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Early leucine programming on protein

utilization and mTOR signaling by DNA
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Abstract

Background: Early nutritional programming affects a series of metabolism, growth and development in mammals.
Fish also exhibit the developmental plasticity by early nutritional programming. However, little is known about the
effect of early amino acid programming on growth and metabolism.

Methods: In the present study, zebrafish (Danio rerio) was used as the experimental animal to study whether early
leucine stimulation can programmatically affect the mechanistic target of rapamycin (mTOR) signaling pathway,
growth and metabolism in the later life, and to undercover the mechanism of epigenetic regulation. Zebrafish
larvas at 3 days post hatching (dph) were raised with 1.0% leucine from 3 to 13 dph during the critical
developmental stage, then back to normal water for 70 days (83 dph).

Results: The growth performance and crude protein content of zebrafish in the early leucine programming group
were increased, and consistent with the activation of the mTOR signaling pathway and the high expression of
genes involved in the metabolism of amino acid and glycolipid. Furthermore, we compared the DNA methylation
profiles between the control and leucine-stimulated zebrafish, and found that the methylation levels of CG-differentially
methylated regions (DMGs) and CHH-DMGs of genes involved in mTOR signaling pathway were different between the
two groups. With quantitative PCR analysis, the decreased methylation levels of CG type of Growth factor receptor-
bound protein 10 (Grb10), eukaryotic translation initiation factor 4E (eIF4E) and mTOR genes of mTOR signaling pathway
in the leucine programming group, might contribute to the enhanced gene expression.

Conclusions: The early leucine programming could improve the protein synthesis and growth, which might be
attributed to the methylation of genes in mTOR pathway and the expression of genes involved in protein synthesis
and glycolipid metabolism in zebrafish. These results could be beneficial for better understanding of the epigenetic
regulatory mechanism of early nutritional programming.

Keywords: Leucine, Early nutritional programming, mTOR singling pathway, Protein synthesis, Glycolipid metabolism,
DNA methylation
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Introduction
The nutritional programming stimulus exerted at the
critical stages of early ontogeny might have persistent
consequences on physiological functions in later life
stages in mammals [1]. Early nutritional programming is
one of the important methods to change the metabolic
reaction in later life [2]. Previous studies have been
undertaken in fish to determine if the metabolic pathway
can be influenced in later life via early nutritional pro-
gramming [3–6]. At the critical stage of early development
of the individual, fish also have significant developmental
plasticity by early nutritional programming, as in mam-
mals [7]. Early long-chain n-3 high unsaturated fatty acids
programming during the critical developmental stage
could have a persistent impact on growth performance
and lipid metabolism in later life of Siberian sturgeon
(Acipenser baerii Brandt) [8]. In rainbow trout (Oncorhyn-
chus mykiss), early high-carbohydrate diet stimulation has
a lasting impact on the genes and enzymes of carbohy-
drate digestion, glucose transport and metabolism at
juvenile stage [3, 9, 10]. However, little is known about the
effects of early amino acid programming on growth and
nutritional metabolism.
Leucine plays a vital role in protein synthesis and deg-

radation in mammals [11]. The lack or excess of dietary
leucine levels reduces the feed utilization and thus af-
fects growth performance in fish [12–14]. In mammals,
dietary leucine supplementation has been verified to
stimulate protein synthesis via activating the mTOR
pathway [11]. Leucine can activate the mTOR signaling
pathway in central nervous system of rainbow trout,
thereby regulating the digestion and absorption of nutri-
ents [15]. In rainbow trout hepatocytes, leucine stimula-
tion could regulate the mTOR signaling pathway,
lipogenesis and gluconeogenesis [16, 17]. However, the
knowledge of effect of early leucine programming on nu-
tritional metabolism through mTOR signaling pathway
is still limited.
Epigenetic modification is one of the most likely candi-

dates for working on the nutritional programming. Previous
researches have mainly focused on the epigenetic regulation
mechanisms of nutritional or metabolic programming [18,
19]. DNA methylation is one of the most intensely studied
epigenetic modifications, and plays a vital role in the regula-
tion of biological processes, such as cell differentiation,
embryogenesis, genomic imprinting and gene expression
[20, 21]. Early methionine programming has been shown to
affect the DNA methylation in later life via controlling one-
carbon metabolism in mammals [22, 23]. In rainbow trout,
the methionine level could be of critical importance in
metabolic programming, and modified DNA methylation
levels at some specific loci of bnip3a and bnip3lb1 [24].
However, few data are available on epigenetic regulatory
mechanisms of early leucine programming in fish.
In the present study, we used the leucine immersion at
early stage of development of zebrafish to study whether
early leucine stimulation can programmatically affect the
mTOR signaling pathway, growth and nutrition metab-
olism, and to investigate the DNA methylation involved
in the early leucine programming. This is the first study
to explore the global methylation profile of early amino
acid programming in zebrafish. It might provide a theor-
etical basis for the molecular regulatory mechanisms of
early nutritional stimulation on growth and metabolism
in later life of animals.

