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a b s t r a c t

Understanding the outbreak dynamics of COVID-19 through the lens of mathematical models is an
elusive but significant goal. Within only half a year, the COVID-19 pandemic has resulted in more than
19 million reported cases across 188 countries with more than 700,000 deaths worldwide. Unlike any
other disease in history, COVID-19 has generated an unprecedented volume of data, well documented,
continuously updated, and broadly available to the general public. Yet, the precise role of mathematical
modeling in providing quantitative insight into the COVID-19 pandemic remains a topic of ongoing
debate. Here we discuss the lessons learned from six month of modeling COVID-19. We highlight the
early success of classical models for infectious diseases and show why these models fail to predict
the current outbreak dynamics of COVID-19. We illustrate how data-driven modeling can integrate
classical epidemiology modeling and machine learning to infer critical disease parameters—in real
time—from reported case data to make informed predictions and guide political decision making.
We critically discuss questions that these models can and cannot answer and showcase controversial
decisions around the early outbreak dynamics, outbreak control, and exit strategies. We anticipate that
this summary will stimulate discussion within the modeling community and help provide guidelines
for robust mathematical models to understand and manage the COVID-19 pandemic. EML webinar
speakers, videos, and overviews are updated at https://imechanica.org/node/24098.
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‘‘The most astonishing thing about the pandemic was the com-
plete mystery which surrounded it’’ [The Lessons of the Pandemic,
G.A. Soper, 1919].

Motivation

Would you take a measles vaccine to protect yourself against
COVID-19? Most likely not. Why then, should we trust mod-
els that were initially designed for the measles to predict the
dynamics of COVID-19?

In the early stages of the COVID-19 pandemic, under an enor-
mous pressure to deliver results, the obvious solution seemed to
be to recycle existing infectious disease models [1] and adapt
them to simulate the outbreak dynamics of COVID-19 [2]. In
retrospect, this was an obvious mistake. Many elements of the
current pandemic—although similar at first sight—are inherently
different from infectious diseases early in the early 20th century
[3]: We now have a longer life expectancy, we are more globally
connected, and we travel more; but we also have better access
to hygiene, to health care, and to massive amounts of data about
the disease.

During the early onset of the outbreak, all eyes were on
mathematical modeling with the general expectation that COVID-
19 models could precisely predict the trajectory of the pandemic
[4]. Mathematical modeling rapidly became front and center to
understanding the exponential increase of infections, the short-
age of ventilators, and the limited capacity of hospital beds—too
rapidly as we now know. Bold and catastrophic predictions not
only initiated a massive press coverage, but also a broad anxiety
in the general population. However, within only a few weeks,
the vastly different predictions and conflicting conclusions began
to create the impression that all mathematical models are in
generally unreliable and inherently wrong [5]. While the failure
of COVID-19 modeling—often by an order of magnitude or more—
was devastating for policymakers and public health practitioners,
initial mistakes are not new to the modeling community where
an iterative cycle of prediction, failure, and redesign is common
standard and best practice [6]. However, the successful use of
mathematical models implies to set the expectations right [7].
Understanding what models can and cannot predict is critical to
the Art of Modeling.

Two classes of models have been proposed to understand the
outbreak dynamics of COVID-19, statistic and mechanistic models
[5]. Purely statistic models use machine learning or regression
to analyze massive amounts of data and project the number of
infections into the future [8]. Since purely statistic models do
not include any disease specific information, their forecasts are
reliable only within a short time window. Nonetheless, statisti-
cal modeling can be useful, for example, to understand how to
allocate resources or make rapid short-term recommendations.
Mechanistic models simulate the outbreak through interacting
disease mechanisms by using local nonlinear population dynam-
ics and global mixing of populations [9]. These models can include
disease specific information and potentially make long-term pre-
dictions about the outcome of a pandemic. Mechanistic modeling
can be useful to explore how the pandemic would change under
various assumptions and political interventions. When selecting
between statistic and mechanistic models, it is critical to know
upfront which questions the model should address [7].

Two interacting features determine the outbreak dynamics
of the COVID-19 pandemic: the local epidemiology of the dis-
ease and the global mobility of affected individuals [10]. For
coronavirus diseases, the local epidemiology is defined by an ex-
ponential growth of the outbreak, where the number of new cases
depends exponentially on the growth rate [2]. From an outbreak
dynamics perspective, this implies that the outbreak behaves
like a chaotic system for which even small inaccuracies in the
prediction can trigger large changes in the number of cases. From
an outbreak control perspective, small changes in intervention
can alter the current growth rate and convert the dynamics from
exponential growth to exponential decay or vice versa [7]. To
understand the vulnerability of the model to these small changes,
especially in view of the varying reporting practices of the COVID-
19 case data, sensitivity analysis and quantifying uncertainty have
become critical elements of robust predictive modeling [11,12].
A promising technology that integrates statistic and mechanistic
approaches and can inherently quantify model uncertainties is
data-driven modeling. Throughout the past months, several re-
search groups have started to integrate classical epidemiology
models and machine learning to infer critical disease param-
eters from reported case data and make informed predictions
about outbreak dynamics and outbreak control [11,13–17]. In the
reminder of this work, we share the lessons we have learned
throughout this process, from the early beginning of the COVID-
19 pandemic until the current concerns and challenges in an
attempt to safely reopen from lockdown.

