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Abstract

Background: Triggering receptor expressed on myeloid cell-2 (TREM2) is a lipid and lipoprotein binding receptor
expressed by cells of myeloid origin. Homozygous TREM2 mutations cause early onset progressive presenile
dementia while heterozygous, point mutations triple the risk of Alzheimer’s disease (AD). Although human genetic
findings support the notion that loss of TREM2 function exacerbates neurodegeneration, it is not clear whether
activation of TREM2 in a disease state would result in therapeutic benefits. To determine the viability of TREM2
activation as a therapeutic strategy, we sought to characterize an agonistic Trem2 antibody (AL002a) and test its
efficacy and mechanism of action in an aggressive mouse model of amyloid deposition.

Methods: To determine whether agonism of Trem2 results in therapeutic benefits, we designed both intracranial
and systemic administration studies. 5XFAD mice in the intracranial administration study were assigned to one of
two injection groups: AL0023, a Trem2-agonizing antibody, or MOPC, an isotype-matched control antibody. Mice
were then subject to a single bilateral intracranial injection into the frontal cortex and hippocampus and
euthanized 72 h later. The tissue from the left hemisphere was histologically examined for amyloid-beta and
microglia activation, whereas the tissue from the right hemisphere was used for biochemical analyses. Similarly,
mice in the systemic administration study were randomized to one of the aforementioned injection groups and the
assigned antibody was administered intraperitoneally once a week for 14 weeks. Mice underwent behavioral
assessment between the 12- and 14-week timepoints and were euthanized 24 h after their final injection. The tissue
from the left hemisphere was used for histological analyses whereas the tissue from the right hemisphere was used
for biochemical analyses.

Results: Here, we show that chronic activation of Trem2, in the 5XFAD mouse model of amyloid deposition, leads
to reversal of the amyloid-associated gene expression signature, recruitment of microglia to plaques, decreased
amyloid deposition, and improvement in spatial learning and novel object recognition memory.
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Conclusions: These findings indicate that Trem2 activators may be effective for the treatment of AD and possibly

other neurodegenerative disorders.

Keywords: TREM2, Trem2, Alzheimer's disease, Beta-amyloid, Immunotherapy, Neuroinflammation, Immuno-

neurology

Background

Alzheimer’s disease (AD) and related dementias have no
disease-modifying treatments at this time and represent a
looming public health crisis given the continually growing
aging population [1]. To date, targeting the beta-amyloid
(AP) peptide within amyloid plaques remains a leading
candidate for therapeutic targeting; however, efforts have
been hampered by lack of efficacy and/or significant ad-
verse events [2—4]. As our understanding of the biological
processes involved in AD continues to evolve, neuroin-
flammatory processes have gained significant interest and
are currently at the forefront of research. While inflamma-
tion has long been understood to be a part of the brain re-
sponse to plaque and tangle pathology associated with
AD, the recent identification of mutations in the triggering
receptor expressed on myeloid cell-2 (TREM2), a single
transmembrane receptor expressed on the surface of
microglia, has provoked further excitement surrounding
immune modulation as a candidate therapeutic target for
AD [5, 6].

TREM?2 binds lipids, glycolipids, lipoproteins, and apoli-
poproteins including ApoE, clusterin/Apo], and, import-
antly, Ap [7-10]. Ligand binding results in TREM2 co-
clustering with the immunoreceptor tyrosine-based activa-
tion motif (ITAM) containing transmembrane protein
TYROBP/DAP12 and subsequent phosphorylation of
tyrosine residues of DAP12 by Src family kinases. Phos-
phorylated DAP12 in turn recruits spleen tyrosine kinase
(Syk) leading to activation of downstream signaling events,
including intracellular Ca?*, flux [11], activation of extra-
cellular signal-regulated kinases (ERK) and of phosphoino-
sitide 3-kinase (PI3K) [12], and nuclear translocation of
the transcription factor nuclear factor of activated T cells
(NFAT) [7]. The resulting changes in gene expression
alongside post-transcriptional modifications induce an in-
creased cellular response to colony-stimulating factor [13],
actin reorganization [11], process extension [14], cytokine
release [15, 16], survival [17, 18], proliferation [13], migra-
tion [19], and phagocytosis [20] in Trem2 expressing den-
dritic cells (DC) [16], tissue macrophages [21], osteoclasts
[22], and microglia [23].

Individuals homozygous for loss of function mutations
in TREM2 [24] invariably develop polycystic lipomem-
branous osteodysplasia with sclerosing leukoencephalo-
pathy (PLOSL), also known as Nasu-Hakola disease
(NHD), which manifests as early-onset presenile demen-
tia with frequent bone cysts [25], or as frontotemporal

dementia (FTD) [26] with seizures and corpus callosum
atrophy. Heterozygous TREM2 point mutations, which
reduce either ligand binding [9] or cell surface expres-
sion [27], are associated with a number of pathologies
including an overall reduction in the number of micro-
glia associated with amyloid plaques as well as an inabil-
ity of the remaining microglia to compact beta-amyloid
deposits and form a barrier between AP plaques and
neurons [14]. Additionally, heterozygous TREM2 point
mutations have been associated with an increase in the
number of phospho-tau positive, dystrophic neurites
[28], and increased tau in cerebrospinal fluid [29]. Not-
ably, these mutations also double the rate of brain atro-
phy [28, 30], triple the risk of AD [5, 6], and decrease
the age of AD onset by 3-6 years [31].