Materials and methods
Fish and samples
All zebrafish embryos used in this study were obtained
from Institute of Hydrobiology, Chinese Academy of Sci-
ences (Wuhan), and hatched in a 28 °C incubator. The
zebrafish larvas were maintained in the circulating water
system at 27–28 °C (12 h light: 12 h dark photoperiod).
The larvas at mouth opening period were fed with egg
yolk twice per day, and then a gradual replacement with
brine shrimp occurred from 5 dph, till the larvas were
exclusively fed with brine shrimp, which was one of the
general foods for zebrafish. The brine shrimp larvas were
purchased from Tianjin Fengnian aquaculture Lit. (Tianjin,
China), and hatched in a salty water of 16–17 ‰ at 27 ±
1 °C for 24 h. The brine shrimp contains 49.6% of crude
protein, 13% of moisture, 3.4% of ash, 5.2% of crude fat. To
eliminate the effect of change of diet on gene or protein ex-
pression, zebrafish was fed with brine shrimp during the
whole experiment period. The zebrafish larvas at 3 dph
were randomly assigned into the control group (without
programming) and the leucine programming group with
three replicates (n = 300) for each group. Larvas in the leu-
cine programming group were cultured in the water with
1% leucine (pH = 6.8 ± 0.1) for 10 days from 3 to 13 dph,
and then reared in normal water for 70 days from 13 to 83
dph. The immersion treatments were conducted as a simi-
lar manner described by the previous study [25]. The con-
trol group was cultured in normal water (pH = 7.2 ± 0.1)
during the whole experiment period. The zebrafish larvas
were sampled at 13 and 83 dph, respectively. The body
weight and total length were measured. The experiments
were performed in accordance with the “Guidelines for
Experimental Animals” of the Ministry of Science and
Technology (Beijing, China). The study was approved by
the Institutional Animal Care and Use Ethics Committee of
Huazhong Agricultural University. All efforts were made to
minimize suffering.
The whole fish (13 dph) were sampled for analyzing

leucine content in whole-body of fish with the leucine
immersion treatment. The whole-body samples were
freeze-dried and finely ground using a grinder, and acid
hydrolysis was performed. After filtration with a 0.22 μm



Table 1 Primers of all genes for qRT-PCR are listed

Sequence 5′-3′ Tm (°C)

