolutional block (ConvBlock) maps a multivariate
time series (w × d) into another multivariate time series (w × f) using f parameterized one-dimensional convolutions (d × s), i.e. sliding filters with learnable
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17807-z

8 NATURE COMMUNICATIONS |         (2020) 11:4054 | https://doi.org/10.1038/s41467-020-17807-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


that each patient’s videos were only included in one of the sets. For CNNs, after
performing window slicing, we ended up with 16,414, 1943, and 1983 segments in
the training, validation, and test sets, respectively.

For the regression tasks, we evaluated the goodness of fit for each model using
the correlation between true and predicted values in the test set. For the binary
classification task (surgery prediction), we used the Receiver Operating
Characteristic (ROC) curve to visualize the results and evaluated model
performance using the AUC. The ROC curve characterizes how a classifier’s true
positive rate varies with the false positive rate, and the AUC is the integral of the
ROC curve. For the multiclass classification task (GMFCS), we evaluated model
performance using the quadratic-weighted Cohen’s κ defined as

κ ¼ 1�
Pk

i¼1

Pk
j¼1 wijxij

Pk
i¼1

Pk
j¼1 wijmij

; ð4Þ

where wij, xij, and mij were weights, observed, and expected (under the null
hypothesis of independence) elements of confusion matrices, and k was the
number of classes. Quadratic-weighted Cohen’s κ measures disagreement between
the true label and predicted label, penalizing quadratically large errors. For ordinal
data, quadratic-weighted Cohen’s κ can be interpreted as a discrete version of the
normalized mean squared error.

To better understand properties of our predictions we used analysis of variance
methodology44. We observed that total variability of parameters across subjects and
trials can be decomposed to three components: patient variability, visit variability,
and remaining trial variability. If we define SS as a sum of squares of differences
between true values and predictions, one can show that it follows

SS ¼ SSP þ SSV þ SST ; ð5Þ
where SSP is patient-to-patient sum of squares and SSV is visit-to-visit
variability for each patient and, SST is trial-to-trial variability for each visit. To
assess performance of the model we compare the SS of our model with the SS of
the null model (population mean as a predictor). We refer to the ratio of the
two as the unexplained variance (or one minus the ratio as the variance
explained).

In our work, we were unable to assess SST since videos and ground-truth
measurements were collected in different trials. However, for most of the gait
parameters of interest SST is negligible. In fact, if it was large, it would make lab
measurements unreliable and such parameters wouldn’t be practically useful.

Our metrics based on analysis of variance ignore bias in predictions, so it was
important to explicitly check if predictions were unbiased. To that end, for each
model we tested if the mean of residuals is significantly different than 0. Each
p value was higher than 0.05, indicating there was no statistical evidence of bias at
the significance level 0.05. Given a relatively large number of subjects in our study,
this also corresponds to tight confidence intervals for the mean of residuals. This
reassures us that the bias term can be neglected in the analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Video data used in this study were not publicly available due to restrictions on sharing
patient health information. These data were processed by Gillette Specialty Healthcare to
a de-identified form using OpenPose software as described in the manuscript. The
processed de-identified dataset together with clinical variables used in the paper
associated with the processed datapoints, were shared by Gillette Specialty Healthcare
and are now publicly available at https://simtk.org/projects/video-gaitlab, https://doi.org/
10.18735/j0rz-0k12.

Code availability
We ran OpenPose on a desktop equipped with an NVIDIA Titan X GPU. All other
computing was done on a Google Cloud instance with 8 cores and 16 GB of RAM and
did not require GPU acceleration. We used scikit-learn (for training the RR and RF
models; scikit-learn.org) and keras (for training the CNN; keras.io). SciPy (scipy.org) was
also used for smoothing and imputing the time series. Scripts for training machine
learning models, the analysis of the results and code used for generating all figures are
available in our GitHub repository http://github.com/stanfordnmbl/mobile-gaitlab/.

Received: 27 January 2020; Accepted: 9 July 2020;

References
1. Hanakawa, T., Fukuyama, H., Katsumi, Y., Honda, M. & Shibasaki, H.

Enhanced lateral premotor activity during paradoxical gait in Parkinson’s
disease. Ann. Neurol. 45, 329–336 (1999).

2. Al-Zahrani, K. S. & Bakheit, A. M. O. A study of the gait characteristics of
patients with chronic osteoarthritis of the knee. Disabil. Rehabil. 24, 275–280
(2002).

3. von Schroeder, H. P., Coutts, R. D., Lyden, P. D., Billings, E. Jr & Nickel, V. L.
Gait parameters following stroke: a practical assessment. J. Rehabil. Res. Dev.
32, 25–31 (1995).

4. Gage, J. R., Schwartz, M. H., Koop, S. E. & Novacheck, T. F. The identification
and treatment of gait problems in cerebral palsy. (John Wiley & Sons, 2009).

