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Quantitative tRNA-sequencing uncovers metazoan
tissue-specific tRNA regulation
Otis Pinkard1,4, Sean McFarland2, Thomas Sweet3✉ & Jeff Coller 4✉

Transfer RNAs (tRNA) are quintessential in deciphering the genetic code; disseminating

nucleic acid triplets into correct amino acid identity. While this decoding function is clear, an

emerging theme is that tRNA abundance and functionality can powerfully impact protein

production rate, folding, activity, and messenger RNA stability. Importantly, however, the

expression pattern of tRNAs is obliquely known. Here we present Quantitative Mature tRNA

sequencing (QuantM-tRNA seq), a technique to monitor tRNA abundance and sequence

variants secondary to RNA modifications. With QuantM-tRNA seq, we assess the tRNA

transcriptome in mammalian tissues. We observe dramatic distinctions in isodecoder

expression and known tRNA modifications between tissues. Remarkably, despite dramatic

changes in tRNA isodecoder gene expression, the overall anticodon pool of each tRNA family

is similar across tissues. These findings suggest that while anticodon pools appear to be

buffered via an unknown mechanism, underlying transcriptomic and epitranscriptomic dif-

ferences suggest a more complex tRNA regulatory landscape.
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Translation of the genetic code is clearly critical to all life.
While the ribosome is the cellular instrument that executes
translation, it relies upon transfer RNA (tRNA) to properly

decipher the genetic information contained within messenger
RNA (mRNA)1. tRNAs parlay codon identity into amino acid
identity. Each tRNA is charged with high precision and fidelity to
one of 20 amino acids; the amino acid matches the tRNAs triplet
code as determined by its anticodon loop. Reading of the genetic
code takes place in the ribosome one amino acid at a time via base
pairing between the mRNA codon and the tRNA anticodon; in
this way, each amino acid is brought to the ribosome and poly-
merized into the growing polypeptide chain in precisely the order
specified within the DNA-encoded gene.

This singular nature of tRNA in deciphering the genetic code
necessitates that they are subject to a high degree of processing
and quality control. tRNA transcripts are small; typically ~70–80
nucleotides in size. They are transcribed by RNA polymerase III
(Pol III) in the nucleus and undergo an extensive maturation
process before utilization2,3. Pol III promoter elements are
internal to the tRNA body, constraining sequence variation. In
addition, all tRNAs undergo exo/endonucleolytic trimming
events and post-transcriptional nucleotide modifications. Some
tRNAs are spliced, and all are post-transcriptionally 3′ end
modified with the trinucleotide C-C-A. In the cytoplasm, tRNAs
are charged with their appropriate amino acid by specific ami-
noacyl tRNA synthetases4. Mature tRNAs exhibit extensive sec-
ondary cloverleaf and tertiary L-shaped structure and a loop
structure containing the codon-specific reverse-complement tri-
nucleotide (anticodon). Together, processing, modification, and
genomically encoded structure cooperate to stabilize tRNA and
serve as recognition features for aminoacyl tRNA synthetases and
translation factors5,6.

tRNAs are present in all known forms of life. In mammals,
tRNA anticodons directly complement only 47 (mouse) or 48
(human) of the 61 sense codons7. The other codons in the genetic
code are recognized by non-cognate tRNA interactions in
accordance with Crick’s wobble rules8,9. For example, eight
codons that end in cytosine (C) such as alanine 5′-GCC-3′ have
no tRNA with a guanosine (G) in the wobble position of the
anticodon that would decode the 3′ C. Instead, the 5′ adenosine,
the wobble site of alanine tRNA 5′-AGC-3′, is converted to
inosine (5′-IGC-3′) expanding its capacity to decode C, A, or
uracil (U)-ending codons through non-traditional Watson–Crick
base pairing. Thus RNA modifications within the anticodon loop
expand the decoding potential of some tRNA families8,10.

Despite only 20 amino acids and 61 codons, mammals are
hypothesized to have well over 400 discrete tRNA genes7. tRNA
transcripts that share the same trinucleotide anticodon sequence
but are encoded by many distinct genes are termed isodecoders.
In less complex eukaryotes, such as yeast, these genes generate
full-length, mature tRNAs of identical sequence. In mammals,
however, isodecoders generally have sequence distinctions
beyond the conserved anticodon6. Many of these differences
occur in tRNA regions that are important for RNA Pol III
transcription, raising the possibility isodecoders are transcribed
differently11. In addition, subtle variations between isodecoders
may alter their function in translation12. An important question
in tRNA biology is whether mammalian isodecoders have distinct
functions, are differentially expressed, or simply reflect genetic
redundancy. The importance of this understanding is clear given
the recent finding that tRNA levels dramatically impact mRNA
translation and may influence mRNA decay rates13.

Importantly, beautiful work from many groups has suggested
that tRNA levels are not static, but rather dynamic in nature in
both normal and disease states. Gingold et al. showed that distinct
tRNA pools associate with proliferative mammalian cell states

compared to differentiation states14. Dittmar et al. clearly showed
that tRNA expression differed across human tissues15. Moreover,
dysregulation of tRNA expression has been identified in a wide
array of human diseases16. Consistently, tRNA levels vary greatly
across different cancer types, and Goodarzi et al. carefully showed
this can favor translation of a pro-metastatic state17–19. Together,
these data suggest upregulation of certain tRNA genes is asso-
ciated with the pathogenesis of human malignancies. In addition,
mutations in aminoacyl tRNA synthetases, enzymes-mediating
tRNA processing events, and tRNA base modification enzymes
are associated with clinical neurodegenerative, neurocognitive,
and intellectual disabilities3,20. Since it is becoming clear that
tRNA levels can influence gene expression, a detailed under-
standing of the tRNA transcriptome is essential.

Most previous work has relied on monitoring tRNA levels by
tedious hybridization-based approaches including array and
northern blotting techniques. Hybridization-based techniques can
provide bulk quantitation for some tRNAs with the same antic-
odon; however, they are unable to distinguish certain anticodon
groups and isodecoders differing by only one or a few
bases15,21,22. Moreover, arrays and northern blots do not provide
information about potential tRNA modifications, which are
considered vital for their function.

