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The year 2019 brought advances in our
understanding of pulmonary fibrosis,
including disease burden, elucidation of
pathogenic drivers of fibrogenesis and
potential therapeutic targets, identification
of outcome predictors, application of
molecular imaging to fibrosis, and
demonstration of efficacy of antifibrotic
therapy in progressive non–idiopathic
pulmonary fibrosis (IPF) interstitial lung
diseases (ILDs). Here, we review critical
research in the field of pulmonary fibrosis
published over the past year in the
American Journal of Respiratory and
Critical Care Medicine, the American
Journal of Respiratory Cell and Molecular
Biology, and AnnalsATS and highlight
notable findings published in other major
journals. We acknowledge that not every
major advancement could be captured in
this update.

Morbidity and Mortality

Pulmonary fibrosis remains a highly morbid
and fatal pathological response. Mortality
rates for IPF are increasing as demonstrated
using data from the United States National
Vital Statistics System from 2000 to 2017
(1). During this time, age-adjusted
mortality related to IPF increased by 9.85%
(from 18.81 per 100,000 persons in 2000 to
20.66 in 2017). Mortality rates were higher
in men and increased with age. Similarly,

data from the Office of National Statistics
were used to quantify the number of IPF
deaths in the United Kingdom from 1979 to
2016 (2). The age-standardized mortality
rates attributed to what the authors define
as “IPF clinical syndrome” increased
substantially from 1.66 per 100,000 person-
years in 1979 to 8.29 in 2016. Again,
mortality rates were highest in males and
those with advanced age. Using data from
the National Center of Health Statistics,
the number of deaths attributed to
hypersensitivity pneumonitis (HP) in the
United States, including deaths in which
HP was designated as a contributor to the
cause of death, increased significantly from
1988 to 2016, reaching an age-adjusted
mortality rate of 0.68 per 1,000,000 persons
in 2016 from 0.12 in 1988 (3). Despite
limitations in using population-level data
for ILD-attributable mortality, these results
demonstrate a concerning rise in mortality
rates associated with pulmonary fibrosis.

The impact of ILD in patients with
systemic sclerosis (SSc) was assessed in a
nationwide cohort of 815 patients in
Norway (4). Of the 650 patients with SSc
with a baseline high-resolution computed
tomography (HRCT) exam, half had
evidence of ILD. The presence of ILD at
baseline was associated with decreased
survival even in patients with normal
pulmonary function tests. These data
suggest a potential role for HRCT imaging
as an adjunct to pulmonary function tests

performed at the time of SSc diagnosis
given that the presence of ILD on HRCT
imaging confers additional prognostic
information.

Pathogenesis

Genetics
IPF likely develops from a multifaceted
interaction of genetic and environmental
risk factors, aging-related mechanisms, and
epigenetic profibrotic reprogramming (5, 6).
In a large study of IPF that evaluated 3,624
patients and 4,442 control subjects by using
deep targeted resequencing, the strongest
common risk variant was the presence of
the MUC5B promoter polymorphism
rs35705950 (7). In addition, several rare
gene variations that increase the risk for
IPF were identified for the first time,
including in FAM13A. Variants in FAM13A
have been demonstrated in chronic
obstructive pulmonary disease (8), and,
notably, the C allele at rs2609260 has been
shown to confer protection for chronic
obstructive pulmonary disease (9) but
increased risk for IPF (7), highlighting the
differences in gene-associated risk between
both diseases (10). A homozygous PARN
mutation that cosegregates with familial
IPF was described, furthering the
connection between pulmonary fibrosis and
abnormal telomere shortening (11). A
subset of patients with chronic HP were
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found to harbor rare protein-altering
variants in certain telomere-related genes
(such as TERT, RTEL1, and PARN), the
presence of which was associated with
decreased transplant-free survival and short
telomere length (12). Thus, heterozygous
mutations related to telomere biology and
abnormal shortening of telomeres are not
exclusive to IPF and occur in several ILDs
(13, 14).