Modeling the early outbreak dynamics

Lesson 1. COVID-19 is spreads exponentially if uncontrolled

During the early stages of the COVID-19 outbreak, the world
stood in awe to see the number of new infections climbing explo-
sively [18]. This rapid increase created a lot of anxiety within both
the general population and political decision makers. It seemed
natural to turn to mathematical models to understand the rapid
spreading of COVID-19 and estimate its consequences [4]. In fact,
the first mathematical models for infectious diseases date back
to a smallpox model in the middle of the 18th century [19]. Since
the 1920s, compartment models have advanced to the method
of choice to simulate the epidemiology of infectious diseases [3].
One of the simplest compartment models is the SEIR model. It
represents the timeline of a disease through four compartments,
the susceptible, exposed, infectious, and recovered populations
[9]. The temporal evolution of these compartments is governed
by four ordinary differential equations parameterized in terms of
the three transition rates between them.

Ṡ = −βSI
Ė = +βSI − αE
İ = +αE − γ I

Ṙ = +γ I

With only three parameters, α, β , and γ , the classical SEIR model
has been successfully used to model previous epidemic outbreaks.
The parameters α and γ characterize the transition from the
xposed to the infectious state and from the infectious to the
ecovered state. In fact, they are the inverses of the latent period
= 1/α, the time during which an individual is exposed but not
et infectious, and the infectious period C = 1/γ , the time during
hich an individual can infect others [9]. As such, they are disease
pecific parameters independent of region, state, or country. For
OVID-19, in the example of Fig. 1, the latent and infectious
eriods are on the order of A = 2.5 days and C = 6.5 days [10].

The defining feature of the SEIR model is its nonlinear feedback
loop that defines transition from the susceptible to the exposed
state. The model typically assumes that this transition scales with
the susceptible population S, the infectious population I , and the
contact β , the inverse of the contact period B = 1/β , between the
two. Fig. 1 illustrates the dynamics of the susceptible, exposed,
infectious, and recovered populations, for varying contact periods
of B = 3.3, 2.7, 2.0, 1.4, 0.8 days. During the early stages of
the COVID-19 pandemic, many research groups have successfully
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Fig. 1. Outbreak dynamics of COVID-19 for varying basic reproduction numbers
R0 . Decreasing the basic reproduction number, from left to right, decreases the
exposed and infectious populations, red and orange curves. The susceptible
and recovered populations, brown and blue curves, converge to larger and
smaller endemic equilibrium values, and converges is slower. The steepest
curves correspond to the smallest contact period B = 0.8 days and largest basic
reproduction number R0 = 8.0 with the maximum infectious population of Imax

0.412 after 15 days. Latent period A = 2.5 days, infectious period C = 6.5
days, initial exposed fraction E0 = 0.01, and contact period B = 3.3, 2.7, 2.0,
1.4, 0.8 days, resulting in basic reproduction number R0 = C/B = 2.0, 2.4, 3.2,
4.8, 8.0 . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

applied the SEIR model to simulate the early period of free ex-
ponential growth and estimated the ratio between the infectious
period and the contact period to C/B = 4.8 −8.0, associated with
the two left-most sets of curves [20]. Fig. 1 suggests that, for this
range of parameters, the outbreak would have peeked after only
two weeks, with 30%–40% of the population infected, and it would
have been over after less than two months. Obviously, this is not
what happened [18]. How could a model, that had successfully
simulated the measles and chickenpox fail so dramatically in
predicting the timeline of COVID-19, despite its initial promise
in modeling the early outbreak?