This need for improved resolution provided the impetus to
standardize high-throughput sequencing methodologies capable
of discerning tRNA genes at the isodecoder level. Next-generation
RNA sequencing has revolutionized modern molecular biology
for most types of transcripts, except tRNAs. Historically, tRNAs
are recalcitrant to high-throughput sequencing due to the afore-
mentioned base modifications and extensive structures. Many
base modifications disrupt Watson/Crick base pairing and the
inherent stem-loop structures impede first-strand synthesis by
reverse transcriptase (RT). To circumvent these issues, the few
published methods employ clever and diverse library preparation
strategies. DM-tRNA-seq was the first protocol published by
Zheng et al. specifically for the purposes of sequencing tRNA23.
This protocol utilizes a more processive RT and a purified pro-
karyotic demethylase, AlkB, to remove a series of methyl groups
from tRNA that cause RT stalling, thus increasing the fraction of
longer cDNA products. Gogakos et al. developed Hydro-tRNA-
seq to increase the uniformity of coverage across a given tRNA
transcript through a limited fragmentation of tRNA during
library preparation to avoid modified bases24. This fragmentation
allows for priming of shorter tRNA fragments and cDNA
synthesis. Shigematsu et al. put forth YAMAT-seq, the most
recent protocol, which utilizes a double-stranded adapter ligated
to the 5′ and 3′ termini of mature tRNA that differs from the non-
specific adapter ligation and template switching steps of Hydro-
tRNA-seq and DM-tRNA-seq, respectively25. Despite these
innovative strategies, significant limitations to the current state-
of-the-art still exist. For example, DM-tRNA-seq relies on tem-
plate switching using TGIRT and gel purification of tRNA, two
steps with potential to introduce bias26. Hydro-tRNA-seq by
design generates shorter reads which are difficult to map, and
thus may be missing some information. YAMAT-seq is unable to
quantify a large number of tRNAs due to the requirement for full-
length cDNA, thus highly structured and modified tRNA that RT
cannot fully traverse are selected against. A major limitation of
each of these protocols is the lack of bias assessment and exten-
sive cross-validation to evaluate the accuracy of each technique.
Nonetheless, these technologies have greatly improved our
understanding of tRNA biology and led to important and seminal
discoveries. We posit, however, that a more robust and facile
means to sequence tRNAs would accelerate this area of research.

Herein we present Quantitative Mature tRNA sequencing
(QuantM-seq), a simple high-throughput tRNA sequencing
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protocol utilizing commercially available reagents. In HEK293
cells, we first showed that QuantM-seq is highly reproducible and
representative of tRNA levels across a broad range of expression
levels, thus providing a robust survey of the tRNA transcriptome.
Using QuantM-seq, we surveyed tRNA transcriptomes from mice
and reveal the expression landscape is dramatically different
between tissue types. Fascinatingly, we see a strong CNS-specific
expression pattern for unique isodecoders. Moreover, the nature
of library production allows us to use sequence variant infor-
mation as a means to approximate select tRNA modifications,
and we observe tissue-specific nucleotide variants, highly sug-
gestive of modifications, in particular within the CNS, that could
possibly affect isodecoder function/stability. Intriguingly, when
isodecoder levels are pooled bioinformatically, the anticodon
pools between distinct tissues is similar in sharp contrast to the
vast differences observed in isodecoder expression. These results
suggest that strong anticodon buffering occurs, reducing the
expression of some isodecoders as others increase in expression.
The mechanism and consequence of this buffering is unclear. In
total, we strongly feel that QuantM-tRNA-seq provides the
community with a quick and relatively easy means to robustly
monitor tRNA levels and begin to explore potential tRNA
modifications. Technologies such as these should greatly accel-
erate our understanding of how tRNA influences normal and
disease states.

Results
High-throughput sequencing of mature tRNA by QuantM-
tRNA-seq. We developed QuantM-tRNA-seq (Fig. 1a) to assay
the relative abundance of mature tRNA. To test the assay, we
utilized 1 µg of total RNA from HEK293 cells. Taking advantage
of the 3′ terminal C-C-A added to functional tRNA, we optimized
a splint ligation strategy to attach a complementary double-
stranded adapter to the 5′ and 3′ termini (Fig. 1a)27. Double-
stranded adapter ligation is highly efficient (96% ligation effi-
ciency), specific for tRNA in the predicted range of 65–95
nucleotides, and dependent on both ligase and adapters (Fig. 1b).
We then used SuperScript IV RT to generate cDNA due to a high
level of processivity and thermostability. cDNA synthesized from
ligated total RNA revealed a range of cDNA products; consistent
with extensive tRNA base modification and structure that can
inhibit RT. Notably, cDNA bands shorter than expected for full-
length tRNA coincide with sites of highly modified bases known
to inhibit RT, T-loop m1A, and the anticodon loop (Fig. 1c)23. In
addition, a significant amount of full-length cDNA was obtained.
This banding pattern was similar to DM-tRNA-seq with the
shortest truncated cDNA bands coinciding with m1A56–5923.
Following PAGE purification of all cDNA and subsequent ssDNA
circularization, libraries were minimally amplified with seven
cycles of PCR to add Illumina adapters and then subjected to
high-throughput sequencing on an Illumina platform.

For data analysis, reads were first subjected to adapter and
CCA trimming followed by alignment to the high-confidence set
of human tRNA sequences annotated in gtRNAdb (Release 18;
hg38) with Bowtie2. Under default conditions in Bowtie2 local
mode, only reads that are 23 nucleotides or greater will map28.
However, Fig. 1c shows that we have a significant proportion of
~15 nucleotide reads likely generated by stalling of reverse
transcripase at m1A56–59 that would fail to map under default
conditions23. To ensure all reads were able to be mapped, we set
the minimum score threshold to allow for mapping of short reads
that are ten nucleotides or greater.

Approximately 90% of reads mapped to gtRNAdb tRNAs,
showing that the assay is very specific for tRNA. To select high-
confidence reads, for further analysis we first plotted histograms

of mapping quality (MAPQ) scores per read (Supplementary
Fig. 1a, b). Reads were either MAPQ= 0, or ranged from MAPQ
> 10 to MAPQ < 50, with increasing MAPQ indicating higher
mapping confidence. In contrast with other RNA-seq protocols,
tRNAs are short, relatively repetitive, and highly modified and
thus prone to modification induced base misincorporation or
truncation by RT23,29,30. Given these limitations inherent to
tRNAs which would manifest as lower mapping quality relative to
other types of RNA-seq, we selected a MAPQ of greater than
10 to calculate reads per million (RPM) per tRNA. Under the
definition of MAPQ used by Bowtie2, this represents reads with
>90% probability of the correct mapping. Reproducibility
between biological replicate samples was excellent with Pearson’s
R2= 0.9999. Read length analysis revealed that while shorter
reads are less likely to have a MAPQ > 10 (Supplementary Fig. 1c,
d), there is considerable mappability of all read lengths. These
data show that recovery of truncated tRNA cDNAs via
circularization coupled with optimized mapping parameters
allows us to include more tRNA reads. To complete these
analyses, we counted reads corresponding to individual tRNA
sequences and converted to RPM using established R packages
(details in “Methods” and Supplementary Software)31.

Having shown that QuantM-seq is highly specific for tRNAs
and reproducible, we next sought to extensively cross-validate the
technique. Using total RNA isolated from HEK293 cells, we
assessed abundance covering ~46% of known tRNA isodecoders
(119 out of 256 unique tRNA sequences) by applying an
orthogonal hybridization-based approach (tRNA arrays)15.
Importantly, we utilized longer array probes antisense to full-
length tRNAs (~70–80 nt; Supplementary Data 2). Longer probes
allow limitations inherent to short probe hybridization
approaches to be overcome32–34, and the original study describ-
ing tRNA arrays showed that these longer probes have
comparable hybridization efficiencies33. To further ensure that
probe efficiencies would be similar, we selected probes of similar
length, GC content, melting temperature, and structure potential
and showed that none of these potentially confounding
characteristics correlated with probe signal from arrays (Supple-
mentary Data 2).