Similarly, Trem2 homozygous (Trem2-/-) or heterozy-
gous (Trem2+/-) deficient wildtype (WT) or AD mice also
display multiple microglia pathologies, including reduced
numbers of microglia, increased apoptotic cell death, non-
reactive microglia cell morphology, the inability to co-
alesce around and compact beta amyloid plaques [32],
abnormal AD gene expression signature [33], age-
dependent inability to reduce total Ap plaque load [34],
and an inability to support Ap antibody-mediated beta
amyloid plaque clearance [35]. Furthermore, Trem2 (-/-)
microglia fail to fully activate into phagocytic, disease-
associated microglia and to express the associated gene
signature in AD mice [36]. Although human genetics indi-
cate that loss of TREM2 function is detrimental, there is
no evidence that TREM2 gain of function would be bene-
ficial. TREM2 pathology, like AP pathology [37], may
begin decades before clinical symptoms arise, rendering
intervention in patients diagnosed with AD ineffective.
Likewise, the activation of TREM2 may result in indis-
criminate and harmful stimulation of microglia and other
innate immune cells. To determine the viability of TREM2
activation as a therapeutic strategy, we sought to identify
and characterize an agonistic TREM2 antibody and test its
efficacy and mechanism of action in an aggressive mouse
model of amyloid deposition.

Methods

Animals

Male 5XFAD transgenic mice overexpressing the
K670N/M671L (Swedish), 1716V (Florida), and V7171
(London) mutations in human APP (695), as well as
M146L and L286V mutations in human PS1 [38] were
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aged to 3.5 months at Taconic and transferred to Uni-
versity of Kentucky. The study was approved by the Uni-
versity of Kentucky Institutional Animal Care and Use
Committee and conformed to the National Institutes of
Health Guide for the Care and Use of Animals in Re-
search. All studies were performed blinded. Alector pro-
vided the antibodies coded. The mice were also coded
and randomized into each group. Only upon completion
of the data analysis were the groups unblinded. Mice
were genotyped for the retinal degeneration (rd) muta-
tion post-mortem. We found that there were six total
mice in the systemic study that were homozygous for
the rd mutation. Five of these were wildtype mice, and
one was a 5XFAD mouse in the AL002a group. These
mice were excluded from the study and are not repre-
sented in the sample sizes below.

Antibodies for treatment

TREM2tm1(KOMP) Vlcg mice were immunized by
ImmunoPrecise with hTREM2-Fc recombinant protein
using standard procedures. Bleed titers were evaluated in
in vitro assays, such as ELISA or FACS. Animals with a
good immune response to the antigen were selected for
fusion and given a final i.v. boost of antigen without ad-
juvant. Lymphocytes were isolated from the immunized
animals and fused with mouse myeloma cells using poly-
ethylene glycol (PEG 1500; Roche, 10783641001) accord-
ing to the manufacturer’s instructions. Fused cells were
plated into semisolid methylcellulose-based medium
containing hypoxanthine, aminopterin, and thymidine
for 10-12 days, allowing for single-step cloning and hy-
bridoma selection. Single colonies were picked and
transferred to 96-well plates containing culture medium
with hypoxanthine-thymidine and grown for 4-5 days
until mid-log-phase growth was reached. Supernatants
were screened by ELISA for IgG production, isotype,
and antigen specificity and by FACS for binding to a na-
tive antigen on cells. Positive hybridoma clones were
subcloned using a single-step cloning system to ensure
monoclonality, and the subclone supernatants were
rescreened by FACS to confirm specificity. Final sub-
clones were expanded in culture, and the supernatants
were purified by Protein-A affinity chromatography.
Purified antibodies were tested in vitro for specificity,
functional activity, binding affinity, and epitope binning.
The AL002a antibody does not bind to human TREM2,
only murine. Anti-MOPC was obtained commercially
and is also an IgG1 isotype (BioXCell, Lebanon, NH).

Murine macrophages

Murine bone marrow precursor cells from Trem2-KO
and Trem2-WT (Alector colony) were obtained by
flushing tibial and femoral marrow cells with cold PBS
containing 2% fetal bovine serum (FBS). Red blood cells
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were lysed using ammonium—chloride—potassium
(ACK) lysing buffer, washed twice with 2% FBS/PBS,
and re-suspended in complete media (RPMI, 10% FBS,
Pen/Strep, L-glutamine, non-essential amino acid) with
50 ng/mL murine M-CSF (m-MCSF) to differentiate
macrophages for 6 days.