accα F: GTGGAAACAAAGTTATTGAGAAGG 55

R: GTAAGCCCAGCGTCGGA

cpt1 F: ATCAGCACTGTTGAGCGAAG 59

R: CACTCCCTCCCTACTTATCTCC

cs F: TTCGCTCGGGCGTATTCT 59

R: GCTGCTGCCTTCACGGTAT

fas F: GATGGACGAGTGCTTTACCC 55

R: ATGGTGGCTCTATGGATGGT

got F: GCTAAAGGCTTACACCTACTAT 56

R: GTCAAAGAACACCAGGAGAT

gpt F: AGAAGACCCTGACGATGGAC 56

R: GAGGAAGGTGATTGGTTGCT

Pfk1 F: AACGAACTCTTCCAAACTCCTG 55

R: GACTCCTTCATACGCCTCAAAT

mtor F: GCCGCTTTGCCAACTATTT 55

R: TCGTCTGCCTTCATTCCTG

leptinA F: ATTCCCGCTGACAAACCC 56

R: GTAACCCAGAAGTGTGGATAGATC

leptinB F: CCCCGTCACCTCCAACTACCT 59

R: CAGAGAATGAATGTCTCAGCCACA

grb10 F: TCCGAACCCTTTCCCTGAG 60

R: CTTCCACAACTTTTCCCACA

wdr24 F: TTACTGAGCGGCAAACCC 57

R: TGATTCGCAGCATCGTCC

eif4e F: AGTGATGATGTCTGTGGTGCTG 61

R: TGTTCTCGTAGTCTGTCGTCC

β-actin F: CACCTTCCAGCAGATGTGGA 58

R: AAAAGCCATGCCAATGTTGTC
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membrane filter, the analysis of leucine was carried
out by using A300 amino acid analyzer (membraPure
Bodenheim, Germany) [26], with the experiment par-
ameter: sulfonic acid cation resin chromatography col-
umn (4.6 mm × 60.0 mm), column temperature of
57.0 °C, reactor temperature of 130 °C, the flow rate
of pump A (elution solution) of 0.40 mL/min, the
flow rate of pump B (ninhydrin solution) of 0.35 mL/
min, the sample volume of 20 μL, the detection wave-
length of 570 nm.

Body composition analysis
Six zebrafish at 83 dph were randomly selected and
stored at − 20 °C, which were used for body composition
analysis. The whole-body compositions were determined
by the standard methods [27]. The moisture was ana-
lyzed by drying at 105 °C for 6 h. By using the Kjeltec
system after acid digestion (K8400 Kjeltec Analyzer,
Fossana Lyticab, Sweden), the determination of crude
protein (N × 6.25) was conducted. The crude lipid was
measured by using the ether-extraction with Soxtec
System HT (SE-A6, Alvah, China).

Real-time qPCR analysis
Total RNA was extracted from whole fish (13 dph) and
liver tissue (83 dph) using TRIzol reagent (TaKaRa,
Japan) and purified for expression analysis of mRNA.
Afterwards, total RNA was reverse transcribed via using
HiScript II Q RT SuperMix reverse transcriptase
(Vazyme, Piscataway, NJ, USA). After complementary
DNA (cDNA) synthesis, the expression level of mRNA
was detected according to ChamQ SYBR qPCR Master
Mix (Vazyme, Piscataway, NJ, USA). Design primers ac-
cording to Primer5 software, expression levels of mRNA
were analyzed by a CFX Maestro real-time detection sys-
tem (Bio-Rad, USA). Relative gene expression was calcu-
lated using the 2−ΔΔCt method [28], each sample was
repeated at least three times. Primers of all genes for
Real-time qPCR analysis are listed in Table 1.

Western blot analysis
The whole fish (13 dph) and liver tissues (83 dph) stored
at − 80 °C were solubilized in RIPA lysis buffer. The pro-
tein content was determined using BCA protein assay
kit (Yeasen, China). The proteins were separated on 10%
SDS-PAGE gel, and then transferred onto PVDF mem-
brane. Anti-phospho ribosomal protein S6 kinase 1
(S6K1) (Thr389), anti-S6K1, anti-phospho ribosomal
protein S6 (S6) (Ser235/236), anti-S6 and anti-phospho
Grb10 (Ser476) were purchased from Cell Signalling
Technology (USA), anti-β-actin antibody from Bioss
(China), anti-β-tubulin antibody from Zoman Biotech-
nology (China). Blots were probed by goat anti-rabbit
and goat anti-mouse second antibody with IR-Dye 680
or 800cw labeled (Licor, USA) at room temperature for
1 h. The membranes were then visualized using a LiCor
Odyssey scanner (Licor, USA) and quantified with Ima-
geJ 1.44 software (National Institute of Health, MD).
The phosphorylation level of S6 and S6K1 were normal-
ized according to the loading of proteins by expressing
the data as a ratio of phospho-S6 and phospho-S6K1
over S6 and S6K1, respectively. Besides, the phosphoryl-
ation level of Grb10 were normalized according to the
loading of proteins by expressing the data as a ratio of
phospho-Grb10 over β-actin.

Methylome sequencing
The genomic DNA was extracted from the liver tissue of
zebrafish (83 dph) with a DNA extraction kit (Tiangen,
China), and the DNA concentration was determined
with a multi-function microplate reader (BioTek, USA).
The contamination and degradation of genomic DNA