We fixed 30 probes spanning the full-length of their cognate
tRNA species to a nylon membrane in order from highest
expressed by QuantM-seq to lowest expressed. As ligation of
double-stranded adapters was specific for tRNA and highly
efficient (96%; Fig. 1b), we ligated radiolabeled adapter to total
RNA and hybridized to the tRNA probe array (Fig. 1d). tRNA
abundance as assessed by QuantM-seq correlated strongly to the
array signal (mean Pearson correlation coefficient across
replicates R2= 0.75; Fig. 1e). As a control, we further validated
the array approach (ligation-dependent) by northern blot
(ligation-independent) using 10 of the array probes spanning
the range of array signal intensities. The northern signal for full-
length tRNA and array intensities correlate strongly with a
Pearson correlation coefficient of R2= 0.92 (Fig. 1f), showing that
array signal derives largely from full-length tRNA. Together,
these results reveal that QuantM-seq provides comparable
performance to hybridization approaches in assessing tRNA
abundance.

Comparison of QuantM-seq with established tRNA sequencing
protocols. Several other groups have previously developed high-
throughput tRNA-sequencing methodologies23–25. Each metho-
dology utilizes different library preparation strategies with
inherent biases and percentage of uniquely mapped reads. To
compare QuantM-seq to previously published protocols, our data
obtained from HEK293 cells were compared to publically
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Fig. 1 Quantitative mature tRNA sequencing (QuantM-seq). a Outline of QuantM-seq. tRNA depictions are in black, adapter depictions are in green, and
sequences corresponding the RT primer are depicted in blue. The rG and rN at the end of the 5′ AD indicate ribonucleotides. b Polyacrylamide gel showing
products and efficiency of adapter ligation onto tRNA. Rnl2: T4 RNA Ligase 2. Asterisk (*) indicates 5S and 5.8S ribosomal RNA bands. c Polyacrylamide
gel showing products of reverse transcription (cDNA). Rnl2: T4 RNA Ligase 2. d Images of tRNA arrays; each array represents an independent replicate.
For the probes spotted at each position see Source Data. e Scatter plot of reads per million derived from QuantM-seq versus array intensities derived from
densitometry with a fitted linear trendline. Shaded area represents the 95% confidence interval of the linear trendline. f Scatter plot of northern blot versus
array intensities derived from densitometry with a fitted linear trendline. Shaded area represents the 95% confidence interval of the linear trendline. Source
data are provided as a Source Data file for (b–f).
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available datasets from two previously published protocols,
Hydro-seq and DM-tRNA-seq. In addition, we performed
YAMAT-seq in parallel with QuantM-seq on the same HEK293
cell RNA. To control for potential differences in read processing,
all datasets were subject to the same read quality control and
alignment pipeline as QuantM-seq.

As a foundation for assay comparison, we first plotted the
number of reads (depth of sequencing) from each dataset
(Supplementary Fig. 1e). The percentage of reads assigned to a
particular tRNA with a mapping quality score > 10 is an
important metric detailing the efficiency of each protocol. This
percentage varied greatly across protocols (Supplementary Fig. 1f).
The YAMAT-seq protocol produced the highest percent of
assigned reads at 87.4% of total reads. Hydro-seq had the lowest
percentage of assigned mapped reads with a mean of 15.7% across
three replicates of low coverage libraries. Gogakos et al. (Hydro-
seq)24 conducted a second experiment dramatically increasing the
number of reads (>100M reads) for a single replicate, and this
resulted in an increased percentage of assigned reads (Supple-
mentary Fig. 1f; Hydro_HC). Interestingly, the percentage of
assigned reads for libraries prepared by DM-tRNA-seq increased
as the authors included more steps during library preparation.
The percentage of assigned reads for libraries prepared from total
RNA increased with demethylase treatment from 52.4% to 61.3%.
Gel purification of tRNA prior to demethylase treatment and
library preparation increased this percentage to 80.3%. However,
it is important to note that DM-tRNA-seq assigned read
percentages are likely inflated due to the fact that short reads
less than 16 nucleotides were excluded from the Gene Expression
Omnibus (GEO) record. Comparatively, 44.0% of QuantM-seq
total reads were assigned to mature tRNA sequences.

While QuantM-seq performs modestly with regards to read
assignment to annotated tRNAs, the real question is how it
performs relative to other techniques. Since YAMAT-seq was
performed by us on the same RNA from HEK293 cells and
Hydro-seq was performed on RNA from the same cells grown
under the same conditions24, we compared these techniques
directly to QuantM-seq. YAMAT-seq and Hydro-seq exhibited
weaker correlations to tRNA arrays (R2= 0.43 and 0.38,
respectively; Fig. 2a, b) compared to QuantM-seq (R2= 0.75;
Fig. 1e). This is also reflected in weak correlation between these
three techniques (Fig. 2c). Comparison of the distribution of
mean RPM of 256 individual tRNA sequences revealed potential
explanations for the disparity in expression values. Thirty of the
256 cytosolic tRNA genes detected reproducibly by QuantM-seq
were not detected by YAMAT-seq (Supplementary Fig. 2a). In
addition, YAMAT-seq showed higher variability between repli-
cates and a general underrepresentation of most tRNA sequences
relative to both QuantM-seq (Supplementary Fig. 2a) and tRNA
arrays (Fig. 2a). Compared to QuantM-seq, Hydro-seq also
showed higher variability between replicates (Supplementary
Fig. 2c) and both over and underrepresented tRNAs relative to
QuantM-seq (Supplementary Fig. 2b, c) and tRNA arrays
(Fig. 2b).

QuantM-seq exhibits minimal length and sequence bias. tRNA
expression inferred from QuantM-seq cannot be directly com-
pared to DM-tRNA-seq as this assay was performed on RNA
isolated from HEK293T cells. However, we were able to assess
length bias in both techniques going from cDNA to sequencing
reads. For QuantM-seq, length of cDNA inferred from cDNA
gels, dsDNA libraries by Bioanalyzer, and sequencing reads track
closely, indicating that CircLigase and PCR are not introducing
appreciable length bias (Fig. 2d). In contrast, DM-tRNA-seq reads
from total RNA or purified tRNA exhibited significant skew

toward longer reads or toward shorter reads respectively relative
to cDNA (Supplementary Fig. 2e, f). Since read length is an
important determinant of mappability, both kinds of skew are
likely to contribute to inaccurate tRNA expression values. These
skews are also likely underrepresented as the GEO record for this
technique lacks raw reads <16 nt that would be generated by
an RT stall in the T-loop. Short reads do have some mappability
(Supplementary Fig. 1c, d), so loss of them also represents a loss
of information. It is also important to note that gel purification of
tRNA alone significantly alleviated m1A58 stalling of RT (Sup-
plementary Fig. 2e, f). This raises the important question as to
whether the poor recovery of highly structured, modified tRNA
from PAGE gels is introducing bias. Together, these analyses
reveal minimal length bias from cDNA to sequencing reads in
QuantM-seq compared to DM-tRNA-seq.