For FACS analysis of AL002a binding to BMMs, cells
were washed in FACS buffer (PBS + 2% FBS) and incu-
bated with either AL002a, rat anti-Trem2 (R&D Sys-
tems) as a positive control, or murine IgG1 isotype (BD
Biosciences) as a negative control in FACS buffer for 1 h
on ice. Cells were washed three times in FACS buffer
and spun. Goat anti-mouse APC conjugated secondary
antibody was added in FACS buffer (BD Biosciences, 1:
100), and cells were incubated on ice for 30 min. Cells
were again washed as before, re-suspended in FACS buf-
fer, and analyzed on a BD Canto Flow Cytometer.

Biochemistry
Before stimulation, BMM were incubated for 4 h in 1%
serum RPMI. For Syk immunoprecipitation 5 x 10° cells
were used, and for Trem2 immunoprecipitation 15 x 10°
cells were used. Cells were then incubated on ice for 15
min with 1 pg of AL002a or MOPC per 1 x 10° cells.
Cells were then washed and lysed with lysis buffer (1%
v/v NP-40%, 50 Mm Tris-HCl; pH 8.0, 150 mM NaCl, 1
mM EDTA, 1.5 mM MgCl,, 10% glycerol, plus protease,
and phosphatase inhibitors) and immunoprecipitated
with anti-Syk antibody (N-19, Santa Cruz, Dallas TX).
For Trem2 immunoprecipitation, cells were lysed with
1% n-Dodecyl-B-D-Maltoside and immunoprecipitated
with anti-Trem2 (R&D systems, R&D Systems, Minne-
apolis, MN) or isotype control. Precipitated proteins
were fractionated by SDS-PAGE, transferred to PVDF
membranes, and probed with anti-phosphotyrosine anti-
body (4G10, Millipore, Burlington MA) and anti-Dap12
antibody (Cell Signaling Technology, Danvers MA). To
confirm that all substrates were adequately immunopre-
cipitated, immunoblots were reprobed with anti-Syk
antibody (Abcam, Cambridge, UK). Because the anti-
Trem2 antibody does not detect Trem2 in immunoblot-
ting, each cell lysate used for Trem2 immunoprecipita-
tions contained equal amount of proteins with a control
antibody (anti-actin, Santa Cruz, Dallas TX).
Intracranial Administration. Twenty-four 5-month-
old male 5XFAD mice were assigned to one of two in-
jection groups: MOPC (control antibody; mIgG1 isotype;
BioXCell) or AL0OO2a (anti-Trem2 antibody, mIgGliso-
type; Alector). On the day of surgery, mice were
weighed, anesthetized with isoflurane, and placed in a
stereotaxic apparatus (51733D digital dual manipulator
mouse stereotaxic frame; Stoelting, Wood Dale IL). A
mid-sagittal incision was made to expose the cranium,
and four burr holes were drilled with a dental drill
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mounted in the stereotaxic frame over the frontal cortex
and hippocampus to the following coordinates: frontal
cortex, anteroposterior, + 2.0 mm, lateral +2.0 mm;
hippocampus, anteroposterior — 2.7 mm; lateral, + 2.5
mm, all taken from bregma. A 26-gauge needle attached
to a 10-pl Hamilton syringe containing the solution to
be injected was lowered 3.0 mm ventral to bregma, and
a 2-pL injection was made over a 2-min period. Anti-
bodies were diluted to a final concentration of 5 mg/ml
in 1X PBS. The incision was cleaned and closed with
surgical staples. Buprenorphine hydrochloride diluted to
0.015 mg/ml was intraperitoneally injected immediately
post-surgery at 0.1 mg/kg dose per body weight. Animals
received subsequent doses every 12 h until sacrifice. The
tissue was harvested 72 h post-injection.

Systemic administration

The two antibodies (MOPC; mIgGl isotype; BioXCell,
or AL002a; mlgGlisotype; Alector) were diluted to a
final concentration of 5mg/ml in 1XPBS. Twenty-four
male 5XFAD (N = 12 per antibody group) and 15 wild-
type mice (N = 8 in AL002a group and N = 7 in MOPC
group) aged 4 months received AL002a, or MOPC con-
trol antibody at a dose of 50 mg/kg/week administered
intraperitoneally for 14 weeks. Mice were tested in our
behavioral paradigms during the 2 weeks prior to sacri-
fice. Mice were euthanized and tissue was harvested 24 h
after the last injection.

Tissue processing

Mice were perfused intracardially with 25 mL of normal
saline. The brains were rapidly removed and bisected in
the mid-sagittal plane. The left half was immersion fixed
in freshly prepared 4% paraformaldehyde for 24 h. The
right half was dissected into the cerebral cortex (anterior
and posterior), hippocampus, striatum, and cerebellum.
The dissected pieces of brain were flash frozen in liquid
nitrogen and stored at — 80°C. The left hemibrain was
passed through a series of 10, 20, and 30% sucrose solu-
tions for 24 h each as cryoprotection. Twenty-five micro-
meters of frozen horizontal sections was collected using
a sliding microtome with a freezing stage and stored
floating in PBS containing sodium azide at 4 °C. Sections
were collected sequentially for the intracranial study and
serially for the intraperitoneal study.