Lesson 2. COVID-19 is as contagious as previous coronaviruses

An important question to ask, especially during the early
stages of the outbreak, is: How contagious is the new coron-
avirus? This closely relates to the question How does it compare
to other coronaviruses or, even more broadly, to other infectious
diseases? A powerful quantitative concept to characterize the
contagiousness and transmissibility of the new coronavirus is
the basic reproduction number R0 [21]. This number explains—in
simple terms—how many new infections are caused by a single
one infectious individual in an otherwise completely susceptible
population [22]. Since the beginning of the new coronavirus pan-
demic in December 2020, no other number has been discussed
more controversially than the reproduction number of COVID-
19 [20]. However, it is difficult—if not impossible—to measure R0
directly. Most basic reproduction numbers of COVID-19 we see
in the public media today are estimates of mathematical models
that depend critically on the choice of the model, the initial
conditions, and numerous other modeling assumptions [23]. For
our SEIR model, the basic reproduction number is simply the
product of the contact rate β and the infectious period C, or the
ratio between the infectious period C and the contact period B,

R = βC = C/B.
0
Fig. 2 shows how we can use reported case data to infer
the contact period B and with it the basic reproduction number
R0 = C/B across all United States during the early stages of
exponential growth [15]. The resulting mean basic reproduction
number of 5.30 ± 0.95 for the United States is slightly higher than
the mean basic reproduction number of 4.22 ± 1.69 for Europe
[10]. Both values agree well with the reported value of 5.7 for
the Wuhan outbreak [24] and with a recent review that suggests
values from 4.1 to 6.5 from SEIR modeling [20]. Compared to
traditional infectious diseases, these basic reproduction numbers
are lower than the numbers of 18 for measles, 9 for chickenpox,
7 for mumps, and 7 for rubella, but on the order of 5 for po-
liomyelitis [1]. Compared to the SARS coronavirus with a range
from 2 to 5 [20], our values for SARS-CoV-2 in Fig. 2 are on the
higher end, and suggest that the new coronavirus would spread
more rapidly than SARS [25]. Knowing the basic reproduction
number of COVID-19 is critical to estimate the conditions for
herd immunity and predict the success of vaccination strategies.
However, from Fig. 1 we would conclude that, for this range
of basic reproduction numbers, from R0 = 2.0 to 8.0, 80%–
100% of the population would have been infected with the virus
within only three months. How useful is the concept of the basic
reproduction number if fails do accurately reproduce the timeline
of COVID-19, even in the first few weeks of the outbreak?

Lesson 3: Without vaccination, COVID-19 will be with us for a long
time

The million-dollar question—literally—is: How long will the
COVID-19 pandemic last? From other infectious diseases including
the measles, chickenpox, mumps, polio, rubella, pertussis, and
smallpox we know that epidemic outbreaks tend to come to
an end before the entire population has been infected [1]. For
this class of diseases, the basic reproduction number is larger
than one, R0 > 1.0, and an infected individual will initially in-
fect more than one other individual. Fig. 1 shows that, under
these conditions, the infectious population first increases, then
reaches a peak, and decreases toward zero [3]. As more and more
individuals transition from the susceptible through the exposed
and infectious states into the recovered state, the susceptible
population decreases. Once a large enough fraction of a popu-
lation has become immune—either through recovery from the
infection or through vaccination—this group provides a protection
for the susceptible population. The epidemic dies out as the rate
of daily new cases, β S I , decreases [22]. As such, the classical SEIR
model is self-regulating: It naturally converges to an endemic
equilibrium, at which either the susceptible group S, or the in-
fectious group I , or both have become small enough to prevent
ew infections. In epidemiology, this indirect protection is called
erd immunity [26]. The concept of herd immunity implies that
he converged susceptible population at endemic equilibrium is
lways larger than zero, S∞ > 0, and its value depends on the
asic reproduction number R0. In a homogeneous, well-mixed
opulation, herd immunity occurs once a fraction of [1−1/R0] of
he population has become immune, either through the disease
tself or through vaccination. During the very early stages of
he outbreak, political decision makers were actively focusing
n answering the question: When we reach herd immunity? For
he mean basic reproduction numbers of R0 = 4.22 and R0 =

.30 we found for Europe and the United States in Fig. 1, the
erd immunity threshold would lie between 76% and 81%. This
alue is lower than 94% for the measles, 89% for chickenpox
ith, 86% for mumps and rubella, and on the order of 80% for
olio, but significantly higher than the values of 16% to 27%
or the seasonal flu [1]. Even the countries with the highest
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Fig. 2. Early outbreak dynamics of COVID-19 in the United States. Reported infectious populations and simulated exposed, infectious, and recovered populations.
imulations are based on a state-specific identification of the contact period B B to define the basic reproduction number R0 = C/B. The mean basic reproduction
umber was R0 = 5.30 ± 0.95 [15].
revalence, Chile with 1.75%, the United States with 1.22%, Brazil
ith 1.02%, and Sweden with 0.77% [18] do not come close to
hese values today. Against all initial enthusiasm for reaching
erd immunity by the fall, we have now come to realize that
e will likely not pass the immunity level threshold any time
oon by infection alone. In the near future, vaccination remains
he only viable strategy to achieve herd immunity. The basic
eproduction number of COVID-19 suggests that at least three
ourth of the population, more than 5 billion people worldwide,
ould have to be vaccinated to achieve herd immunity against
OVID-19. While this sounds like a gigantic undertaking, mas-
ive vaccination campaigns have successfully controlled deadly
ontagious diseases such as polio, diphtheria, and rubella and
ven successfully eradicated smallpox in 1980 [1]. However, until
COVID-19 vaccine is developed and approved, it is crucial to

low the spread of the COVID-19 virus and protect individuals at
ncreased risk of severe illness, including older adults and people
f any age with underlying health conditions [27].