While it was clear from DM-tRNA-seq that AlkB demethylase
treatment could alleviate some stalling of RT at the T-loop23, the
impact on quantitative power was less clear. To test if
demethylase treatment could improve QuantM-seq, we treated
HEK293 total RNA with a commercial demethylase preparation
prior to performing QuantM-seq. Spike-in of 5 Escherichia coli
tRNA to these libraries revealed QuantM-seq linearity over ~3.5
orders of magnitude from ~20 to 100,000 RPM (Supplementary
Fig. 3a). Demethylase treatment resulted in a reduction in reads
ending in the T-loop and an increase of reads that ended in the
anticodon and D-loops, suggesting alleviation of stalling at
methyl groups in the T-loop as seen by others23. However, similar
to DM-tRNA-seq (Supplementary Fig. 2d), QuantM-seq expres-
sion values with or without demethylase treatment were highly
correlated (Supplementary Fig. 3c). Further, demethylase treat-
ment did not dramatically change correlation between QuantM-
seq expression values and tRNA arrays (Supplementary Fig. 3d;
R2= 0.71), showing that demethylase treatment has minimal
effects on our ability to quantitate tRNAs.

Lastly, we were able to predict an expected nucleotide
frequency across the CircLigase ligation junction as we engi-
neered two degenerate (N) bases with 25% representation of each
base at the extreme 5′ end of the reverse transcription primer
(Fig. 2e; left panel). We also knew expected nucleotide frequency
for the majority of cDNA 3′ ends, as the shortest cDNA
corresponds to RT stall at m1A23 and full-length cDNA end in T,
and we know their relative proportion from cDNA gels (Fig. 2d).
Comparing the predicted ligation junction sequence from cDNA
to dsDNA library determined by Bioanalyzer length distributions
to actual reads reveals minimal sequence bias introduced by
cDNA purification, CircLigase ligation, PCR, and sequencing
(Fig. 2e, compare all panels). We attempted to perform the same
analysis for DM-tRNA-seq for the sake of comparison, however,
the lack of short reads (<16 nt) in the GEO record prevented us
from performing these calculations.

tRNA anticodon pools are moderately regulated between tis-
sues in mice. Having developed and extensively validated a
sensitive high-throughput sequencing assay for tRNA expression,
we set out to explore differences in mammalian tRNA expres-
sion. Previous studies outlined in Dittmar et al. and Gingold
et al. using tRNA arrays suggested the presence of discrete
expression profiles of tRNA across different tissues14,15. We
obtained seven tissues from C57BL/6J wild-type mice in tripli-
cate including four tissues derived from the central nervous
system (cortex, cerebellum, medulla oblongata, and spinal cord)
and three non-CNS tissues (heart, liver, and tibialis skeletal
muscle). Total RNA was isolated from each tissue and tRNA
libraries were generated using QuantM-seq (Fig. 1a). Following
the same read processing pipeline as the HEK293 libraries, we
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aligned reads to high-confidence mouse tRNA genes annotated
in gtRNAdb Release 18. The reproducibility of biological repli-
cate samples was very high at an average of r= 0.97 or higher for
each tissue (Supplementary Fig. 4b). A cursory analysis of the
high-confidence reads revealed the contribution of cytosolic and
mitochondrial tRNA genes to total reads differed significantly
between heart and all other tissues. Surprisingly, reads mapped

to cytosolic tRNA genes are relatively consistent across tissues
with minor differences found only in heart (Fig. 3a). Interest-
ingly, the contribution of mitochondrial tRNA genes to total
gene expression is dramatically higher in the heart compared to
all other tissues assayed (Fig. 3a, b).

As previous studies had assessed tRNA expression largely at
the anticodon level, the 210 cytosolic tRNA isodecoders measured
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by QuantM-seq were summed by their respective anticodon
sequence into the 47 genomically encoded anticodon classes.
Differential anticodon class expression across tissues was
analyzed using the established R package DEseq2 (details in
“Methods” and Supplementary Software)35. Intriguingly, minor
differences occurred between tissues at the level of anticodon
expression with a significant decrease in Thr-TGT tRNAs in liver
compared to all other tissues (11-fold-change and padj= 6.7E
−22; Fig. 3c). Consistent with this, multidimensional scaling of
the tRNA expression matrix showed high similarity between
tissues (Fig. 3d). These findings suggest that tRNA anticodon
pools are relatively stable across these seven tissues.

tRNA isodecoders differ dramatically between tissues. Given
the similarity of tRNA expression profiles at the anticodon level,
we next wanted to elucidate the potential regulation of individual
tRNA isodecoders across tissues. We performed differential
expression analysis of tRNA isodecoders across all tissues using
DESeq2 (details in “Methods” and Supplementary Software)35. Of
the 210 detected tRNAs, 41% (86 genes) of genes differed sig-
nificantly in expression level between the seven tissues (padj <
0.01). Interestingly, a heatmap of differentially expressed iso-
decoders revealed CNS and non-CNS-associated tissues clustered
with strikingly similar expression profiles across the four CNS-
associated tissues (Fig. 4a). Differential expression analysis was
performed following grouping of the four CNS tissues (cortex,
cerebellum, medulla oblongata, and spinal cord) and three non-
CNS tissues (heart, liver, tibialis). The expression levels of 57
genes differed significantly between CNS-associated tissues and
non-CNS-associated tissues (27% of all isodecoders) (Fig. 4b).
The most significant of these differentially expressed genes is a
known CNS-specific isodecoder for Arginine, Arg-TCT-4-1, with
142-fold enrichment across CNS tissues compared to the three
non-CNS tissues (p < 1E−200) (Fig. 4b, c). This isodecoder was
identified previously as CNS-specific and having a CNS-specific
function in translation36. In addition to identification of this
previously reported CNS-specific tRNA isodecoder, we report a
novel set of highly CNS-enriched Alanine TGC isodecoders
including Ala-TGC-5-x, Ala-TGC-6-1, and Ala-TGC-7-x (Fig. 4b,
c). Similar to Arg-TCT-4-1, all three genes were found to be
greatly enriched at 8, 15, and 40-fold in the CNS-associated tissue
group, respectively (p= 1.3E−27, 1.7E−115, 2.8E−87). The most
significant isodecoder that is enriched fourfold in non-CNS tissue
is Glycine GCC-2-x (p= 3.4E−48; Fig. 4b). In total, 28 iso-
decoders (13% of all isodecoders) exhibited a statistically sig-
nificant (p < 0.01) greater than threefold enrichment in the CNS
relative to non-CNS tissues (Fig. 4c).

Multidimensional scaling of isodecoder expression reveals the
seven tissues in this study are dissimilar from one another. Most
CNS tissues cluster together with potential outliers represented by
samples isolated from one cortex and several CNS tissues from
animal 3 (Fig. 4d). These could represent real individual
differences or technical variability in tissue harvesting. Never-
theless, the distance matrix clearly illustrates the differences

between CNS (blue) and non-CNS (green and red) tissues with
each tissue co-localizing with other members of their respective
CNS or non-CNS groups. Furthermore, correlation of all
cytosolic genes revealed strong intercluster and weak intracluster
correlation of CNS and non-CNS group members (Fig. 4e).