Histology and immunohistochemistry

For the intracranial study, six sections spaced 1200 pum
apart and spanning the estimated injection site were ini-
tially mounted and stained by mouse IgG to identify the
injection site. For all subsequent histology and immuno-
histochemistry on the intracranial study, six sections span-
ning the injection site, each spaced approximately 100 um
apart, were selected and analyzed. For the systemic
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administration study, eight serial, horizontal sections
spaced 1200 pm apart were selected for histology and im-
munohistochemistry. Sections were mounted onto slides
and stained for Congo red as described previously [39].
Free-floating immunohistochemistry for CD11b (rat
monoclonal; AbD Serotec), mouse 1gG, and AP (rabbit
polyclonal AP1-16; Invitrogen) was performed. Briefly,
sections were quenched for endogenous peroxidase,
blocked, and permeabilized. They were then incubated
overnight in the primary antibody at 4°C (Ap 1:3000,
CD11b 1:1000). After washing, sections were incubated
for 2 h in the appropriate biotinylated secondary antibody
(goat anti-rabbit IgG for AP 1:3000, goat anti-rat for
CD11b 1:3000, goat anti-mouse IgG 1:3000; Vector La-
boratories, Burlingame, CA, USA). For anti-mouse IgG,
we skipped the overnight primary incubation and went
straight from permeabilization to the 2-h secondary anti-
body incubation. Sections were then washed and incu-
bated for 1h in ABC. DAB with (CD11b) and without
(AP) nickel were used for color development. Stained sec-
tions were mounted, air-dried overnight, dehydrated, and
coverslipped in DPX (Electron Microscopy Sciences, Hat-
field, PA, USA). Immunohistochemical analysis was per-
formed by measuring the percent area occupied by
positive stain using the Nikon Elements BR image analysis
system (Melville, NY, USA) as described previously [40].

Microglial clustering around plaques

We performed double labeling of eight serial, horizontal
sections spaced 1200 pm apart to detect plaques and
microglia using CD11b immunohistochemistry counter-
stained with Congo red. Using a macro developed in our
image analysis software, eight plaques restricted to a size
range of 7-10-pm diameter were identified by the soft-
ware in each of the frontal cortex and hippocampus. A
ring was projected around the perimeter of the plaque that
was 2 cell bodies wide (15 pm). The blinded analyst then
clicked on each CD11b-positive cell body within the per-
imeter to determine the numbers of microglia surround-
ing that plaque. Between six and eight sections per mouse
were analyzed in this way. The number of sections ana-
lyzed was variable because some small sections became
folded and were not suitable for analysis. The mean num-
ber of microglia per plaque was calculated for each animal
before being analyzed statistically as described below.

Quantitative real-time reverse transcription (RT)-PCR

RNA was extracted from the left hippocampus using the
EZNA RNA II Purification System (Omega Bio-Tek) ac-
cording to the manufacturer’s instructions. RNA was
quantified using the BioSpec Nano spectrophotometer
(Shimadzu), and ¢cDNA was reverse transcribed using
the ¢cDNA High Capacity kit (Applied Biosystems) ac-
cording to the manufacturer’s instructions. Real-time
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RT-PCR was performed using the 384-well microfluidic
card custom TagMan assays containing TagMan Gene
Expression probes for our genes of interest (Applied Bio-
systems, Invitrogen). All gene expression data were nor-
malized to 18S rRNA expression. Fold change was
determined using the *“Ct method.

Beta-amyloid biochemistry

Protein was extracted for AP analysis from the right
frontal cortex using a two-step extraction method. First,
the brain was homogenized in PBS containing a complete
protease and phosphatase inhibitor (Pierce Biotechnology
Inc. Rockford, IL). These samples were centrifuged at 16,
000xg at 4 °C for 1 h. The supernatant was removed and
became the “soluble” extract. The resulting pellet was ho-
mogenized in 100 pl of 70% formic acid and centrifuged at
16,000xg at 4 °C for 1h. The supernatant was removed
and neutralized 1:20 with 1M Tris-HCI and became
the “insoluble” extract. Protein concentration for both
the soluble and insoluble extracts was determined
using the bicinchoninic acid (BCA) protein assay
according to manufacturer’s instructions (Thermo
Scientific, Rockford IL). We used the Meso-Scale Dis-
covery multiplex ELISA system to measure A[38,
AB40, and AP42 (MSD, Gaithersburg MD). MSD
ELISA kits were run according to the manufacturer’s
instructions.