odeling outbreak control

esson 4. We can flatten the curve

During the early stages of exponential growth, with new case
umbers doubling within two or three days, the most urgent
uestion amongst health care providers and political decision
akers began to ask was: Can we reduce the reproduction number
? For the broad population, this question became famously and
llustratively rephrased as: Can we flatten the curve? For the

odeling community, this quest for a lower reproduction number
all of a sudden meant that the traditional SEIR epidemiology
models were no longer suitable to model changes in disease
dynamics. While traditional models with static parameters were
well-suited to model the outbreak dynamics of unconstrained,
freely evolving infectious diseases with fixed basic reproduction
numbers in the early 20th century [9], they fail capture how
behavioral changes and political interventions can modulate the
reproduction number to manage the COVID-19 pandemic in the
21st century [10]. In fact, static reproduction numbers are probably
the single most common cause of model failure in COVID-19 model-
ing. To simulate a flattening, or rather early bending of the case
curve, early modeling approaches adopted an ad hoc strategy that
explicitly reduced the total population N to a potentially affected
population N∗

= ηN . This strategy introduces a scaling coefficient
η = N∗/N , essentially a mere fitting parameter, to indirectly
quantify the level of confinement [28]. Averaged over 30 Chinese
provinces, the level of confinement was η = 5.19 10−5

± 2.23
10−4 [15] and averaged over the 27 countries of the European
Union, it was η = 7.67 10−2

± 2.61 10−1 [14] suggesting that the
effect of COVID-19 was successfully confined to only a very small
fraction of the total population. More mechanistic approaches are
based on introducing a time-varying effective reproduction num-
ber R (t) and on learning it dynamically from the reported case
data. For example, we can infer discrete time points at which the
contact rates vary [29] or used sliding windows over the amount
of novel reported infections [30]. Strikingly, in many countries,
the reported COVID-19 cases data follow a similar characteristic
S-shaped pattern in response to political interventions. We can

approximate this behavior with an effective reproduction number
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of hyperbolic tangent type [10],

R (t) = R0 −
1
2
[1 + tanh(

[
t − t∗

]
/T )][R0 − Rt].

This ansatz has four physically meaningful parameters that pro-
ide valuable information about the responsiveness of the re-
roduction number to political action: the basic reproduction
umber R0 at the beginning of the outbreak, the reduced repro-
uction number Rt under political interventions, the adaptation
ime t∗, and the transition time T . We can infer these parame-
ers from the reported case data using Bayesian inference with
arkov-Chain Monte-Carlo [10]. This allows us to model an S-
haped case curve that plateaus long before a large fraction of the
opulation has been affected by the disease. Another alternative
hat allows even more flexibility and does not require R(t) to be
monotonic is a Gaussian random walk function [12]. This free
form approach naturally captures the effects of public health
interventions, however, in a daily varying, rather unpredictable
way. The random walk approach is a flexible method to ana-
lyze case data retrospectively, but since it does not allow for a
closed functional form, it is not very useful to make informed
predictions. Taken together, from the failure of traditional static
SEIR models, we have learned that we need to introduce dynamic
time-varying model parameters if we want to correctly model
behavioral and political changes and reproduce the reported case
numbers. This naturally introduces a lot of freedom, a large num-
ber of unknowns, and a high level of uncertainty. However, in
stark contrast to epidemic outbreaks in the early 20th century,
we now have well-documented case data and the appropriate
tools to address this challenge [6]. The massive amount of COVID-
19 case data, all freely available on public data bases [18], has
induced a clear paradigm shift from traditional mathematical
epidemiology [9] towards data-driven physics-based modeling
of infectious disease. These new techniques naturally learn the
most probable model parameters—in real time—from the time
evolution of continuously updated case data, allow us to make
projections into the future, and quantify the uncertainty on the
estimated predictions.