Isodecoders underlying anticodon pools differ across tissues.
Preceding analyses indicate that while anticodon pools are largely
unchanged across tissues, the isodecoder pools that comprise
anticodon pools differ significantly between CNS and non-CNS
tissues. Next, we wanted to determine how individual tRNA
isodecoders contribute to the considerably more stable anticodon
expression levels across tissues. As mentioned previously, we first
summed the RPM for each tRNA gene decoding a particular
codon, and calculated an RPM per anticodon for each of the
seven tissues (n= 3). From this, we calculated the percentage
contribution of each tRNA gene for the 47 genomically encoded
anticodon groups. Examples from anticodon classes with differ-
entially expressed isodecoders revealed remarkable differences in
percent contribution of constituent tRNA genes across tissues.
The RPM of Arginine TCT tRNAs varied less than twofold across
tissues (Fig. 5a). However, the previously defined CNS-specific
isodecoder, Arg-TCT-4-1, contributed to 6% of total Arginine
TCT RPM in the CNS, and ~0.03% in non-CNS tissues (Fig. 5b).
Despite the relatively small contribution of Arg-TCT-4-1 to the
Arginine TCT pool, mutation of this tRNA had dramatic effects
on CNS-related phenotypes36, suggesting functional differences
between isodecoders.

To determine the contribution of the newly identified CNS-
specific isodecoders to the Alanine TGC anticodon class, we
calculated the mean RPM by tissue (Fig. 5c) and found a marginal
decrease (<2-fold) in heart relative to other tissues. We identified
a similar pattern for the percentage of contribution to the Alanine
TGC anticodon class for our newly identified set of three CNS-
specific isodecoders. Ala-TGC-5-1, Ala-TGC-6-1, and Ala-TGC-
7-1 contribute ~20% of mean RPM for the Alanine TGC
anticodon across all CNS tissue classes (Fig. 5d). Interestingly,
these three isodecoders contribute <2% of mean RPM in non-
CNS associated tissues.

Similar to the relatively stable expression of Arg-TCT and Ala-
TGC anticodons across tissues, the non-CNS tissue enriched Gly-
GCC-2-x isodecoder did not result in dramatic tissue-specific
changes in Glycine GCC anticodon expression (Fig. 5e). Inter-
estingly, the average percentage contribution of the Gly-GCC-2-x
isodecoder enriched in non-CNS associated tissues is 14% in non-
CNS versus 4% in CNS tissues (Fig. 5f). Further analysis of heart
versus other tissues revealed a heart-specific increase in Gly-
GCC-1-x isodecoders contributing to a higher percentage of total
RPM for the Glycine-GCC isoacceptor class (66% average in
heart vs. 35% in all other tissues).

These findings indicate that while anticodon pools do not
drastically change across tissues, the isodecoders that comprise
these pools often do change. These results are highly suggestive of
an unknown mechanism that buffers the overall amount of

Fig. 2 Comparison of QuantM-seq with other tRNA-seq protocols. a Scatter plot of reads per million derived from YAMAT-seq versus array intensities
derived from densitometry with a fitted linear trendline. Shaded area represents the 95% confidence interval of the linear trendline. b Scatter plot of reads
per million derived from Hydro-tRNA-seq versus array intensities derived from densitometry with a fitted linear trendline. Shaded area represents the 95%
confidence interval of the linear trendline. c Pearson correlation coefficients between tRNA gene-level expression for each dataset. Hydro-seq HC denotes
the high coverage library from ref. 24. d Bar chart depicting the average percentage of cDNA, dsDNA, or reads representing reverse transcriptase stalling or
fall-off in the T-loop, anticodon (AC) loop, D-loop, or at the end of tRNA (full length; FL). Values were calculated from cDNA gel, Bioanalyzer trace, or reads
respectively for N= 2 biological replicates in HEK293 cells. e Sequence logos showing the fraction of DNA bases near CircLigase ligated bases as inferred
from cDNA gels (cDNA) or Bioanalyzer trace (Library), or calculated from reads (QuantM Rep 1 and QuantM Rep 2). See “Methods” for detailed
calculations. Source data are provided as a Source Data file.
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anticodons to offset tissue-specific changes in isodecoder
expression.

tRNA sequence variants differ across tissues. tRNAs contain a
high density of posttranscriptional base modification when
compared to all other RNA classes with an average of 13 mod-
ifications per transcript6. Many of these modifications are abso-
lutely essential for normal tRNA stability and function37. Of the
over 100 identified base modifications found in tRNA, some are
known to induce stalling and base misincorporation by RT,
causing reproducible variation in cDNA products such as trun-
cations and mutations10,23,38. Taking advantage of this relation-
ship, we performed analyses to ask whether we can detect variants
that indicate tRNA post-transcriptional base modification. We
defined variants as the number of 5′ truncations (putative RT
stalls) or mutations at a given base divided by the total read
coverage at that base. Out of 16,093 distinct bases corresponding

to 210 tRNA genes, we reliably detected 3026 bases that exhibited
greater than 1% variation across all tissue samples, which indi-
cates that 18.8% of the total bases detected by QuantM-seq
represent sites of potential modification (Fig. 6a). This subset of
variants generally exhibited intratissue reproducibility (Pearson’s
r) greater than 0.85 (Supplementary Fig. 5a).

Next, we asked whether variant bases changed across tissues
using DEXseq (details in “Methods”). We defined differential
variants as bases whose adjusted p value was less than 0.01 and an
absolute fold-change in variant frequency greater than 1.5. This
revealed 244 (8%) potential modified bases which vary signifi-
cantly in our analysis. Given the extensive secondary and tertiary
structure required for normal function of mature tRNA, we set
out to determine if these significant variant bases were enriched
in particular structural regions. We found a great proportion of
the significant variants to center around the TψC-loop, the
anticodon loop, the entire D-arm, and the 5′ region of the
acceptor stem (Fig. 6b). Consistent with these findings,
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regards to differential variant fractions across tissues (Euclidean distance). CNS tissues are labeled in shades of blue, non-CNS muscle tissues are in red,
and the non-CNS liver is in green. d Heatmaps for three isodecoders representing variant fractions at each tRNA position (x-axis) across each tissue
sample (y-axis). The numbers below the plot indicate nucleotide position. e Two-dimensional representation of the Ala-TGC isoacceptor class showing
counts of differential variants by position (n= 11 isodecoders).
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modification sites are well documented in these four regions that
mediate tRNA interactions with elongation factors, aminoacyl
tRNA synthetases, ribosomal A, P, and E sites, as well as decoding
of mRNA. Multidimensional scaling of the 244 significant variant
frequencies revealed that tissues cluster into CNS and non-CNS
tissues. This suggests differential regulation of variants between
tissues (Fig. 6c).

Given this intriguing finding, we set out to better understand
the relationship between differential tRNA isodecoder expression
and differential variant frequencies between tissues by examining
some examples. Within the Alanine TGC isoacceptor class, we
identified multiple isodecoders that exhibit differential variant
frequencies. Two of these isodecoders which are differentially
expressed between tissues, Ala-TGC-5-x and Ala-TGC-6-1, also
show multiple sites of differential variant frequencies between
tissues (Fig. 6d), including at position 56, a likely site of m1A.
Interestingly, an isodecoder which only modestly changes
expression between tissues less than twofold, Ala-TGC-4-1, also
exhibits differential variant frequencies comparable to the two
isodecoders previously mentioned. This presents an unexpected
finding suggesting significant variants are not exclusively found in
differentially expressed tRNA genes.