In a genome-wide association study,
interstitial lung abnormalities (ILAs) were
associated with gene variants linked with IPF
in prior studies, including MUC5B, DPP9,
DSP, FAM13A, and IVD (15). Hermansky-
Pudlak syndrome (HPS) is an autosomal-
recessive disease with a high prevalence of
pulmonary fibrosis in patients with 3 of the
10 identified HPS genes (16). Interestingly,
rare missense mutations in HPS1 or HPS4
and a novel HPS4 mutation with a
frameshift were identified in several patients
with familial pulmonary fibrosis (17).

Single-Cell Sequencing
Single-cell RNA sequencing has been
recently used to examine the individual
transcriptional heterogeneity in cell
populations in normal and IPF lungs,
revealing several abnormal epithelial cell
phenotypes (6, 18). Interestingly, IPF and
non–small cell lung cancer often occurring
in the same individual share some common
signatures of dysregulated genes associated
with the lung epithelium (19, 20). After
performing a gene set enrichment analysis
of IPF and non–small cell lung cancer data
sets, the oncogene ECT2 (epithelial cell
transforming sequence 2), was found to
be strongly upregulated in both diseases
(19). Increased expression of ECT2 was
associated with increased proliferation of
alveolar epithelial type II (ATII) cells from
bleomycin-treated mice, and knockdown of
Ect2 decreased proliferation of ATII cells as
well as collagen type I expression in ATII
cells. These findings identify a novel and
potential therapeutic target related to
aberrant lung epithelium, a critical driver of
IPF pathogenesis (5, 6). A single-cell atlas
of human pulmonary fibrosis confirmed
the heterogeneity of epithelial cells and,
importantly, identified a novel profibrotic
population of alveolar macrophages in
patients with pulmonary fibrosis (21).

Cellular and Molecular Mechanisms
Recent studies suggest a potential role of
macrophages in the progression of

pulmonary fibrosis (21–26). Analysis of
BAL from patients with IPF demonstrated
an increase in alveolar macrophages that
lacked the transferrin receptor 1 (CD71
[cluster of differentiation 71]) compared
with healthy volunteers (22). Compared
with CD711 macrophages, CD712

macrophages had a reduced phagocytic
capacity and an upregulation of genes
associated with fibrosis. Increased
expansion of the CD712 macrophage
population was associated with shorter
survival in IPF. Likewise, TIM-3 (T-cell
immunoglobulin domain and mucin
domain-3), an important regulator of
macrophage function, is upregulated in
IPF (23). TIM-3 upregulation caused
macrophages to increase secretion of TGF-
b1 and IL-10 and resulted in increased
bleomycin-induced lung fibrosis. Also, in
IPF lungs, IL-9 was highly expressed in
CD681 alveolar macrophages, with the IL-9
receptor being expressed by epithelial cells
(24, 25). Interestingly, in a silica-induced
lung fibrosis model, blocking IL-9 reduced
the degree of lung inflammation and
fibrosis (24). In a sarcoidosis mouse model,
macrophage-specific PPARg deficiency
increased macrophage response and
worsened pulmonary fibrosis (26).

Disease in any tissue may affect the
bone marrow (BM), which may impact the
behavior of the disease in the originally
affected organ, and this concept was
evaluated in context of experimental lung
fibrosis (27). Bleomycin-induced lung
injury caused significant alterations in BM
cells, which enhanced the fibrotic response
to a subsequent lung insult, central to
which was the BM monocytic population.
Mechanistically, the profibrotic effect was
associated with the upregulation of B7H3,
IL-33/ST2 signaling activation, and a Th2-
skewed phenotype.