Lesson 5. Constraining mobility is a drastic but effective mitigation
strategy

Reducing mobility is a controversial but highly effective mea-
sure to manage a global pandemic [31]. On March 17, 2020,
for the first time in history, the European Union closed all its
external borders to reduce the spreading of COVID-19 [32]. In
the following two weeks, the local governments augmented the
European regulations with local lockdowns and national travel
restrictions. These measures had a dramatic effect on the mo-
bility within the European Union: Within five days, the average
passenger air travel in Europe was cut in half, and within two
weeks, it was reduced to 5%–10% [33]. These drastic actions have
triggered ongoing debates about the effectiveness of different
outbreak strategies and the appropriate level of constraints [34].
A simple way to probe the effect of mobility is to model the
spreading of COVID-19 through a mobility network of passenger
air travel. For the European Union, we can represent this network
as a weighted graph G in which the N = 27 nodes represent
the individual countries and the weighted E edges represent
the travel frequency between them. We can estimate the travel
frequency within the graph using passenger air travel statistics
before and during the outbreak [33]. We record this information
in the adjacency matrix AIJ that represents the travel frequency
between two countries I and J , and in the degree matrix, DII =

diag
∑N

J=1,J ̸=1 AIJ , that represents the number of incoming and
outgoing passengers for each country I . The difference between
the degree matrix DIJ and the adjacency matrix AIJ defines the
weighted graph Laplacian LIJ = DIJ − AIJ . We can then discretize
the SEIR model on the weighted graph G and introduce the
susceptible, exposed, infectious, and recovered populations SI , EI ,
II , and RI as global unknowns at the nodes of the graph G [14].
This results in a set of equations with 4N unknowns.

ṠI = −

N∑
J=1

LIJSJ − βSI II

ĖI = −

N∑
J=1

LIJEJ + βSI II − αEI

İI = −

N∑
J=1

LIJ IJ + αEI − γ II

ṘI = −

N∑
J=1

LIJRI + γ II

Fig. 3 highlights the effect of constrained mobility in managing
the COVID-19 outbreak across Europe. The top row shows the
simulated outbreak under constrained mobility with the imposed
travel restrictions and border control in place, the bottom row
shows the outbreak under unconstrained mobility without travel
restrictions. During the early stages of the pandemic, the pre-
dicted outbreak pattern in the bottom row agrees well with the
outbreak pattern in the top row. During the later stages, the
side-by-side comparison shows a faster spreading of the outbreak
under unconstrained mobility with a massive, immediate out-
break in Central Europe and a faster spreading to the eastern
and northern countries. Although air travel is certainly not the
only determinant of the outbreak dynamics, Fig. 3 suggests that
mobility is a strong contributor to the global spreading of COVID-
19 and supports the decision of the European Union and its local
governments to implement rigorous travel restrictions to delay
the outbreak of the pandemic [35].

Lesson 6. Reproduction is correlated to mobility with a time delay of
two weeks

The drastic political measures, travel restrictions, and boarder
control during the early stages of the pandemic have stimulated
a wave of criticism [34]. While it was initially entirely unclear
to which extent they would succeed in reducing the number of
new infections [36], we now know that reducing mobility can
effectively flatten the curve. In addition to global air mobility,
several studies have proposed to explore correlations between
outbreak control and driving, walking, and transit mobility from
cell phone data [37]. A important question in outbreak control is:
What is the time delay between intervention and effect?

Fig. 4 summarizes the mobility data from the relative volume
of location requests per country, scaled by the baseline vol-
ume before the outbreak of the pandemic [35]. To smoothen the
weekday–weekend fluctuations in outbreak and mobility data,
we have applied a moving averaging window of seven days. In
addition, Fig. 4 shows the hyperbolic tangent approximation of
the effective reproduction number R(t) inferred from combining
the SEIR model with the reported case data in all 27 countries.
Interestingly, the drop in global passenger air travel and in local
driving, walking, and transit mobility follows a similar hyperbolic
tangent type form. For each country, we can extract the time
delay ∆t between the reduction of air traffic, driving, walking,
and transit mobility and the inflection point of the reproduction
number curve. This time delay is an important socio-economical
metric for the response time to political interventions. The pop-
ulation weighted mean time delay across the European Union is
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Fig. 3. Early outbreak control of COVID-19 in Europe. Infectious population for constrained mobility with travel restrictions versus unconstrained mobility without
ravel restrictions. Simulations are based on country-specific basic reproduction numbers without and with mobility. The mean basic reproduction number was 4.62
1.32 [14].
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t = 17.24 ± 2.00 days. The country-specific time delay varies
ugely across Europe with the fastest response of 0.75 days in
he Netherlands, followed by Germany with 3.25 days, Belgium
ith 4.00 days, and Italy with 5.00 days. These fast response
imes naturally also reflect early decisions on the national level.
or example, Fig. 4 clearly showcases the special role of Swe-
en, where the government focusses efforts on encouraging the
ight behavior and creating social norms rather than mandatory
estrictions: The time delay of 23.75 days is above the Euro-
ean Union average of 17.24 days, and Sweden is one of the
ew countries where the effective reproduction number has not
otably decreased below one. Taken together, from correlating
eproduction and mobility, we have learned that, especially dur-
ng the early stages of an outbreak, controlling mobility can play
critical role in reducing the spread of the pandemic [35]. The

ime delay between mobility control and reduced reproduction is
articularly important to plan exit strategies and estimate risks
ssociated with gradually or radically relaxing local lockdowns
nd global travel restrictions.