Fig. 1 The leucine level in whole-body of zebrafish after early
leucine programming at 13 dph. The value represented mean ± S.
E.M. (n = 6), marked with an asterisk means significant level (P < 0.05)
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was examined with 1% agarose gel electrophoresis. For
whole genome bisulfite sequencing (WGBS) technology
library constructing, the genomic DNA was fragmented
to an average size of approximately 250 bp by sonication
using a Bioruptor (Diagenode, Belgium), followed by end
repair and adenylation. Ligated DNA was bisulfite con-
verted using the EZ DNA Methylation-Gold kit
(ZYMO). Different insert size fragments were excised
from the same lane of a 2% TAE agarose gel. Products
were purified by using QIAquick Gel Extraction kit
(Qiagen) and amplified by PCR. Sequencing was per-
formed using HighSeq4000 platforms. The library con-
struction and sequencing were performed by Beijing
Genomics Institute (BGI)-Shenzhen (Shenzhen, China).
After filtering adaptor sequences, contamination and low-

quality reads, the clean reads data was mapped to the refer-
ence genome of zebrafish (Danio rerio assembly GRCz11,
https://www.ncbi.nlm.nih.gov/genome/?term=Danio+
rerio%5Borgn%5D) by Bisulfite Sequence Mapping Program
(BSMAP), and then removed the duplication reads and
merged the mapping results according to each library. We
calculated the mapping rate and bisulfite conversion rate of
each sample. The DMRs between the control group and leu-
cine programming group were identified by comparison of
the sample methylomes from two groups using windows
that contained at least 5 CpG (CHG or CHH (H=C, T and
A)) sites with a 2-fold change in methylation level, and
Fisher Test P value ≤0.05. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of genes related to DMRs were considered signifi-
cantly enriched KEGG and GO terms with corrected P
values of less than 0.05. DNA methylation status of the
genes involved in mTOR signaling pathway were displayed
by Integrative Genomics Viewer (IGV 2.8.x).

Statistical analysis
Statistical analyses were performed with SPSS 19.0 soft-
ware. All data were tested for normality and homogen-
eity of variances using the Shapiro-Wilk’s test and
Levene’s test, respectively. Significant differences were
found using one-way analysis of variance (ANOVA),
followed by Fisher’s least significant difference post hoc
test and Duncan’s multiple range tests, after confirming
data normality and homogeneity of variances. Differ-
ences were considered be significant if P < 0.05.

Results
Effects of early leucine programming on growth and
body composition
We analyzed the leucine level in whole-body of zebrafish
after early leucine programming at 13 dph. The result
revealed that the leucine level in zebrafish of the leucine
programming group was higher than that of the control
group at 13 dph (P < 0.05) (Fig. 1). The total length of
zebrafish in the leucine programming group was higher
than that in the control group at 13 dph (P < 0.05).
Meanwhile, the total length and body weight of zebrafish
in the leucine programming group also increased signifi-
cantly (P < 0.05) at 83 dph (Table 2). The content of
total water, crude protein and crude lipid were detected
in zebrafish larvas at 83 dph. The total water content
showed no significant difference between the two groups
(P > 0.05), and the content of total crude protein in the
larvas of leucine programming group was significantly
increased (P < 0.05), whereas the total crude fat was sig-
nificantly decreased (P < 0.05) (Table 3).

Effect of early leucine programming on mTOR signaling
pathway
The phosphorylation status of mTOR downstream fac-
tors (S6K1, S6, Grb10) and the mRNA expression of
mtor gene were displayed in Fig. 2. At 13 dph, the abun-
dance of phosphorylated S6K1, S6 and Grb10 were in-
creased in the larvas treated with leucine (P < 0.05).
Furthermore, at 83 dph, compared with the control
group, leucine programming also leaded to the higher
abundance of phosphorylated S6K1 and S6 (P < 0.05).
The abundance of phosphorylated Grb10 showed no sig-
nificant difference between the two groups (P > 0.05)
(Fig. 2a, b, c). Meanwhile, the mRNA expression of mtor
gene was analyzed by real-time qPCR, and the mRNA
levels of mtor in the leucine programming group were
significantly higher than those in the control group at 13
dph and 83 dph (P < 0.05) (Fig. 2d).