IPF occurs more commonly in men,
although the reasons are unclear. The ratio
of the estrogen receptors ERa:ERb is critical
for epithelial cell function, and studies
have shown that the estrogen-mediated
protection against certain conditions is
mediated through ERb (28). Recently, it
was shown that the receptor ERa is
increased in male IPF lungs and in aged
male mice injured with bleomycin,
resulting in enhanced estrogen receptor
activity and upregulation of profibrotic
pathways (29). Mechanistically, let-7a and
-7d microRNAs, which target this estrogen
receptor, were decreased in IPF lungs, as

previously demonstrated (30). Recent
evidence indicates that long noncoding
RNAs may also regulate protein-coding
gene expression. In this context, a long
noncoding RNA named DNM3OS was
found to be a fibroblast-specific
downstream effector of TGF-b signaling,
and it promoted the development of
fibrosis in bleomycin-injured mice (31).
This effect was associated with profibrotic
microRNAs, which enhanced fibrogenesis
via a caveolin-dependent mechanism. P311,
an RNA-binding protein involved in TGF-
b1, -b2, and -b3 translation, was expressed
in hyperplastic ATII cells and activated
fibroblasts from IPF lungs (32, 33). P311
was also expressed in experimental lung
fibrosis, and importantly, P311-knockout
mice showed an attenuated fibrotic
response to bleomycin injury (32). More
studies related to noncoding RNA are
necessary to understand the role of these
post-transcriptional regulators in
pulmonary fibrosis.

Strong evidence supports the notion
that IPF is an epithelial-driven disease
involving both alveolar and airway
epithelial cells (5, 6, 18). Gene and protein
expression analyses of IPF tissue and BAL
demonstrated increased airway basal cells
(34). A BAL transcriptional signature,
containing many airway basal cell–derived
genes, predicted mortality in IPF across
three cohorts. Differentiation of fibroblasts
to myofibroblasts is critical for excessive
extracellular matrix accumulation. Recently,
it was demonstrated that sustained
phosphorylation of Smad2 in response to
TGF-b is crucial for myofibroblast
differentiation (35). Though rare, ILD can
affect children. Aptamer-based proteomics
was performed on BAL from patients with
children’s interstitial and diffuse lung disease
(36). This demonstrated distinct aptamer
signatures in subtypes of children’s
interstitial and diffuse lung disease
compared with control subjects, providing
potentially important information on the
mechanisms underlying these rare diseases.

Therapeutic Targeting of Fibrosis
Although prostaglandin E2 (PGE2) is
known to have antifibrotic effects,
fibroblasts from patients with pulmonary
fibrosis have demonstrated resistance
to PGE2 administration; however,
targeting the prostacyclin receptor may be
a potential therapeutic alternative (37, 38).
ACT-333679, a prostacyclin receptor selective
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agonist, inhibited fibroblast differentiation
and reduced fibroblast proliferation,
collagen synthesis, and the secretion of
several profibrotic mediators, and central to
its effect was inhibition of YAP/TAZ,
transcriptional regulators crucial for the
expression of many profibrotic genes (39).
Fibroblasts were discovered to secrete PGE2
in extracellular vesicles (EVs), which
can inhibit their differentiation to
myofibroblasts (40, 41). PGD2 also plays a
role in the resolution of lung inflammation
and suppression of fibrosis during
bleomycin-induced lung injury, likely
through cells (especially gdT lymphocytes)
expressing the receptor CRTH2
(chemoattractant receptor homologous
with T-helper cell type 2 cells) (42).
Migration of fibroblasts is critical for the
expansion of the fibroblast/myofibroblast
population. Recently, it was demonstrated
that EVs derived from fibroblasts increased
the invasiveness of fibroblasts, essential to
which was the presence of fibronectin on
the EV surface (43). Targeting a ligand of
fibronectin, a5b1 integrin, by using an
a5b1 monoclonal antibody inhibited
fibroblast invasion (43, 44).

Likewise, MMI-0100, a synthetic small
peptide that inhibits the activity of MK2
(mitogen-activated protein kinase-activated
protein kinase 2) reduced invasion of IPF-
derived lung fibroblasts and the degree of
bleomycin-induced lung fibrosis (45). TAS-
115 inhibits multiple tyrosine kinases
and was shown to suppress PDGFR
phosphorylation, thereby decreasing
proliferation and migration of human
fibroblasts, more effectively than nintedanib
and to mitigate the degree of fibrosis in the
bleomycin-model (46, 47). An open-label,
phase II trial (JapicCTI-183898) is ongoing
to test the safety and efficacy of TAS-115 in
patients with IPF. IL-15 deficiency in mice
resulted in increased accumulation
of collagen in the lungs (48). In a mouse
model of allergen-induced bronchial
fibrosis, administration of recombinant
IL-15 or the use of an IL-15 agonist
(ALT-803) resulted in decreased IL-13,
TGF-b1, a-SMA, and collagen in the lung,
suggesting a potent antifibrotic effect of IL-15.