Radial arm water maze

After 12 weeks of treatment, mice were subject to a 2-day
radial arm water maze (RAWM) paradigm, as previously
described [41]. On day 1, groups of four mice performed
15 trials that were run in two sets of six trials followed by
the last three trials. After each set, a second group of four
mice was run, providing a rest period for the first group.
Extra wait time was added to the end of the set of three
trials to ensure the rest period was similar throughout the
behavioral assessment. The goal arm was different for
each mouse in a cohort to minimize odor cues, but the
goal arm remained the same for a given mouse through-
out the testing period. The start arm was varied for each
trial. For the first 11 trials, the platform was alternately
visible then hidden, and all subsequent trials used a hid-
den platform. The number of errors (incorrect arm en-
tries) was measured in a 1-min time frame. As standard
practice, mice failing to make an arm choice in 15s were
assigned one error. In order to minimize the influence of
individual trial variability, each mouse's errors for three
consecutive trials were averaged producing five data
points (termed “blocks”) for each day, which were then
analyzed statistically by ANOVA using the JMP statistical
analysis program (SAS).
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Novel object recognition

On the third day, following the 2 days of RAWM, the
novel object recognition task was performed. During the
habituation phase, each mouse was gently placed into a
square box (50 x 50 x 15cm) for 30 min per day for 1
day without any objects. During the training phase, two
identical objects, A1 and A2, were placed parallel to and
near one wall of the square box. Each mouse was placed
singly in the box and allowed to explore the objects for
5 min. Exploratory behavior was defined as directing the
nose at the object at a distance of less than 2 cm and/or
touching the object with the nose. The mouse was then
returned to its home cage with a 1-h inter-trial interval.
Both objects were replaced; one being a familiar object
(A1) and the other a novel object (B). The mouse was
returned to the box and allowed to explore the objects
for 5min during the test phase. Novel and familiar ob-
jects were alternated between the left and right positions
to reduce potential bias toward a particular location.
The objects and the box were cleaned with ethanol
(10%) after each individual trial to eliminate olfactory
cues. The exploration time (s) for each object in the tri-
als was recorded. The preferential index (PI) was calcu-
lated as [time spent exploring novel object/total
exploration time].

Analysis

Data are presented as mean + SEM. Statistical analysis
was performed using the JMP statistical analysis pro-
gram (SAS). Statistical significance was assigned where
the p value was lower than 0.05. One-way ANOVA and
two-way ANOVA were used, where appropriate, to de-
tect treatment differences and differences within treat-
ment groups along the time course.

Results

Trem2 signaling with AL002a

ALO002a is a mouse IgGl antibody that has been gen-
erated to recognize the extracellular portion of the
TREM2 receptor. AL002a specifically recognizes
Trem2 on WT bone marrow-derived macrophages
(BMM), while the binding is reduced to isotype con-
trol levels in cells derived from Trem2 KO mice (Fig.
la). In vitro, AL002a activates the Trem2 signaling
pathway. Treatment of peripheral bone marrow-
derived macrophages (BMM) with AL002a resulted in
phosphorylation of both DAP12 and Syk, indicating
activation of the Trem2 signaling pathway. Import-
antly, when these studies were repeated using BMM
from Trem2-/- mice, there was no DAP12 or Syk
response, indicating specific action through Trem?2
(Fig. 1b, ¢).
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Fig. 1 ALOO2a promoted TREM2-dependent DAP12 and Syk phosphorylation. Panel a shows that AL002a binds to BMM derived from WT, but not
Trem?2 KO mice, as measured by FACS. A rat anti-Trem2 antibody from R&D Systems was used as a positive binding control and an isotype
mslgG1 antibody as a negative control. Panel b: Following ALO02a stimulation, WT or Trem2-/- BMM were lysed and immunoprecipitated with
Trem2 antibody. Protein was loaded on a SDS gel in unreduced conditions. The membranes were first blotted with anti-phosphotyrosine
antibody and later stripped and blotted again with anti-Dap12 antibody and anti-actin. Panel ¢: After AL002a stimulation, WT or TREM2-/- BMM
were lysed and immunoprecipitated with Syk antibody. The membranes were first blotted with anti-phosphotyrosine antibody and later stripped

Intracranial administration of AL002a

To determine the effects of AL002a in the brain, we per-
formed stereotaxic surgery to inject 2pul of 5mg/ml
ALO002a or the isotype control antibody, MOPC, into the
frontal cortex and hippocampus bilaterally (N = 12/anti-
body). In previous studies working with anti-Af anti-
bodies, a time-course revealed the optimal time-point to
examine the brain post-injection is 72 h [42]. Using that
study as our guide, mice survived for 72 h and upon eu-
thanasia, the right hippocampus was flash frozen and
RNA was extracted to perform gene expression analysis.
The left hemisphere was immersion fixed in paraformal-
dehyde and processed for histology. We performed im-
munohistochemistry on tissue sections to identify the
location of the injection site and the spread of anti-
bodies. As in our previous report with the intracranial
injection of AP antibodies, we found the injected anti-
body did not spread far from the injection site (Fig. 2a);
hence, we stayed within a 600-um range of tissue