To illustrate how this might impact the entire Ala-TGC
anticodon pool, we present the distribution of significant variants
for the 11 isodecoders in the Alanine TGC isoacceptor class as a
consensus two-dimensional structure (Fig. 6e). Of note is the
enrichment of significant adenosine variants at positions 56 and
57. Adenosine residues at positions 55–59 in the TψC-loop are
methylated ubiquitously across all mature tRNA genes in all
isoacceptor classes. The methylation at carbon-1 forms methyl-1-
adenosine (m1A), which represents one of the most well
characterized tRNA modifications with known regulatory func-
tions37. Importantly, variants over A56 are shown to be m1A, as
demethylase treatment of RNA from spinal cord causes a loss of
CNS-specific variant signal (Supplementary Fig. 5b). Together,
these analyses reveal that QuantM-seq can also be used to explore
tRNA modifications across biological systems.

Discussion
Historically, tRNAs have been difficult to sequence due to base
modifications and extensive structures which impede first-strand
synthesis by RT. To circumvent these issues, the few published
methods employ clever and diverse library preparation strategies.
However, each protocol has limitations. YAMAT-seq exhibits
variability between technical replicates for some tRNAs and
underrepresents many tRNAs. Hydro-seq exhibits improved
coverage of the tRNA transcriptome compared to YAMAT-seq,
but low correlation to tRNA arrays suggests that each of these two
methods offer limited quantitative power (Fig. 2). DM-tRNA-seq
utilizes TGIRT-mediated template switching, a step known to
introduce bias26, exhibits length bias of sequencing reads relative
to cDNA, and exhibits poor correlation between different
implementations (Supplementary Fig. 2). Two iterations of DM-
tRNA-seq implement tRNA purification from PAGE gels, a step
that may add bias as well. Importantly, these techniques were not
rigorously assessed for bias nor were the tRNA expression values
derived from them cross-validated.

Here we present a high-throughput sequencing method,
QuantM-tRNA-seq, for assessing the expression level of mature
tRNA transcripts with isodecoder-level resolution. QuantM-
tRNA-seq was subject to rigorous validation with orthogonal
hybridization-based approaches accounting for 119 of the 256
measured tRNA genes in HEK293 cells offering high-confidence
the data generated using this method accurately represents rela-
tive tRNA abundance in samples (Fig. 1). In addition to being

extensively validated, this method exhibits minimal bias and
improves upon previously published methodologies (Fig. 2). This
was achieved with an efficient splint ligation strategy specific for
mature tRNA transcripts containing a 3′ C-C-A, and a cDNA
circularization strategy negating the need for transcript frag-
mentation or full-length cDNA synthesis by RT. Lastly, QuantM-
seq was shown to have a wide dynamic range and not to require
demethylase treatment of RNA for tRNA expression analysis
(Supplementary Fig. 3). In summary, QuantM-Seq offers the best
balance between coverage of the tRNA transcriptome, sequence
depth, limited bias, cross-validation by tRNA arrays, ease of use,
and reducing the need for RNA gel purification. Compared to
other published methodologies, QuantM-tRNA-seq also greatly
reduces the number of PCR amplification cycles necessary for
reproducible library preparation with a comparable amount of
input material. In the future, this may allow for reduced input
tRNA-seq where sample material may be limiting.

To highlight the utility of QuantM-tRNA-seq, we assessed
tRNA expression across seven mouse tissues at multiple levels:
overall anticodon pools, tRNA isodecoder pools, and potential
differences in nucleotide modification indirectly assessed by read
variant analysis. Broadly speaking, anticodon pools changed
modestly across tissues (Fig. 3) while isodecoders that comprise
anticodon pools (Figs. 4 and 5) and nucleotide modifications
(Fig. 6) exhibited tissue specificity. Consistent with our work here,
Dittmar et al. detected differences in tRNA levels across human
tissues15. However, a major limitation of these first generation
tRNA arrays is the inability to distinguish isodecoders that differ
by only a few bases and some anticodon pools. For example, these
arrays could not distinguish Arg-CCG and Arg-TCG anticodons
but instead sum them together as one signal. In addition, many
isodecoders including the CNS-specific Arg-TCT and Ala-TGC
we detected are unable to be distinguished by these probes.

Interestingly, the differences we detect reveal discrete sig-
natures of isodecoder expression and nucleotide modification
sites that are heavily CNS-enriched. Of particular note, QuantM-
tRNA-seq revealed CNS enrichment of a tRNA gene, Arg-TCT-4-
1, which was previously identified as CNS-specific, offering
independent external validation of the protocol in two different
isogenic mouse lines36. Mutated Arg-TCT-4-1 in C57/Black mice
predispose these mice to neurodegenerative phenotypes, indi-
cating functional importance despite this CNS-specific isodecoder
comprising only 6% of total Arg-TCT tRNAs in the CNS (Fig. 5).
Our analyses also revealed a novel set of 27 tRNA isodecoders
enriched in CNS tissue representing several anticodon classes
(Fig. 4). Further analysis of sequencing variants revealed that
CNS-enriched Ala-TGC tRNAs also exhibit tissue-specific mod-
ification patterns. Specifically, each isodecoder exhibits sig-
nificantly increased variation at A56 in the CNS (Fig. 6) that is
alleviated by demethylase treatment (Supplementary Fig. 5). This
base resides in the TψC-loop, is commonly modified with methyl
groups (m1A), and is thought to influence tRNA stability and the
ability to participate in translation37. It has been detected in other
tRNA-seq as it causes significant RT stalling/mutation23. It is
tempting to speculate that the increased expression of these iso-
decoders is linked to higher m1A56 methylation, possibly through
increased tRNA stability, but more work needs to be done. To our
knowledge this is the first known documentation of both novel
CNS-specific isodecoders beyond Arg-TCT-4-1 as well as
potential regulation of m1A56 modification across tissues.

Perhaps one of the most striking findings we observe herein is
that while isodecoder expression can be quite distinct between
tissue types, the overall decoding potential (based on summed
anticodons) is relatively uniform. The observation of stable
anticodon pools relative to differential isodecoder expression and
modifications suggests two very interesting, non-mutually
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exclusive hypotheses. First, isodecoder sequence differences
commonly occur in regions that RNA Pol III contacts for
initiation. It is possible, therefore, that isodecoder genes are dif-
ferentially transcribed in different tissues. In this scenario, the
large number of isodecoder genes serves to buffer anticodon pools
in a given tissue through reciprocal upregulation and down-
regulation of tRNA gene families at the transcriptional level.
Second, it has been suggested that isodecoders may have different
activities and that unique modifications influence stability and/or
function12,37. Thus, while the level of anticodons between tissues
appears uniform, the a priori assumption that the decoding
potential is identical could be incorrect. The contribution of
unique isodecoders to decoding potential may be distinct based
on tissue-specific differences. These hypotheses warrant further
investigation. With the ability to easily quantify tRNA at the
anticodon, isodecoder, and variant levels, QuantM-tRNA-seq will
be an essential tool for future studies aimed at testing these
important ideas and probing tRNA biology in much more detail.