Cellular senescence is a key pathogenic
mechanism in IPF epithelial cells and
fibroblasts (49, 50). Administration of
quercetin, a senolytic drug, to human lung
fibroblasts rendered the fibroblasts more
susceptible to death ligand-mediated
apoptosis through decreased AKT

activation as well as increased expression
of FasL and caveolin-1 receptors (51, 52).
In aged mice treated with bleomycin,
administration of quercetin starting at
7 days attenuated the development of
pulmonary fibrosis (51). A phase 1 study of
administration of dasatinib and quercetin
as senolytic therapy in IPF has been
completed (53). Undoubtedly, additional
translational studies are needed before
potentially reaching the clinical arena.

Endoplasmic Reticulum Stress,
Proteostasis, and Metabolic
Dysfunction
Silicosis is an important fibrotic and usually
progressive occupational lung disease.
PPP1R13B, a member of the apoptosis-
stimulating protein of the p53 family, is
upregulated in lung tissues of patients with
silicosis and in fibroblasts after silicon
dioxide (SiO2) stimulation (54).
Mechanistically, upregulation of PPP1R13B
in SiO2-stimulated cells seemed to associate
with the downregulation of a circular RNA,
circ-012091, a noncoding RNA. Fibroblasts
stimulated by SiO2 and transfected with
PPP1R13B clustered regularly interspaced
short palindromic repeats (CRISPR) ACT
plasmid displayed increased cell migration
and proliferation, likely mediated by
endoplasmic reticulum (ER) stress and
autophagy. Administration of a high-fat
diet rich in saturated fatty acids, including
palmitic acid, resulted in increased
epithelial cell apoptosis and ER stress and
increased fibrosis in lungs of bleomycin-
treated mice compared with mice receiving
a standard diet (55, 56). Expression of
mutant proteins, viral infections, reactive
oxygen species, and cigarette smoke cause
ER stress and have been linked to fibrosis
through apoptotic cell death, activation and
differentiation of fibroblasts, and epithelial–
mesenchymal transition (57). Thus,
targeting ER stress is a potential therapeutic
avenue for pulmonary fibrosis (58, 59).

Given the contribution of MUC5B
promoter variant (rs35705950) to the risk
of developing different ILDs, elucidating
the pathways causing increased MUC5B
production and its effect on lung
architecture is critical (60). In this context,
it was revealed that injury causes ER stress
and activation of the stress sensor ERN2
(ER-to-nucleus signaling 2), and then, the
spliced XBP1 (X-box–binding protein 1)
increases transcription of both unfolded
protein response genes and MUC5B (61).

Supporting the pathogenic role of
dysfunctional proteostasis, expression of
HSP 70 (heat shock protein 70) was
decreased in lung tissue and fibroblasts
from patients with pulmonary fibrosis
compared with donors without fibrosis
(62, 63). Mice that had a deletion of the
inducible form of HSP 70 (Hsp 72)
developed increased lung fibrosis in
response to bleomycin administration
compared with wild-type mice (62).

Glutaminolysis is the conversion of
glutamine to glutamate by GLS
(glutaminase). Recently, several studies
investigated the putative role of this critical
metabolic process in lung fibrosis.
Glutaminolysis contributed to the resistance
of IPF lung fibroblasts to apoptosis though
upregulation of XIAP and survivin, and
central to this process is the role of
demethylase JMJD3 (64, 65). Gls1 was
upregulated in fibroblasts from the lungs of
fibrotic mice, and conditional knockout of
Gls1 within fibroblasts decreased the degree
of fibrosis resultant from bleomycin
injury (66). Administration of CB-839,
an inhibitor of Gls1, attenuated the
development of pulmonary fibrosis in two
mouse models. Finally, it was demonstrated
that glutamine metabolism in fibroblasts is
essential for amino acid synthesis, including
glycine and proline, which is necessary
for myofibroblast differentiation and the
production of collagen protein (67, 68).
These investigations open the window
for further investigations testing novel
therapeutic approaches related to
metabolism dysfunction to inhibit the
development or progression of pulmonary
fibrosis (64–69).