sections for our analyses. Given we hypothesized that
Trem2 activation would modulate the immune response
in the brain, we used RNA extracted from the right
hippocampus to perform real-time RT-PCR for inflam-
matory genes. The data are shown as a fold change from
the 5XFAD mice receiving control IgG (Fig. 2b). We
found at 72 h, there was a significant increase in both
pro-inflammatory (IL1p, TNFa, CCL3, CCL5, CCR2,
CXCL10, Gata3, Rorc) and anti-inflammatory (YMI,
CD86) mediators as a result of AL002a treatment
compared to mice injected with control antibody. To de-
termine microglial activation, we performed immunobhis-
tochemistry for CD11b, which labels both activated and
resting microglia. Activated microglia express greater
levels of CD11b and cover a greater area due to the
enlarged cell bodies and thickened processes associated
with activation. We found a significant increase in
CD11b immunoreactivity in 5XFAD and WT mice
treated with a Trem2-agonizing antibody (AL002a)
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indicate the exact injection site. Panel b shows the RT-PCR data obtained from the right hippocampus of the injected mice. All data are shown as
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compared to the IgG1 isotype control (MOPC) treated
mice, suggestive of microglial activation in the regions
injected with AL002a compared to the same regions
injected with control antibody (Fig. 2c).

The deposition of AB occurs as both diffuse and com-
pact plaques with the vast majority of AP deposited be-
ing diffuse. Immunohistochemistry for total AB, which

detects both compact and diffuse deposits, in 5XFAD
transgenic mice receiving control antibody revealed a
typical staining pattern for mice of this age (Fig. 2d)
[38]. Conversely, compared to mice receiving the control
antibody, mice receiving the AL002a antibody exhibited
significant reductions in total A immunohistochemistry
in both the frontal cortex and hippocampus. In the
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frontal cortex, AP deposition was reduced by 40%, and
in the hippocampus, A deposition was reduced by 30%
(Fig. 2d). The histological dye Congo red labels only
compact amyloid deposits and stains approximately 10%
of the material stained by immunohistochemistry for
total A at this age. As shown in Fig. 2e, the distribution
of Congophilic deposits resembles that observed for total
APB. Mice receiving the AL002a antibody showed non-
significant reductions in Congo red labeling when com-
pared to those mice receiving the control antibody (Fig.
2e).

Systemic administration of AL002a

Given the positive outcomes of our stereotaxic studies
above, we moved to perform a more clinically relevant,
chronic, systemic administration study. Twenty-four
male 5XFAD and fifteen male wildtype mice aged 4
months received AL002a (N = 12 5XFAD, N = 8 WT) or
MOPC control antibody (N = 12 5XFAD, N = 7 WT) at
a dose of 50 mg/kg/week administered intraperitoneally
for 14 weeks. Mice were tested in our behavioral para-
digms during the 2 weeks prior to sacrifice. The radial-
arm water maze (RAWM) is a behavioral test that reli-
ably detects spatial learning and memory deficits in aged
transgenic mice [41]. 5XFAD transgenic mice were
tested after 12 weeks of treatment with either AL002a or
control antibody (MOPC). Included in the task were
age-matched non-transgenic littermate mice treated with
ALO002a or control antibody (these mice were combined
due to no observable difference between the two treat-
ments in the non-transgenic mice). We found that the
5XFAD transgenic mice receiving control antibody were
significantly impaired when compared with the non-
transgenic mice (Fig. 3a). However, 5XFAD transgenic
mice treated with AL002a performed significantly better
than control-treated 5XFAD transgenic mice (Fig. 3a).
The AL002a-treated 5XFAD mice were indistinguishable
from the WT mice at the end of the second day of test-
ing, averaging less than one error, our criterion for the
stable acquisition of this task (Fig. 3a). In examining the
ALO002a effect at the end of the second day of testing, we
found that there was a significant reduction in the num-
ber of errors in the 5XFAD mice receiving AL002a com-
pared to 5XFAD receiving control antibody (Fig. 3b).
One week after completion of the RAWM, the novel ob-
ject recognition (NOR) task was performed to investigate
recognition memory [43]. We found that 5XFAD trans-
genic mice treated with the control antibody spent sig-
nificantly more time on the familiar object compared to
the 5XFAD mice treated with AL002a (Fig. 3c).