esson 7. Most COVID-19 cases are asymptomatic and remain unre-
orted

In the early stages of the COVID-19 pandemic, doctors, re-
earchers, and political decision makers have mainly focused on
ymptomatic individuals that came for testing and required ur-
ent medical attention. In the more advanced stages, the interest
as shifted towards mildly symptomatic and asymptomatic indi-
iduals who, by definition, are difficult to trace and likely to retain
ormal social and travel patterns [38]. As of today, more than 50
tudies have reported an asymptomatic population, 23 of them
ith a sample size of 500 and more [39]. The reported trends are
trikingly consistent: A much larger number of individuals display
ntibody prevalence than we would expect from the reported
symptomatic case numbers. In fact, the median undercount across
all studies suggests that only one in twenty COVID-19 cases has
been noticed and reported [12].

While there is a pressing need to better understand the preva-
lence of asymptomatic transmission, it is also becoming increas-
ingly clear that it will likely take a long time until we can, with
full confidence, deliver reliable measurements of this asymp-
tomatic group. In the meantime, mathematical modeling can
provide valuable insight into the tentative outbreak dynamics and
outbreak control of COVID-19 for varying asymptomatic scenar-
ios. We can model the effects of asymptomatic transmission by
extending the classical SEIR model into and SEIIR model with five
compartments, the susceptible, exposed, symptomatic infections,
asymptomatic infections, and recovered groups [12].

Ṡ = −S[βsIs + βaIa]

Ė = +S [βsIs + βaIa] − αE

İs = +νsαE − γsIs
İa = +νaαE − γaIa
Ṙ = +γsIs + γaIa

Here Is and Ia denote the symptomatic and asymptomatic groups,
hich are fractions νs and νa of the total infectious group I . We
ostulate that both groups have the same latency rate α, but they
an have their own contact rates βs and βa and infectious rates γs
nd γa. Fig. 5 illustrates the resulting model and a representative
nalysis for three locations where antibody seroprevalence was
eported, Santa Clara County with νs = 1.77% [40], New York
ity with νs = 5.76% [41], and Heinsberg with νs = 20.00% [42].

The model combines the SEIIR model and Bayesian inference to
learn the time-varying effective reproduction number R(t) from
the reported case data and predicts the symptomatic, asymp-

tomatic, and recovered populations with 95% credible intervals
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Fig. 4. Correlation between reduction in mobility and effective reproduction number of COVID-19 outbreak in Europe. Purple, blue, gray, and black dots represent
reduction in air traffic, driving, walking, and transit mobility; red curves show effective reproduction number R(t) with 95% confidence interval. The time delay ∆t
enotes the delay between reduction in mobility and effective reproduction number. The mean time delay was 17.24 ± 2.00 days [10] . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Outbreak dynamics of COVID-19 in Santa Clara County, New York City, and Heinsberg. Dynamic effective reproduction number R(t) and symptomatic,
asymptomatic, and recovered populations at three different locations where antibody prevalence studies were performed. The model learns the time-varying effective
reproduction number R(t) to predict the symptomatic, asymptomatic, and recovered populations with 95% credible intervals [12].
[12]. Strikingly, despite notable differences in seroprevalence, the
effective reproduction numbers R(t) and the infectious and recov-
ered populations I , I , and R in Fig. 5 follow similar trends: The
s a
effective reproduction number R(t) drops rapidly to values below
one within a window of about three weeks after the lockdown
date, the infectious curves peak, and the recovered curve begins
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to plateau. Including asymptomatic transmission in the model
also allows us to back-calculate the undercount from comparing
mortality rates and death counts [13]. Knowing the exact dimen-
sion of the asymptomatic population is critical to truly estimate
the severity of the outbreak, e.g., hospitalization or mortality rates
[27], and to reliably predict the success of surveillance and control
strategies, e.g., contact tracing or vaccination [43]. Precise knowl-
edge about the asymptomatic population can significantly change
our understanding and management of the COVID-19 pandemic:
A large asymptomatic population will bring us closer to herd
immunity, but will also make isolation, containment, and tracing
of individual cases more challenging. Instead, managing com-
munity transmission through increasing population awareness,
promoting physical distancing, encouraging behavioral changes
and massive testing would become more relevant.