Lung Organoids
Recently developed three-dimensional
organoids have arisen as important tools to
understand cell–cell interactions and self-
organization and for modeling healthy and
disease processes. A nascent organoid
model that contained epithelial and
mesenchymal cells from mouse and human
lungs revealed that normal lung
epithelium can suppress key functions
of lung fibroblasts through the bone
morphogenetic protein pathway (70). The
three-dimensional organoid model allowed
for important discoveries not available from
two-dimensional culture, such as the
inhibitory effect of epithelial cells on
mesenchymal activation (71), a process that
is likely lost during the development of IPF.

PULMONARY, SLEEP, AND CRITICAL CARE UPDATE

502 American Journal of Respiratory and Critical Care Medicine Volume 202 Number 4 | August 15 2020



Microbiome
There has been increasing interest in the
role of the microbiome in IPF; however,
questions remain as to whether lung
dysbiosis in IPF is in itself pathogenic or a
consequence of disease and the resultant
structural alterations. In BAL samples from
patients with IPF enrolled in the COMET
(Correlating Outcomes with Biochemical
Markers to Estimate Time-Progression in
Idiopathic Pulmonary Fibrosis) study, the
degree of bacterial burden was associated
with disease progression, with the greatest
bacterial burden having the highest risk for
IPF progression (72). Decreased bacterial
diversity was associated with higher levels
of BAL-measured growth factors and
cytokines, such as G-CSF, VEGF, IL-1Ra,
IL-1b, and CXCL8. Alterations in the lung
microbiome were seen with bleomycin-
induced lung injury and subsequent
fibrosis. Notably, bleomycin-treated germ-
free mice had improved mortality but no
reduction in the degree of pulmonary
fibrosis compared with non–germ-free
bleomycin-treated mice. BAL samples from
patients with IPF enrolled in the COMET
study were also used to assess differences in
lung microbiota between patients with IPF
based on the presence and absence of
honeycombing on HRCT imaging (73).
Despite similarities in the lung microbiota
between the two groups, differences were
detected in community composition;
however, significance was lost when
adjusting for potential confounders.
Notably, the bacterial burden did not
differ between groups.

Diagnosis and
Prognostication

Diagnosis
ILD diagnosis is an important area that
continues to evolve. A modified Delphi
process called convergence of opinion on
recommendations and evidence (CORE)
has been proposed as a method of producing
guideline-type recommendations for certain
clinical questions without necessitating a
systematic review (74). When comparing
the CORE process with the Institute of
Medicine process for the 2018 IPF clinical
practice guidelines (75), the CORE and
Institute of Medicine processes resulted in
concordant recommendations for 9 out of
the 10 guideline questions and concordant

strength of recommendation for 7 of the 8
(88%) graded recommendations; however,
agreement regarding the quality of evidence
was poor (76).

The current gold standard for ILD
diagnosis is a multidisciplinary discussion
(MDD) (77). However, access to such
expertise is typically limited to large,
specialized centers. In a retrospective cross-
sectional study, remote access to an MDD
frequently led to a change in ILD diagnosis
and management (78). Though the routine
use of a remote MDD requires further
study and validation, this study supports its
feasibility with the potential to address
important gaps in patient access to
specialized ILD care.

Diagnostic likelihood has been
proposed as part of the framework for ILD
diagnosis (79). Sixty ILD cases were
evaluated independently by 404 physicians
to determine how the degree of diagnostic
likelihood for IPF diagnosis affected
management decisions (80). For cases in
which a provisional diagnosis of IPF was
given with high confidence (consistent with
a 70–89% likelihood of IPF), 63% of
physicians would prescribe antifibrotic
therapy without recommending surgical
lung biopsy (SLB). SLB was most often
requested for provisional low-confidence
IPF diagnoses, but notable was the poor
agreement among physicians in the
decision to pursue biopsy.