To detect IgG in the brain, we performed immunohisto-
chemistry for mouse IgG. We found that mice receiving
AL002a showed IgG labeling of cells with a glial appear-
ance, most likely microglia, which would be expected
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given the antibody’s specificity for Trem2 (Fig. 3d). Our
control antibody-treated mice showed only vessel labeling
and some non-specific labeling in the tissue, which could
reflect non-specific labeling of the amyloid deposits in the
tissue (Fig. 3d). Similar to what was observed in our
stereotaxic study above, immunohistochemistry detecting
total A, which detects both compact and diffuse deposits,
in the 5XFAD transgenic mice treated with control anti-
body showed a typical staining pattern for mice of this age
(Fig. 3e) [38]. The 5XFAD mice treated with AL002a
showed significant reductions in total A immunohisto-
chemistry in both the frontal cortex and hippocampus
compared to control treatment (Fig. 3e). In the frontal
cortex, AP deposition was reduced by 40%, and in the
hippocampus, AB deposition was reduced by 35% (Fig.
3e). The distribution of Congophilic deposits resemble
that observed for total AP (Fig. 3f); however, we found that
as the 5XFAD accumulate amyloid deposition, Congophi-
lic material did not significantly increase like a total amyl-
oid deposition. The 5XFAD mice treated with AL002a
showed significant reductions in compact amyloid de-
posits in only the hippocampus with no significant change
in the frontal cortex (Fig. 3f). Assessment of beta-amyloid
in the soluble and insoluble form isolated from the frontal
cortex showed that insoluble AB40 and AB42 were signifi-
cantly reduced by AL002a treatment, while soluble and in-
soluble AB38 remained unchanged, as did soluble AB40
and Ap42.

To characterize the neuroinflammatory response to
AL002a, we isolated RNA from the right hippocampus
and performed real-time RT-PCR for genes relatively
specific for inflammatory and anti-inflammatory proper-
ties. The data in Fig. 4a are shown as a fold change from
the 5XFAD mice treated with the control antibody. We
found after 14 weeks of treatment, there was a significant
increase in both pro-inflammatory (IL1p3, TNF«, CCL2,
CXCL10, Gata3, Rorc) and anti-inflammatory pheno-
typic markers (YM1 and IL1Rn) compared to control-
treated mice (Fig. 4a). Immunohistochemistry detecting
CD11b indicated a significant increase in CD11b positive
staining in 5XFAD mice treated with AL002a compared
to the 5XFAD mice treated with control antibody (Fig.
4b). During image processing, it was noted that there ap-
peared to be more cells associated with plaques in some
mice as compared to others (Fig. 4c). Using an analysis
method developed for this purpose, we calculated the
mean number of CD11b-positive cells per plaque for
each animal. We found significantly increased numbers
of CD11b-positive cells associated with plaques in mice
treated with AL0O2a compared to mice treated with
control antibody (Fig. 4c). The increase was approxi-
mately double the number of CD11b-positive cells in the
frontal cortex and triple the number of microglia in the
hippocampus per plaque.
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Discussion

Therapeutic approaches to the treatment of AD continue
to focus on the major pathological hallmarks of the dis-
ease: amyloid plaques and neurofibrillary tangles [44—46].
These two pathologies remain the requirements for the

diagnosis of AD. However, the explosion of genetic data
has suggested that the risk for sporadic AD is driven by
several distinct pathways such as neuroinflammation,
membrane turnover and storage, and lipid metabolism
[47]. Of particular importance was the description that a
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mutation in the TREM2 gene significantly increases an in-
dividual’s risk of developing AD [5, 6]. While this muta-
tion has low penetrance in the population, those who
carry the TREM2 R47H loss of function mutation have a
4.5-fold increased risk of developing AD compared to
those without the mutation. Our hypothesis in the current
study was that targeting TREM2 with an antibody, thereby
activating the receptor, would increase TREM2 function
leading to immune modulation, clearance of amyloid de-
position, and improved cognition without the need to dir-
ectly target the AP peptide itself. In testing this
hypothesis, the antibody AL002a, developed by Alector,
was found to activate Trem2 signaling in vitro and activate
immune responses in vivo when injected intracranially or
intraperitoneally. AL002a also activated microglial cells,
increased clustering of microglia around the amyloid

plaques, and ultimately resulted in reduced amyloid de-
position and improved cognition (cognition was only ex-
amined in the systemic administration study). We cannot
rule out systemic effects of the antibody treatment when
injected intraperitoneally. While we tried to examine
plasma for inflammatory mediators, we had insufficient
sample to detect cytokines. Our future studies will
prioritize this outcome measure. Importantly, during the
performance of these studies and preparation of this
manuscript, a publication by Schlepckow et al. demon-
strated that the 4D9 monoclonal TREM2 antibody en-
hances protective microglial activities, reduces amyloid
deposition, and stabilizes TREM2 on the cell surface [48].