Lesson 8. There are massive amounts of data, but they do not always
align well with the models

Within only six months, the COVID-19 pandemic has probably
generated more data than any disease in history. New symp-
tomatic cases, recovered cases, and deaths are well documented
and publicly shared on numerous websites and reports [18]. In-
tuitively, we would think that this presents endless opportunities
for modeling [6]. However, unfortunately, not all the available
data align well with the input needed for epidemiology model-
ing. For example, one question we still cannot address is: When
exactly did the outbreak start? To accurately model, monitor, and
manage the dynamics of COVID-19, it is critical to know precisely
when the outbreak first started in a particular region, state, or
country. This issue is closely related to selecting appropriate
initial conditions for the susceptible, exposed, infectious, and
recovered populations S0, E0, I0, and R0. For example, the first
reported COVID-19 death in the United States was reported in
Santa Clara County, California. Although this happened as early as
February 6, the case remained unnoticed until April 22 [44]. This
unexpected finding suggests that the new coronavirus had been
circulating in the Bay Area as early as January. Machine learning
allows us to combine our SEIIR model with data from antibody
prevalence studies [40] and reported case numbers [45], and trace
the initial outbreak date back to January 20, 2020 [12]. This early
outbreak estimate supports the common intuition that COVID-
19 is often present in a population long before the first official
case is reported. Knowing the initial outbreak date is critical to
trace the origin of the disease, estimate the impact of community
spreading, and design successful mitigation strategies.

Modeling exit strategies

Lesson 9. Selective reopening can be more effective than voluntary
quarantine

A popular strategy to prevent a local outbreak during the
COVID-19 pandemic is to restrict incoming travel and locally
reduce the case numbers to a manageable dimension. Once a
region has successfully contained the disease, the obvious ques-
tion becomes: When is it save to reopen? There is a legitimate
fear that easing off travel restrictions, even slightly, could trigger
a new outbreak and accelerate the spread to an unmanageable
degree. As we are trying to identify exit strategies from local
lockdowns and global travel restrictions, political decision makers
are turning to mathematical models for quantitative insight and
scientific guidance [46].

Global network mobility models, combined with local epi-
demiology models, can provide valuable insight into different
reopening scenarios. Fig. 6 illustrates the effect of different exit
Fig. 6. Outbreak dynamics of COVID-19 in Newfoundland and the effects of
restricted travel and quarantine. Reopening forecast for 150-day period with
incoming travelers from the Atlantic Provinces, Canada, and all of North
America with no quarantine requirements, top, and from all of North America
quarantining from 0% to 95%, bottom. Predictions are based on a local SEIR
model using the mean effective reproduction number of R = 1.35 for all of
North America, solid lines, and R = 1.16 for Canada, dashed lines, on the day of
opening. The black horizontal line marks 0.1% of the population of Newfoundland
and Labrador [46].

strategies for the example of Newfoundland and Labrador, a
Canadian province that has enjoyed no new cases since late
April, 2020 [47]. This analysis combines a network epidemiology
model with machine learning to infer parameters and predict
the COVID-19 dynamics upon partial and full airport reopening,
under perfect and imperfect quarantine conditions. To accurately
mimic the incoming susceptible, exposed, infectious, and recov-
ered fractions of travelers at the day of reopening, the model
learns the populations of the SEIR model with individual dynamic
effective reproduction numbers R (t) for all territories, provinces,
and states of North America from the reported case data and
weights them with the average daily air travel prior to the out-
break [48]. An interesting metric is the estimated number of
incoming exposed and infectious travelers upon full reopening,
∆E = 0.203/day and ∆I = 0.329/day. This implies that every five
days and every three days, an exposed and an infectious traveler
would enter the province of Newfoundland and Labrador. In other
words, every other day, a new COVID-19 case would enter the
Newfoundland and Labrador via air travel [46]. Since the exposed
and early infectious individuals are still pre-symptomatic, it is
impossible to identify and isolate them without strict quaran-
tine requirements [49]. This raises the question: What is the
best exit strategy? Is it safer to selectively reopen the province,
to only the Atlantic Provinces, to Canada, or to all of North
America, or, alternatively, rely on a sufficiently large fraction of
the incoming travelers to comply with recommended quarantine
requirements? Fig. 6 shows that—especially for smaller provinces
or states like Newfoundland—tight border control is often easier
and more effective than quarantine. Partial reopening, for ex-
ample within local travel bubbles, is an effective compromise
and a reasonable intermediate step towards complete reopening.
While relaxing travel restrictions is possible, it would require

strict quarantine conditions. Voluntary quarantine, even at an
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overall rate of 95%, is not enough to entirely prevent a new out-
break. Without comprehensive test-trace-isolate strategies [27],
combined with a mandatory quarantine of 100% of COVID-19 pos-
itive individuals, reopening can always seed a new exponential
outbreak. This concrete example shows that data-driven mod-
eling can provide valuable quantitative insight into the efficacy
of travel restrictions to inform political decision making in the
controversy of reopening.