Expression of genes related to glucose, lipid and protein
metabolism
The expression of genes involved in glucose, lipid and
protein metabolism, were analyzed by real-time qPCR
(Fig. 3). Compared with the control group, the mRNA
levels of carnitine palmitoyl transferaseI (cpt1), phospho-
fructo kinaseI (pfk1), glutamic-pyruvic transaminase

https://www.ncbi.nlm.nih.gov/genome/?term=Danio+rerio%5Borgn%5D
https://www.ncbi.nlm.nih.gov/genome/?term=Danio+rerio%5Borgn%5D


Table 2 Growth performance of zebrafish at 13 and 83 dph

13 dph 83 dph

Control Leucine Control Leucine

Body weight (mg) – – 87.61 ± 3.10a 127.67 ± 2.84b

Total length (mm) 7.36 ± 0.25a 7.56 ± 0.22b 18.91 ± 0.35a 24.11 ± 0.22b

Data represent mean ± SEM (n = 6), values that share different letters are significantly different (P < 0.05)
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(gpt), and leptin A and B of zebrafish larvas in the leu-
cine programming group were significantly higher at 13
dph and 83 dph (P < 0.05). The mRNA levels of citrate
synthase (cs), acetyl-CoA carboxylase alpha (accα) and
fatty acid synthase (fas) of fish in the leucine program-
ming group were significantly increased at 83 dph
(P < 0.01), but no significant difference at 13 dph. The
abundance of glutamic-oxaloacetic transaminase (got) of
fish in the leucine programming group was significantly
decreased at 13 dph (P < 0.01), but no significant differ-
ence at 83 dph (P > 0.05).

Bisulfite sequencing and DNA methylation profiling
To study the genome-wide DNA methylation pattern,
we collected the liver tissues from zebrafish in the con-
trol group and leucine programming group for con-
structing genomic DNA libraries. Averagely 30 Gb clean
bases after filtering low-quality reads, N reads and
adaptor sequences were generated. The sequencing data
in this study have been deposited in the Sequence Read
Archive (SRA) database (accession number: SUB6149613
and PRJNA559591). The BS conversion rates of genomic
DNA ranged from 99.44 to 99.51%. The high-quality
methylation maps of the two groups were obtained, and
the unique mapping rates ranged from 56.10 to 58.48%
(Additional file 1). Proportion in total methyl-cytosine of
mCG, mCHG and mCHH was summarized for each
sample. In the control group, we detected 24,783,377
mC sites, 23,647,352 mCG cites (95.42% of all mC), 265,
324 mCHG sites (1.07% of all mC), 870,701 mCHH sites
(3.51% of all mC), respectively. Similarly, there were
95.57% mCG, 1.04% mCHG, and 3.39% mCHH in the
leucine programming group (Additional file 2).
We computed the average level of genome-wide

methylation and found that the genome-wide methyla-
tion levels of total cytosine and CG methylation types
showed no significant difference between the control
and leucine programming group, while those of CHG
Table 3 Body composition analysis of zebrafish at 83 dph

Control Leucine

Moisture (%) 74.14 ± 0.22 73.59 ± 0.29

Crude Protein (%) 16.03 ± 0.17a 18.27 ± 0.20b

Crude Lipid (%) 7.58 ± 0.09a 5.12 ± 0.10b

Data represents mean ± SEM (n = 6), values that share different letters are
significantly different (P < 0.05)
and CHH methylation types in fish of the leucine pro-
gramming group were significantly increased (Fig. 4a). To
further study the global DNA methylation profile, we ana-
lyzed the DNA methylation levels of different genomic re-
gions (Fig. 4b, c, d). The average methylation levels of
different genomic regions showed no difference between
the two groups. A major proportion of methylated sites
were present in the regions of introns, and the average
methylation level of CDSs was the lowest. In order to re-
veal the relationship between DNA methylation profiles
and genes expression, we analyzed the DNA methylation
profiles of transcriptional units which were divided into
functional elements as shown in Additional file 3. Similar
tendencies of methylation change were observed in differ-
ent functional elements between the two groups.
DMRs were stretches of DNA in a sample’s genome that

have different DNA methylation patterns compared with
other samples, a sliding-window approach was used to
identify DMRs which contained at least five CG (CHH or
CHG) sites. We identified a total of 199,750, 671 and 8314
DMRs in CG, CHG, and CHH contexts (CHH-DMRs,
CHG-DMRs, and CG-DMRs) between zebrafish of the con-
trol group and leucine programming group at 83 dph, re-
spectively. The CG-DMRs, CHG-DMRs and CHH-DMRs
were located in 44,459, 1128 and 9572 genes, respectively.
The vast majority of DMRs (95.7%) were in the CG context,
while only 4.3% DMRs were in CHG and CHH.
DMRs-related genes were analyzed using KEGG data-

base. In gene body region, 304, 241 and 297 pathways were
identified from CG-DMRs, CHG-DMRs and CHH-DMRs,
respectively. Furthermore, in promoter region, 302, 75 and
226 pathways were identified from CG-DMRs, CHG-
DMRs and CHH-DMRs, respectively. The top 20 pathways
in ascending order of corrected p value were listed in Add-
itional file 4. To investigate pathways and processes that
may be subject to epigenetic variation in association with
DMRs, we conducted a GO enrichment analysis. It is re-
vealed that genes involved in GO terms such as cellular
process, biological regulation, metabolic process, binding,
catalytic activity, and response to stimulus were significantly
over-represented. The top 60 GO terms were listed in
Additional file 5 by ascending order of corrected p value.