Methods
Cell culture and RNA isolation. HEK293 T-Rex Flp-IN cells (Thermo Fisher. cat#
R78007) were cultured at 37 °C with 5% CO2 in complete Dulbecco’s modified
essential media (Thermo Fisher) supplemented with 10% fetal bovine serum
(Thermo Fisher) and 1% penicillin and streptomycin (Thermo Fisher). All pas-
saging was performed with trypsin (Thermo Fisher) according to the manu-
facturer’s suggested conditions. Following passaging, cells were plated at 25%
confluency in 10 cm tissue culture treated dishes and cultured for 48–72 h until
~90% confluent. At 90% confluency, media was aspirated and 1 mL of ice cold
Trizol (Thermo Fisher) was added to the culture and mixed on ice for 30 s to assure
a homogeneous solution. Samples were stored in Trizol at −80 °C until further
processing. RNA was isolated according to manufacturer’s protocol with two 75%
ethanol washes following isopropanol precipitation. Samples were resuspended in
distilled H2O and stored at −80 °C until library preparation.

Tissue sample preparation and RNA isolation. All mouse tissue samples were
isolated from 31 to 37-day-old female C57B/6J mice using procedures approved by
the PsychoGenics Institutional Animal Care and Use Committee (IACUC). Sam-
ples were received on dry ice, and stored as whole tissue at −80 °C. Samples were
thawed on ice and 1 mL of Trizol was added per 100 mg of dissected whole tissue.
On ice, samples were masticated and passed through successively higher gauges of
needles to ensure a homogeneous mixture. Samples were stored at −80 °C until
further processing. RNA was isolated according to the manufacturer’s suggested
conditions with two 75% ethanol washes following isopropanol precipitation.
Samples were resuspended in distilled H2O and stored at −80 °C until library
preparation.

Northern blotting. Total RNA (500 ng) was separated on a 7M urea 6% dena-
turing polyacrylamide gel and transferred onto a Hybond-N+ nylon transfer
membrane (GE Life Sciences) then fixed by cross-linking in a UV Stratalinker 2400
using the auto-crosslink button twice. The blots were hybridized at 60 °C for 12 h
in 2× SSC (1× SSC is 0.15 M NaCl and 0.015 M sodium citrate), 0.1% sodium
dodecyl sulfate (SDS), and 10× Denhardt’s solution with 32P-end labeled probes
specific for the full-length tRNA transcript (72–76 nucleotides; Supplementary
Data 1 and 2). After two washes (each) in 2× SSC, 0.1% SDS for 20 min at room
temperature and 0.5× SSC, 0.1% SDS for 60 min at 60 °C, the membrane was
exposed to a storage phosphor screen for 15 min and analyzed on an Amersham
Typhoon.

tRNA array. 100 nanograms of each probe (Supplementary Data 1 and 2) sus-
pended in 0.5× TBE was aspirated onto a Hybond-N+ nylon transfer membrane
(GE Life Sciences) with a 96-well manifold under vacuum. The probes were UV
cross-linked to the membrane as above. Arrays were stored at 4 °C in 0.5× TBE for
future use. Radiolabeling of the double-stranded adapters was achieved by
annealing 10 pmol of the 3′ adapter and 10 pmol of the 5′ adapter mix (2.5 pmol/µl
each of the 5′-TGrGrA-3′, 5′-TGrGrT-3′, 5′-TGrGrG-3′, 5′-TGrGrC-3′ adapters) at
72 °C and reducing temperature to 37 °C by 0.1 °C /s. Annealed double-stranded
adapters were 32P-end labeled by 5 U/µL of T4 polynucleotide kinase (NEB) under
the manufacturer’s suggested conditions. The reaction was ethanol precipitated,
ethanol washed, and resuspended in dH2O. The entire radiolabeled double-
stranded adapter reaction was added to 300 ng of deacylated total RNA for ligation.
The ligation reaction was carried out with 0.5 U/µL of T4 RNA ligase 2 (NEB)
under manufacturer’s suggested conditions at 37 °C for 60 min then 4 °C for 60
min. The reaction was ethanol precipitated with glycoblue. 500,000 cpm of radi-
olabeled adapter-ligated total tRNA was hybridized to the cross-linked array
membrane in 5 mL of hybridization buffer (2× SSC, 0.1% SDS, 10× Denhardt’s

solution in dH2O) at 60 °C overnight. Membranes were washed for 5 min in 2×
SSC, 0.1× SDS three times, then 0.5× SSC, 0.1× SDS for 60 min. All washes were
performed at 60 °C. Membranes were exposed to a storage phosphor screen for 15
min and analyzed on an Amersham Typhoon.

In vitro transcribed tRNA spike-in preparation. Five mature tRNA sequences
derived from E. coli tRNA (gtRNAdb v8) were purchased as gBlocks (Integrated
DNA Technologies; Supplementary Data 1) with a Hepatitis delta virus (HDV)
ribozyme sequence at the 3′ end of the sequence to generate a precise CCA 3′ end.
gBlocks were amplified using the Q5 2× master mix (NEB) and the T7 F and HDV
R primers in Supplementary Data 1 according to the manufacturer’s suggested
conditions. Design of the transcripts was in accordance with previously published
protocols39. Amplification products of the appropriate length were purified from
native agarose gels stained with 0.05% EtBr using the QiaQuick gel extraction kit
(Qiagen). Up to 1 µg of double-stranded template DNA was added to the HiScribe
T7 High Yield RNA synthesis kit (NEB) and transcribed according to the manu-
facturer’s suggested conditions. The HDV cleavage reaction occurs spontaneously
in the reaction conditions required for in vitro transcription. The cleaved tRNA
product was then purified from a denaturing polyacrylamide gel using the crush
and soak method. Removal of the 2′, 3′-cyclo-phosphate group on the 3′ end of the
purified tRNA product was performed by T4 polynucleotide kinase (NEB). The
repaired tRNA product was quantified using a Qubit fluorometer and individual
tRNA species were mixed to cover approximately 3.5 orders of magnitude.
Appropriate mixing of the spike-in mix was assessed with a Qubit Fluorometer
(Thermo Fisher) and Bioanalyzer (Agilent). Seventeen nanograms of control
tRNAs were spiked into 1 µg of total RNA from HEK293 total RNA treated with
demethylase.