Lesson 10. Testing is critical for safe reopening

Several unexpected trends in the timeline of COVID-19 have
recently raised the question: To which extent does testing manip-
ulate the data? During the early stages of the pandemic, clearly,
only severely symptomatic cases were tested and identified. After
gaining a better understanding of the pathophysiology of COVID-
19, we now know about the disproportionally high prevalence
of asymptomatic transmission. In fact, the estimated undercount
during the early stages of the pandemic was on the order of ten or
more, meaning that only one in ten infections was detected and
reported [39]. As testing is becoming more available and more
common, we expect to detect a larger fraction of asymptomatic
individuals and see the undercount decrease. From a data science
standpoint, the question becomes: How can we best correct for
under- and over-testing? A simple idea would be to interpret the
reported deaths as ground truth, introduce a testing bias, and
calibrate the models with respect to the total death count [5]. This
approach critically depends on a region’s current stage within the
outbreak and its definition of death, which can vary significantly
by country. For example, some countries report death of COVID-
19 while others report death with COVID-19. This could explain,
at least in part, why some countries like the France, the United
Kingdom, and Belgium report death rates of 16.7% 15.3%, and
14.9%, while others like Denmark, Germany, and Austria report
4.6%, 4.5% and 3.5% [18]. It is now widely recognized that broad
testing will not only be important to advance our understanding
of the data, but also be a mandatory step for safe reopening.
Testing will help us to identify high-risk groups in the population
based on age, gender, blood group, and underlying medial condi-
tions. As test-trace-isolate is likely to become the new normal,
mathematical models can help us estimate and understand how
much and how often we need to test.

Asking the right question

Throughout the past six months, we have made impressive
progress towards understanding the COVID-19 pandemic through
data-driven modeling. We now know that the classical epidemi-
ology models that have served us well during the early 20th
century are a useful starting point to design models for infectious
diseases in the 21st century [2]. However, since the word is a lot
more connected than a hundred years ago [50], local behavior
and global mobility play an equally important role in modeling
the outbreak dynamics and outbreak control of COVID-19 today.
Against our initial fear of seeing the number of infectious explode
beyond control, we now know that we can actually modulate
the disease dynamics through behavioral changes and political
measures [Linka, 2020a]. Not only have we learned how rapidly
the disease curve would grow in the absence of interventions; we
also know how long it takes for political measures to effectively
bend the curve. In fact, our current COVID-19 models are much
better than their public reputation [5]. They can predict, interpret,
and explain the effects with parameters and numbers [51].

But we had to learn to set expectations right and to be very
specific about asking the right questions [7]. We have learned that

generic questions likeWhat will the disease trajectory look like? are
virtually impossible to answer, especially when projected several
weeks or months into the future. Instead, specific questions like
What is the effect of changing this? are much easier to answer
and can be equally insightful for political decision making. And,
as a useful by-product, we can even quantify uncertainties and
provide confidence intervals on our response.

Six months into the pandemic, there are many more open
questions than answers, and we will likely not be able to solve
all of them before the disease decays. One of the most pressing
questions to complete our understanding of the outbreak dynam-
ics is What is the true size of the affected population?, which we can
reword into the easier-to-answer questions How would knowing
the rate of asymptomatic transmission change our understanding of
the disease? or How would this knowledge change with unlimited
testing?. Another important questions that will drive our prior-
ities upon reopening is How homogeneous is the spread?, which
e could rephrase more quantitatively as What are the most
ulnerable populations? or What are scientific metrics to identify
uperspreading events?, or even more specifically, How would our
nowledge change if children were more asymptomatic and less
nfectious than adults?. Moving into the fall, we will likely want to
now Will there be a second wave?, but rather we should ask How
o increased mobility during the summer and seasonality during the
all impact the reproduction number?. Instead of asking the million-
ollar question Can we prevent a resurge? we should ask, What
s the limit reproduction number beyond which we can no longer
anage the disease through test-isolate-trace strategies?. These are
ll questions which data-driven modeling can confidently help to
ddress.
As modelers, it is our ethic responsibility to educate the public

o ask the right questions and to communicate the limitations
f our answers. One of the most frequent questions the general
opulation is asking today is When will there be a vaccine? As
odeling community, we should rephrase this question and ask

f we are willing to wait 18 months to find the right vaccines for
OVID-19, why do not we allow ourselves at least half of this same
ime to design the right models?
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