Validation of target DMGs by real-time qPCR
The present study focused on the mTOR signaling path-
way. According to the bisulfite sequencing, we found



Fig. 2 The phosphorylation status of mTOR downstream factors (S6K1, S6, Grb10) and the mRNA expression of mtor gene were displayed.
Western blot analysis of phosphorylation status of mTOR downstream factors S6K1 (a), S6 (b) and Grb10 (c), meanwhile, the mRNA expression of
mtor gene was analyzed by real-time qPCR (d). Each value is the mean ± S. E.M. (n = 6). Values marked with an asterisk means significant
level (P < 0.05)
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that 28 CG-DMGs (such as mTOR, Deptor, eIF4E, 4E-
BP, Grb10, mLST8 and SGK1) involved in mTOR signal-
ing pathway, exhibited the lower levels of DNA methyla-
tion in fish of the leucine programming group than
those of the control group (Fig. 5a). Meanwhile, we also
found that 21 CHH-DMGs (such as mTOR, Grb10, GA-
TOR1, GATOR2 and eIF4E) involved in mTOR signaling
pathway, exhibited the higher levels of DNA methylation
in fish of the leucine programming group than those of
the control group (Fig. 5b).
The changes of methylation levels in genomic regions

could be associated with the differential expression of
genes. To analyze the expression of the DMGs in mTOR
signaling pathway, the real-time qPCR was carried out
for four DMGs in fish from the leucine programming
group and control group. As shown in Fig. 6a, the
mRNA levels of Grb10, eIF4E and mTOR genes were
significantly higher in fish of the leucine programming
group than those of the control group (P < 0.05). Mean-
while, the methylation status of Grb10, eIF4E, mTOR
and Wdr24 genes in CG and CHH types were shown in
Fig. 6b and c.

Discussion
Several studies in mammals reported that nutrient and
metabolic programming during the critical periods of
early development might result in the long-term genetic
and physiological consequences during adulthood [1,
29–31]. The concept of early nutritional programming
has been applied to improve the nutrient utilization in
adult fish [3, 4, 6]. However, no effect is recorded for nu-
tritional programming of amino acids. In the present



Fig. 3 The mRNA expression of genes related to metabolism. The value represented mean ± S. E.M. (n = 6), marked with an asterisk means
significant level (P < 0.05), marked with two asterisk means extremely significant level (P < 0.01)

Zhu et al. Nutrition & Metabolism           (2020) 17:67 Page 7 of 13
study, we attempted to treat zebrafish larvas with leucine
at early developmental stage for assessing the short-term
and long-term modifications of early leucine program-
ming on growth and nutritional utilization.
Leucine participates in the regulation of protein me-

tabolism through mTOR signaling pathway [32, 33].
However, it has not yet been determined if leucine could
improve the growth and nutritional utilization by early
stimulation. The leucine level in whole-body of zebrafish
after early leucine programming was significantly higher
than that of the control group at 13 dph, suggesting that
the treatment of 1% leucine could change the leucine
content of zebrafish. Zebrafish larvas were treated with
leucine from 3 dph to 13 dph, and the growth was sig-
nificantly better than those in the control group at 13
and 83 dph. Previous study reported that the growth and
survival rate were affected by neither early glucose
stimulus nor dietary challenge with high carbohydrates
[34]. Early hyperglucidic stimulation had no significant
effect on body weight in rainbow trout and zebrafish
during a long experimental period [3, 6]. However, an
early stimulus of high carbohydrate diet (60%) at first-
feeding can lead to the detrimental effects in the long-
term growth performance [35]. In the present study, the
early leucine programming could markedly promote the
growth of zebrafish at both early developmental stage
and adult stage. By the body composition analysis at 83
dph, we found that the crude protein content of zebra-
fish with early leucine programming was increased, while
the crude lipid was decreased, and the total water
showed no difference. The study in gilthead seabream
(Sparus aurata) juvenile, showed that early glucose stim-
uli at the larval stage has the positive effect on lipid re-
tention, but not on protein saving [36]. However, it is
suggested that early leucine programming could effect-
ively improve the growth of zebrafish, which might be
attributed to the increased protein synthesis and lipid
decomposition.
Leucine activates the utilization of amino acids for