Lung Biopsy
There has been growing interest in
transbronchial lung cryobiopsy (TBLC) as a
method of tissue sampling in ILD, yet few
studies have addressed the accuracy of
TBLC-obtained histology compared with
the current histopathological gold standard,
which includes SLB-obtained samples
reviewed in an MDD. In a two-center
prospective study of 21 patients with
nondefinitive ILD pattern, all of whom
underwent sequential TBLC and SLB with
subsequent review in multidisciplinary
assessment, TBLC and SLB histologic
diagnoses were fully concordant in only 8 of
21 cases (38%) (81). Percentage agreement
with final multidisciplinary assessment
diagnosis was higher for SLB (62%) than
TBLC (48%). The multicenter Australian
COLDICE (Cryobiopsy versus Open Lung
Biopsy in the Diagnosis of Interstitial Lung
Disease Alliance) trial further addressed
this issue of sampling accuracy in 65
patients with ILD undergoing concurrent

TBLC and SLB (82). Samples were reviewed
by three expert pathologists aiming to
achieve consensus and then blindly
reviewed within the context of an MDD to
establish clinical diagnoses. Histological
agreement between TBLC and SLB was
high at 70.8%, and diagnostic agreement at
MDD was 76.9%. These data suggest a
potential role of TBLC in the pathologic
evaluation of ILD.

A multicenter prospective study of 237
patients with ILD compared histological
diagnoses to those obtained using histology
plus a molecular classifier, developed through
machine learning (83). The classifier
identified a usual interstitial pneumonia
(UIP) pattern, with 88% specificity, 70%
sensitivity, and 86% agreement between
classifier-based and histopathology-based
clinical diagnoses, and increased diagnostic
confidence for IPF. The molecular classifier
is a potential diagnostic tool for ILD;
however, further validation is needed before
its widespread use.

Imaging
Molecular imaging enables noninvasive
visualization and quantification of
molecular processes and holds potential for
imaging of fibrosis (84). The type I
collagen–targeted positron emission
technology probe, 68Ga-CBP8 (85), was
used in humans for the first time (86).
When compared with the lungs of healthy
volunteers, patients with IPF had an
increased lung positron emission
technology signal consistent with increased
collagen deposition. Notably, areas of high
signal were not limited to regions of known
fibrosis but also occurred in lung areas
that appeared “normal” on computed
tomography (CT) imaging, suggesting that
this probe may be sensitive to detecting
active fibrosis not apparent on CT imaging.

Using three cohorts of individuals with
ILAs and one cohort of patients with IPF,
airway wall thickness (AWT) was measured
by using chest CT imaging (87). AWT was
increased in patients with ILAs and IPF
compared with those without ILAs, across
all cohorts, after adjusting for important
confounders. These findings are intriguing,
raising the possibility that increased AWT
may be a marker of early ILD and lend
support to the hypothesis that the
pathogenic beginnings of ILD may involve
the airways (88); however, more research is
needed to determine the significance of
these findings.
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Prognostication
Identifying clinical predictors to reliably
identify those patients with ILD at increased
risk for mortality and disease progression
remains a challenge. There is increased need
for risk prediction models to identify
patients at greatest risk for progressive
fibrosing ILD given recent evidence
supporting antifibrotic therapy in these
patients (89). A multicenter observational
cohort study of 1,330 patients with ILD
evaluated the association between CT
honeycombing and all-cause mortality (90),
finding that patients with CT honeycombing
had a shorter survival time compared with
those without honeycombing. In a separate
study, both a UIP pattern and a probable
UIP pattern were associated with increased
mortality as compared with an indeterminate
for UIP pattern (91).