5. Martin, C. L. et al. Gait and balance impairment in early multiple sclerosis in
the absence of clinical disability. Mult. Scler. 12, 620–628 (2006).

6. D’Angelo, M. G. et al. Gait pattern in Duchenne muscular dystrophy. Gait
Posture 29, 36–41 (2009).

7. Barton, G., Lisboa, P., Lees, A. & Attfield, S. Gait quality assessment using self-
organising artificial neural networks. Gait Posture 25, 374–379 (2007).

8. Hannink, J. et al. Sensor-based gait parameter extraction with deep
convolutional neural networks. IEEE J. Biomed. Health Inf. 21, 85–93 (2017).

9. Wahid, F., Begg, R. K., Hass, C. J., Halgamuge, S. & Ackland, D. C.
Classification of Parkinson’s disease gait using spatial-temporal gait features.
IEEE J. Biomed. Health Inf. 19, 1794–1802 (2015).

10. Xu et al. Accuracy of the microsoft kinectTM for measuring gait parameters
during treadmill walking. Gait Posture 42, 145–151 (2015).

11. Luo, Z. et al. Computer vision-based descriptive analytics of seniors’ daily
activities for long-term health monitoring. Mach. Learning Healthc. 2, 1–18
(2018).

12. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444
(2015).

13. Lin, T.-Y. et al. Microsoft COCO: common objects in context. Comput. Vis.
2014, 740–755 (2014).

14. Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime Multi-person 2D Pose
Estimation Using Part Affinity Fields. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), https://doi.org/10.1109/cvpr.2017.143
(2017).

15. Pishchulin, L. et al. DeepCut: Joint Subset Partition and Labeling for Multi
Person Pose Estimation. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), https://doi.org/10.1109/cvpr.2016.533 (2016).

16. Seethapathi, N., Wang, S., Saluja, R., Blohm, G. & Kording, K. P. Movement
science needs different pose tracking algorithms. Preprint at https://arxiv.org/
abs/1907.10226 (2019).

17. Sato, K., Nagashima, Y., Mano, T., Iwata, A. & Toda, T. Quantifying normal
and parkinsonian gait features from home movies: Practical application of a
deep learning–based 2D pose estimator. PLOS ONE 14, e0223549 (2019).

18. Kidziński, Ł., Delp, S. & Schwartz, M. Automatic real-time gait event detection
in children using deep neural networks. PLoS One 14, e0211466 (2019).

19. Galli, M., Cimolin, V., De Pandis, M. F., Schwartz, M. H. & Albertini, G. Use
of the Gait Deviation Index for the evaluation of patients with Parkinson’s
disease. J. Mot. Behav. 44, 161–167 (2012).

20. Bohnen, N. I. et al. Gait speed in Parkinson disease correlates with cholinergic
degeneration. Neurology 81, 1611–1616 (2013).

21. O’keeffe, S. T. et al. Gait disturbance in Alzheimer’s disease: a clinical study.
Age Ageing 25, 313–316 (1996).

22. Muir, S. W. et al. Gait assessment in mild cognitive impairment and
Alzheimer’s disease: the effect of dual-task challenges across the cognitive
spectrum. Gait Posture 35, 96–100 (2012).

23. Mündermann, A., Dyrby, C. O., Hurwitz, D. E., Sharma, L. & Andriacchi, T. P.
Potential strategies to reduce medial compartment loading in patients with
knee osteoarthritis of varying severity: reduced walking speed. Arthritis
Rheum. 50, 1172–1178 (2004).

24. Nadeau, S., Gravel, D., Arsenault, A. B. & Bourbonnais, D. Plantarflexor
weakness as a limiting factor of gait speed in stroke subjects and the
compensating role of hip flexors. Clin. Biomech. 14, 125–135 (1999).

25. Verghese, J. et al. Abnormality of gait as a predictor of non-Alzheimer’s
dementia. N. Engl. J. Med. 347, 1761–1768 (2002).

26. White, L. J. et al. Resistance training improves strength and functional
capacity in persons with multiple sclerosis. Mult. Scler. 10, 668–674 (2004).

27. Chia, K. & Sangeux, M. Quantifying sources of variability in gait analysis. Gait
Posture 56, 68–75 (2017).

28. Prosser, L. A., Lauer, R. T., VanSant, A. F., Barbe, M. F. & Lee, S. C. K.
Variability and symmetry of gait in early walkers with and without bilateral
cerebral palsy. Gait Posture 31, 522–526 (2010).

29. Schwartz, M. H. & Rozumalski, A. The Gait Deviation Index: a new
comprehensive index of gait pathology. Gait Posture 28, 351–357 (2008).

30. Palisano, R. et al. Development and reliability of a system to classify gross
motor function in children with cerebral palsy. Dev. Med. Child Neurol. 39,
214–223 (1997).