protein synthesis and inhibits protein catabolism
through mTOR pathway [12, 37]. To investigate whether
early leucine programming in zebrafish can promote the
growth and protein synthesis through activating mTOR
pathway. We examined the phosphorylation status of
mTOR downstream factors S6K1, S6 and Grb10, and
found that the early leucine programming could con-
tinuously activate the mTOR signaling pathway at both
13 and 83 dph, with higher phosphorylation status of



Fig. 4 The average genome-wide methylation levels (a) and DNA methylation levels of different genomic regions (b-d). The value represented
the mean ± S. E.M. (n = 3), marked with an asterisk means significant level (P < 0.05). A: X-axis represented methylation types, Y-axis represented
average genome-wide methylation levels. B: X-axis represented genomics features, Y-axis represented methylation levels. b CG regions, c CHG
regions, (d) CHH regions
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S6K1 and S6. In addition, the mRNA level of mtor gene
was also increased in the leucine programming group,
suggesting the activation of mTOR signaling. The leu-
cine in the diet plays an important role in regulating
growth performance, body composition, and mTOR sig-
naling pathways in fish [14, 38, 39]. With the injection
of leucine in the hypothalamus of rainbow trout, the
mTOR signaling pathway in central nervous system is
activated, thereby regulating the digestion and absorp-
tion of nutrients [15]. In rainbow trout hepatocytes,
amino acids up-regulate the protein synthesis by activat-
ing mTOR signaling pathway [16, 17]. We therefore sur-
mised that the early leucine programming could
effectively activate the mTOR signaling pathway, which
might promote protein synthesis in a long-term period
of zebrafish.
In juvenile blunt snout bream (Megalobrama amblyce-

phala), dietary leucine supplement can affect glucose
metabolism and lipogenesis involved in mTOR signaling
pathway [40]. To study the effect of early leucine stimu-
lation on nutritional metabolism, we analyzed the
mRNA expression of genes related to nutritional metab-
olism in zebrafish. GOT and GPT are the important
amino acid-degrading enzymes, and their activities posi-
tively correlated to dietary protein levels in Jian carp
(Cyprinus carpio var. Jian) [41]. With the early leucine
programming, the gpt mRNA expression was upregu-
lated in the zebrafish at 83 dph, whereas the got was not
significantly affected. The gene expressions of lipogen-
esis enzymes (accα, fas and cs) were increased with the
early leucine programming, and the gene expression of
fat β-oxidation key enzyme (cpt1) was also significantly
increased, suggesting that the early leucine programming
could accelerate the synthesis and oxidative decompos-
ition of lipid, improving the utilization of lipid. In rain-
bow trout hepatocytes, leucine could activate the mTOR
signaling pathway to up-regulate the gene expression of
fas, promoting lipid synthesis [16]. In addition, for glu-
cose metabolism, the mRNA level of glycolysis gene
(pfk1) was also significantly elevated by the early leucine
programming. We also found a significant up-regulation
of leptin A and B in the leucine programming group.
Leptin signaling regulates glucose homeostasis but is not
an adipostatic factor in zebrafish [42]. mTORC1 is suffi-
cient to affect metabolic pathways by activation of a
transcriptional program for metabolic gene targets of



Fig. 5 Differentially methylated genes of mTOR signaling pathway at CG (a) and CHH types (b). Compared with the control group, the red
marked that the methylation levels of the genes were higher in zebrafish of the leucine programming group, and the green marked the
lower levels
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sterol regulatory element-binding protein (SREBP), in-
cluding glycolysis, pentose phosphate pathway and lipid
biosynthesis [43]. Therefore, early leucine stimulation
could increase the phosphorylation level of protein S6K1
and S6, as the regulatory signaling of mTOR pathway,
promoting protein synthesis and growth. Meanwhile, the
glucose and lipid metabolism were also significantly en-
hanced, which might be related to mTOR signaling, in
zebrafish with early leucine programming.
There are increasing evidences that the early environ-

mental stimulation might cause changes in organisms
via epigenetic modification. Previous study in Nile tilapia
(Oreochromis niloticus) gonads has observed the DNA
methylation changes on a genome-wide scale after earl-
ier high-temperature induction [44]. Zebrafish embryos
are exposed to androgens (testosterone and dihydrotes-
tosterone) early at 26 to 56 h post fertilization, resulting
in transgenerational alterations in the zebrafish ovarian
epigenome [45]. In the present study, early leucine
stimulation led to the long-term changes of gene expres-
sion in zebrafish. We compared the genome-wide
methylation patterns between the control and leucine