It is not unusual to find an association between the
microglial activation and amyloid reductions. As far back
as 2000, lipopolysaccharide (LPS), the prototypical
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immune activator, was found to activate microglia and
reduce amyloid deposition [49]. Anti-Af} antibodies also
activate microglia and reduce amyloid deposition [42,
50]. It is interesting to compare and contrast the find-
ings of AL002a to an anti-Afp antibody treatment ap-
proach currently in clinical trials. We have previously
shown that anti-Ap immunotherapy activates microglia
[50-52] and alters neuroinflammatory gene expression
[53], but we find a unique inflammatory signature with
AL002a as opposed to the anti-Af antibody. AL002a in-
creased both pro-inflammatory and anti-inflammatory/
repair gene expression, while anti-Ap antibodies have
only been shown to increase pro-inflammatory gene ex-
pression and, in some cases, decrease the anti-
inflammatory gene expression. It is possible that the in-
crease in gene expression by AL002a represents a more
homeostatic neuroinflammatory response with a more
limited capacity to induce the surrounding tissue dam-
age while also ameliorating the amyloid deposition. This
is purely speculative, however, given the limited number
of genes examined in the current study. A more un-
biased assessment of gene expression in the future could
address this issue more fully. We do not believe that our
observation is a non-specific IgG response considering
we are showing gene expression differences between
AL002a and control antibody, which were injected at the
same concentration. We also explored whether the anti-
body is modulating sTrem2 levels, but could not detect
circulating Trem?2 in the plasma. Future studies will col-
lect more plasma to allow us to perform detailed ana-
lyses of the systemic response to this treatment.

We found immune-associated genes being expressed in
different ways depending on the route of administration.
Following the intracranial administration of AL002a, we
found almost every gene measured was increased com-
pared to the age-matched 5XFAD mice receiving an intra-
cranial injection of control antibody. This likely reflects
the acute response to the antibody and activation of
Trem2. In contrast, following 14 weeks of systemic admin-
istration, the chemokines CCL3, CCL5, and CCR2 were
not significantly increased whereas IL1 and IL1Rn were
significantly increased. CCR2 is a chemokine receptor
expressed on microglia thought to mediate the accumula-
tion of phagocytes at sites of inflammation [54]. CCL2 and
CCL5 are chemokines that have been shown to increase
the chemotaxis of microglia toward amyloid deposits [55].
The increased CCL2 and CCL5 expression, along with the
increased CCR2 expression could be responsible, in part
at least, to the increased clustering of microglia around
the amyloid deposits seen in our systemic administration
study. We also found increases in two key genes that are
associated with T cell differentiation into Th1l7 cells;
Gata3 and Rorc [56]. While increased expression of IL1
and TNFa are sometimes associated with tissue damage
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and neurodegeneration, in some settings, the increase in
these pro-inflammatory cytokines accompanies the clear-
ance of pathological proteins such as amyloid deposits
[57, 58]. Anti-Ap antibodies have been shown to increase
these cytokines [53], as has genetic deletion of IL-10 [59]
and injection of LPS [49, 60]. Additionally, the reductions
in these cytokines have been associated with worse cogni-
tive outcomes and exacerbation of amyloid deposition as
observed when IL10 is over-expressed [61], or when lith-
ium is administered to mice, which enhances IL-10 signal-
ing [62]. It is our hypothesis that the enhanced expression
of inflammatory genes in the current setting is balanced
by the YM1, IL1Rn, and CD86 expression, thereby limit-
ing the capacity for tissue damage. Future studies will fur-
ther examine this hypothesis. It is also likely that some of
the differences between our intracranial and systemic ad-
ministration studies reflects the difference between an
acute inflammatory response including a stab wound from
the needle and a slower response to smaller levels of the
antibody in the brain, accumulating over time.

By using two distinct behavioral paradigms in the
current study, we are confident in concluding that
AL002a significantly enhances cognition, or at the very
least, prevents progression of cognitive decline, in the
5XFAD mouse model. The 2-day radial arm water maze
task was designed to test both working memory (the day
1 learning) and long-term spatial memory (day 1 to day
2 retention). The novel object recognition task, as used
in the current study, is a useful task to assess short-term
memory. Both tasks have been shown to be heavily hip-
pocampal dependent, but also have aspects of cortical
involvement [63, 64]. In contrast to the radial arm water
maze, the novel object recognition does not rely on mo-
tivation or reward, but simply on the innate exploratory
behavior of a mouse. We found robust improvements in
cognition with AL002a systemic administration as de-
tected in either the radial arm water maze task or the
novel object recognition task.

Conclusion

In summary, here we show that the therapeutic targeting
of Trem2 using a Trem2-activating antibody leads to the
activation of microglia, recruitment of microglia to amyl-
oid plaques, reduced amyloid deposition, and ultimately,
improved cognition. Trem2-deficient microglia fail to
fully activate into phagocytic, disease-associated micro-
glia and to express the associated gene signature in
amyloid-depositing mice. Likewise, Trem2-deficient
microglia fail to clear myelin debris. Our data support a
critical role for Trem2 in microglial phagocytosis with
increased microglial clustering at amyloid plaques and
reductions in amyloid deposition using a Trem2-
activating approach. We predict that activation of
TREM?2 through the use of antibodies like AL002a will
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prove to be a novel, innovative therapeutic approach to
the treatment of AD that will lack the adverse events ob-
served with direct binding of AP in the brain by anti-Ap
antibodies.
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