Interestingly, the presence of mediastinal
lymph node enlargement (>10 mm) in
patients with ILD was associated with
worse transplant-free survival with findings
replicated in three cohorts (92). Similarly, an
elevated absolute peripheral monocyte count
(>0.95 K/ml) was associated with reduced
survival in IPF across several cohorts (93).
Though both potential biomarkers need
further study, they are examples of simple
measurements that could easily be
incorporated into clinical practice to provide
individual prognostic information.

Treatment

Although nintedanib reduces the rate of
disease progression in IPF (94), it was
unknown whether it would show similar
efficacy in other types of ILD. In the
SENSCIS (Safety and Efficacy of
Nintedanib in Systemic Sclerosis) trial,
patients with SSc-associated ILD were
randomized to receive nintedanib or
placebo (95). Almost half of enrolled
patients were concurrently receiving
mycophenolate mofetil. Nintedanib
reduced the rate of decline in FVC over 52
weeks compared with placebo (252.4 ml

vs. 293.3 ml; 95% confidence interval for
the between-group difference, 2.9–79.0 ml;
P= 0.04). The effect of nintedanib was
also investigated in non-IPF progressive
fibrosing ILD. Use of nintedanib reduced
annual rate of decline in FVC by 107 ml
(280.8 ml with nintedanib vs. 2187.8 ml
with placebo; 95% confidence interval for
the between-group difference, 65.4–148.5
ml; P, 0.001) (89), similar to the
magnitude of difference seen in IPF (94).
These data support the efficacy of
nintedanib across several fibrotic ILD
subtypes. Lastly, prespecified post hoc
analyses of the INSTAGE trial (96) revealed
no difference in the degree of change
in FVC and St. George’s Respiratory
Questionnaire score with nintedanib plus
sildenafil or nintedanib plus placebo based
on the presence or absence of right heart
dysfunction (97).

U.S. insurance database information
was used to perform a retrospective matched
cohort study comparing clinical outcomes of
patients with IPF treated with pirfenidone
or nintedanib with patients with IPF not
receiving either therapy (98). Those
receiving antifibrotic therapy had a lower
risk of both all-cause mortality and all-
cause hospitalizations. Of note, the
difference in all-cause mortality between
the treated and nontreated groups was lost
at 2 years for reasons that are unclear and
warrant further exploration.

The treatment landscape of IPF
changed dramatically with the results
of the PANTHER-IPF (Evaluating the
Effectiveness of Prednisone, Azathioprine,
and N-acetylcysteine in Patients with IPF)
study, demonstrating that use of
prednisone, azathioprine, and N-
acetylcysteine in IPF resulted in increased
mortality and hospitalizations compared
with placebo (99) for reasons that have
remained only speculative until now.
Measurement of peripheral blood leukocyte
telomere length was performed on DNA
from patients enrolled in the PANTHER-
IPF study (100). Leukocyte telomere length

,10th percentile was associated with a
lower composite endpoint-free survival
with prednisone, azathioprine, and N-
acetylcysteine exposure compared with
placebo, with similar findings replicated
in two additional IPF cohorts receiving
immunosuppressive therapy. These results
suggest a harmful interaction between
the presence of short telomeres and
immunosuppression use in IPF and may
have treatment implications for patients
with short telomeres and other forms of
ILD.

Patient Education

YouTube is commonly used to disseminate
health information targeted to patients;
however, there has been little formal
evaluation of content quality to date (101).
The quality and content of 102
patient-directed YouTube videos were
systematically evaluated as a source
of information on IPF (102). The
information provided was often
incomplete and inaccurate, with almost
one out of every five videos promoting
nonrecommended and/or harmful
therapies. Especially concerning was the
higher viewership metrics seen for
videos that endorsed nonrecommended
treatments, highlighting the need for IPF
stakeholders to take an active role
in ensuring the reliability of health
information disseminated by social media
platforms.

These works from 2019 highlight the
complex pathobiology of fibrosis, the value
of interdisciplinary research, and the
increasing clinical significance of pulmonary
fibrosis. The advancements summarized
herein are encouraging and reflect
continued progress in characterizing the
risk factors, pathogenesis, and outcomes
associated with fibrotic lung disease. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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