Fig. 6 (See legend on next page.)
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(See figure on previous page.)
Fig. 6 The mRNA expression (a), the methylation status in CG (b) and CHH (c) type of DMGs involved in mTOR signaling pathway. All qRT-PCR
reactions were performed with six biological replicates, the value represented the mean ± S. E.M. marked with an asterisk means significant level
(P < 0.05). Displayed DNA methylation status of Grb10, eIF4E, mTOR and Wdr24 by IGV tool. Con-1, Con-2, Con-3: samples of the control group;
Leu-1, Leu-2, Leu-3: samples of the leucine programming group
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programming zebrafish. The methylation level of CpGs
in zebrafish liver was above 70%, similar to those found
in zebrafish and tilapia [46, 47]. The total DNA methyla-
tion level of CHG and CHH methylation types in fish of
the leucine programming group was higher than those
of the control group. In addition, we identified the path-
ways associated with energy metabolism in early leucine
programming. Among these pathways, the mTOR sig-
naling pathway is an attractive target, because it plays an
important role in the integration between amino acid
and energy-sensing pathways [48]. The most genes of
mTOR pathway were hypomethylated (lower methyla-
tion) for CG type and hypermethylated (higher methyla-
tion) for CHH type in the leucine stimulation group
compared with the control group. These results sug-
gested that the patterns of DNA methylation could be
highly plastic and react to the cues of early nutrition
induction.
To highlight the potential role of methylation of key

genes in mTOR signaling pathway with early leucine
programming, we examined the mRNA expression of
four genes in mTOR signaling pathway, including
Grb10, eIF4E, mTOR and Wdr24. The result showed the
increased mRNA expression of Grb10, eIF4E and mTOR
genes in the zebrafish with early leucine programming.
Grb10 is a key regulator of the mTORC1 signaling path-
ways on lipid metabolism [49]. The enhanced phosphor-
ylation state of eukaryotic initiation factor 4E-binding
protein 1 (4E-BP1) induced by administration of leucine
stimulates protein synthesis by accelerating translation
initiation [50]. We suggested that the decreased methyla-
tion in CG type and increased methylation in CHH type
of Grb10, eIF4E and mTOR genes, could contribute to
their enhanced gene expressions. There are complex re-
lationships between DNA methylation and gene expres-
sion. Generally, DNA methylation in promoters is
negatively associated with gene expression. In Nile til-
apia, high temperature increases the DNA methylation
level and decreases the mRNA expression of cyp19a1a
gene [51]. However, studies have also shown that DNA
methylation is not necessarily associated with the repres-
sion of gene expression, but exhibits the positive correla-
tions with transcription activation instead [52]. In the
study of Brassica napus, the gene expression of
BnaA0724700D and BnaA08g08410D are up-regulated,
although they exhibit opposite methylation patterns in
their promoters [53]. In the present study, the increased
methylation in CHH type were at the gene body region
of Grb10, eIF4E and mTOR genes. Therefore, we specu-
lated that the enhanced expression of Grb10, eIF4E and
mTOR genes in the zebrafish with early leucine pro-
gramming might be more possibly attributed to the de-
creased methylation in CG type at the gene promotor
regions. The study of genome-wide methylome has em-
phasized that the promoter methylation is closely related
to gene regulation [54].

Conclusions
For the first time, we used the DNA methylation profil-
ing to elucidate the regulatory mechanism of early
amino acid programming on nutritional utilization. We
found that the DNA methylation of genes involved in
mTOR signaling pathway may contribute to the activa-
tion of mTOR signaling, promoting protein synthesis
and growth of zebrafish with early leucine programming.
In addition, early leucine programming could enhance
the mRNA expressions of genes related to glycolipid me-
tabolism. The present study may be beneficial for better
understanding the epigenetic regulation in nutrition me-
tabolism by early programming.
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