31. Rasmussen, H. M., Nielsen, D. B., Pedersen, N. W., Overgaard, S. &
Holsgaard-Larsen, A. Gait Deviation Index, Gait Profile Score and Gait
Variable Score in children with spastic cerebral palsy: Intra-rater reliability
and agreement across two repeated sessions. Gait Posture 42, 133–137 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17807-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4054 | https://doi.org/10.1038/s41467-020-17807-z | www.nature.com/naturecommunications 9

https://simtk.org/projects/video-gaitlab
https://doi.org/10.18735/j0rz-0k12
https://doi.org/10.18735/j0rz-0k12
http://github.com/stanfordnmbl/mobile-gaitlab/
https://doi.org/10.1109/cvpr.2017.143
https://doi.org/10.1109/cvpr.2016.533
https://arxiv.org/abs/1907.10226
https://arxiv.org/abs/1907.10226
www.nature.com/naturecommunications
www.nature.com/naturecommunications


32. Rackauskaite, G., Thorsen, P., Uldall, P. V. & Ostergaard, J. R. Reliability of
GMFCS family report questionnaire. Disabil. Rehabil. 34, 721–724 (2012).

33. McDowell, B. C., Kerr, C. & Parkes, J. Interobserver agreement of the Gross
Motor Function Classification System in an ambulant population of children
with cerebral palsy. Dev. Med. Child Neurol. 49, 528–533 (2007).

34. Böhm, H. & Döderlein, L. Gait asymmetries in children with cerebral palsy: do
they deteriorate with running? Gait Posture 35, 322–327 (2012).

35. Tedroff, K., Hägglund, G. & Miller, F. Long-term effects of selective dorsal
rhizotomy in children with cerebral palsy: a systematic review. Dev. Med.
Child Neurol. 62, 554–562 (2020).

36. Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P. & Savatier, X. A study of
vicon system positioning performance. Sensors 17, 1591 https://doi.org/
10.3390/s17071591 (2017).

37. Pinzone, O., Schwartz, M. H., Thomason, P. & Baker, R. The comparison of
normative reference data from different gait analysis services. Gait Posture 40,
286–290 (2014).

38. Kadaba, M. P., Ramakrishnan, H. K. & Wootten, M. E. Measurement of lower
extremity kinematics during level walking. J. Orthop. Res. 8, 383–392 (1990).

39. Davis, R. B., Õunpuu, S., Tyburski, D. & Gage, J. R. A gait analysis data
collection and reduction technique. Hum. Mov. Sci. 10, 575–587 (1991).

40. Schwartz, M. H., Trost, J. P. & Wervey, R. A. Measurement and management
of errors in quantitative gait data. Gait Posture 20, 196–203 (2004).

41. Sullivan, G. J., Topiwala, P. N. & Luthra, A. The H.264/AVC advanced video
coding standard: overview and introduction to the fidelity range extensions.
Appl. Digit. Image Process. https://doi.org/10.1117/12.564457. (2004).

42. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
43. Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning:

data mining, inference, and prediction. (Springer Science & Business Media,
2013).

44. Box, G. E. P. Some theorems on quadratic forms applied in the study of
analysis of variance problems, II. effects of inequality of variance and of
correlation between errors in the two-way classification. Ann. Math. Stat. 25,
484–498 (1954).

Acknowledgements
Our research was supported by the Mobilize Center, a National Institutes of Health
Big Data to Knowledge (BD2K) Center of Excellence through Grant U54EB020405,
and RESTORE Center, a National Institutes of Health Center through Grant
P2CHD10191301.

Author contributions
Conceptualization: L.K., S.L.D., M.H.S. Methodology: L.K., B.Y., J.L.H., A.R., S.L.D.,
M.H.S. Data curation: L.K., B.Y., A.R., M.H.S. Analysis: L.K., B.Y., J.L.H. Writing: L.K.,
B.Y., J.L.H., A.R., S.L.D., M.H.S. Funding acquisition: S.L.D., M.H.S.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-17807-z.

Correspondence and requests for materials should be addressed to Ł.Kńs. or M.H.S.

Peer review information Nature Communications thanks Elyse Passmore, Reinald
Brunner and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S.; foreign
copyright protection may apply 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17807-z

10 NATURE COMMUNICATIONS |         (2020) 11:4054 | https://doi.org/10.1038/s41467-020-17807-z | www.nature.com/naturecommunications

https://doi.org/10.3390/s17071591
https://doi.org/10.3390/s17071591
https://doi.org/10.1117/12.564457
https://doi.org/10.1038/s41467-020-17807-z
https://doi.org/10.1038/s41467-020-17807-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Deep neural networks enable quantitative movement analysis using single-camera videos
	Results
	Predicting common gait metrics
	Predicting comprehensive clinical gait measures
	Predicting longitudinal gait changes and surgical events

	Discussion
	Methods
	Dataset
	Extracting keypoints with OpenPose
	Hand-engineered time series
	Architecture and training of CNNs
	Ridge regression and random forest
	Evaluation

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