QuantM-tRNA-seq library preparation. Total RNA samples were quantified
using a nanodrop spectrophotometer (Thermo Fisher) prior to library preparation
and RNA integrity was checked on a 1.2% denaturing formaldehyde agarose gel. To
remove 3′ conjugated amino acids, total RNA was deacylated at 37 °C for
45 minutes in deacylation buffer (final concentration 20 mM Tris-HCL pH= 9.0)
at a final concentration of 1 µg/µL. Where indicated, deacylated total RNA was
treated with demethylase (rtStarTM tRNA-optimized First-Strand cDNA Synthesis
Kit, ArrayStar) and cleaned up per the manufacturer’s instructions. One micro-
gram of deacylated total RNA from each sample was subject to library preparation.
Ten picomole of the 3′ and 10 pmol of the 5′ single-stranded adapter mix (2.5 pmol
of each adapter 5′-TGrGrA-3′, 5′-TGrGrT-3′, 5′-TGrGrG-3′, 5′-TGrGrC-3′; Sup-
plementary Data 1) were added to a 200 µL thin-walled amplification tube and
denatured at 95 °C for 2 min. Then annealing buffer was added to a final con-
centration of 5 mM Tris-HCl (pH 8.0), 0.5 mM ethylenediaminetetraacetic acid
(EDTA), and 10 mM MgCl2 and incubated at 37 °C for 15 min to hybridize the
annealed double-stranded adapter to tRNA. The ligation reaction was catalyzed by
5 U/µL of RNA ligase 2 (NEB) with the manufacturer’s suggested conditions at 37 °
C for 60 min then 4 °C at 60 min. All reactions were ethanol precipitated with
glycoblue (Thermo Fisher) followed by two 75% ethanol washes, then suspended in
10 µL of dH2O. Following ligation, synthesis of cDNA began with hybridization of
the RT primer to the ligated total RNA with a final concentration of 0.5 pmol/µL
(10 pmol total). The samples were incubated at 70 °C for 2 min and temperature
was reduced to 37 °C by 0.1 °C/s. Synthesis of cDNA was achieved using Super-
script IV at 55 °C for 60 min. To remove DNA-RNA dimers following cDNA
synthesis, RNA was hydrolyzed with a final concentration of 0.1 N NaOH in dH2O
at 98 °C for 20 min. All reactions were ethanol precipitated with glycoblue (Thermo
Fisher) followed by two 75% ethanol washes, then suspended in 12 µL of dH2O.
cDNA libraries were separated using 7M urea 6% denaturing polyacrylamide gels.
Gels were stained with 1× SYBR gold (Thermo Fisher) in 1× TBE for 15 min and
regions representing tRNA derived cDNAs were excised on a UV light box. Gel
slices were sheared through the bottom of a 0.5 mL tube nested in a 1.7 mL tube by
centrifugation then suspended in 400 µL of DNA elution buffer (300 mM NaCl, 10
mM Tris-HCl (pH= 8.0), 1 mM EDTA), incubated on dry ice for 30 min, and
allowed to incubate at room temperature overnight on a standing rotator. cDNA
was isopropanol precipitated with glycoblue followed by two 75% ethanol washes
then was resuspended in 12 µL of dH2O. Circularization of cDNA libraries was
performed with CircLigase (Epicentre) at 0.5 U/µL using the manufacturer’s sug-
gested conditions at 60 °C for 1 h. The reaction was terminated with incubation at
80 °C for 20 min. All reactions were ethanol precipitated with glycoblue followed by
two 75% ethanol washes, then suspended in 12.5 µL of dH2O. cDNA libraries were
amplified using the NEBnext Ultra II Q5 next-generation master mix (NEB) with
the manufacturer’s suggested conditions. HEK293 libraries were amplified for
seven cycles and mouse tissue libraries amplified for 7–9 cycles. Amplified libraries
were gel purified from 2% agarose gels stained with 0.05 mg/mL ethidium bromide.
Regions of interest (100–250 bp) were excised on a UV light box and purified using
the Qiaquick gel extraction kit (Qiagen) taking care to dissolve gel slices at room
temperature and using all optional steps. All libraries were ethanol precipitated
with glycoblue (Thermo Fisher) with two 75% ethanol washes, then suspended in
10 µL of dH2O before submitting for sequencing. Library concentration was
assessed using a Qubit (Thermo Fisher), quality was assessed on a DNA HS
bioanalyzer chip (Agilent), and library multiplexing directed by qPCR. Sequencing
was performed as single-end reads for 110 cycles on a NextSeq 550 (v2.5). All
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library QC, multiplexing, and sequencing was carried out by the Genomics Core
Facility of the CWRU School of Medicine’s Genetics and Genome Sciences
Department.

Read quality control and alignment. Reads were first processed to remove 5′
adapter sequences using cutadapt --cut 2 then cutadapt -g TCCAACTGGA-
TACTGGN -e 0.2 followed by cutadapt –a CCAGTATCCAGTTGGAATT -e 0.2 to
remove 3′ CCA and adapter sequences. Custom human or mouse tRNA references
were generated by collapsing identical tRNA sequences from gtRNAdb Release 18
hg38 or mm10 high-confidence mature tRNA fasta files. Mapping of human or
mouse reads with the corresponding reference was done with bowtie2 using the
parameters: --quiet --min-score G,1,8 --local -D 20 -R 3 -N 1 -L 10 -i S,1,0.5.
Isodecoder-level read count tables for further analyses were produced by counting
reads with MAPQ > 10 over reference tRNAs using the Rsubread package’s fea-
tureCounts function in R. Anticodon-level read count tables were then created by
summing reads from all isodecoders with the same anticodon. In addition to raw
read count tables, tables of both isodecoder and anticodon-level RPM mapped read
values were generated by dividing raw read counts * 1,000,000 by the number of
reads mapped.

Differential expression analysis. The raw read count tables at both the
anticodon-level and isodecoder-level across all seven mouse tissues described in the
previous section were next used to perform differential tRNA expression analysis.
The likelihood ratio test was applied to these tables using DESeq2 in R as detailed
in https://hbctraining.github.io/DGE_workshop/lessons/08_DGE_LRT.html
(Command: DESeq(raw_count_table, test= “LRT”, reduced= ~ 1)) using default
settings and p value adjustment (Benjamin–Hochberg correction). Downstream
data visualization and plotting were performed using ggplot2, gplots (heatmap.2),
ggrepel, and ggforce in custom R scripts.

Variant analysis. In order to analyze variants in tRNA sequencing reads, a custom
Python script was used to generate variant counts at each position in every tRNA
across all seven mouse tissues. In brief, bam files were read into the script and the
CIGAR string and MD tags for each read were used to tabulate each mutation,
insertion, or deletion across every ribonucleotide base of all tRNA in the mouse
reference. In addition, 5′ ends of reads internal to tRNA were used to infer sites of
RT stalling or fall-off. These four types of variants were summed at each position of
each tRNA for a total variant count, and then a read coverage at each position was
also calculated.

To identify significantly changed sequencing variants across tissues, we
performed DEXseq analysis on the raw variant counts table in R. DEXseq was
originally devised to identify alternative processing events in mRNA, but we
reasoned that co-transcriptional splicing is similar in principle to RT-mediated
misincorporation/stalling at RNA modifications. To ensure robust detection of
variants that change across tissues, we added two additional filtering steps. First, for
a given tRNA base, we required that variant percentage be >1% on average in every
tissue. Next, we only accepted base-level variants that changed variant percentage
at least 1.5-fold across tissues. Downstream data visualization and plotting were
performed using ggplot2, gplots, ggrepel, and ggforce in custom R scripts as well as
matplotlib in custom python scripts.

Calculation of nucleotide frequencies across CircLigase junction. For each band
from the cDNA gel depicted in Fig. 2d, we can reasonably assume that the majority
of the stalling resulting in the shortest cDNA ends in A (m1A)23. We also know
that longest full-length cDNA will end in T, as the 5′ adapter ends in T. The
shortest full-length cDNA (without 5′ adapter) is also likely to end in T, as this is
complementary to the discriminator base, which is highly skewed toward A40–42.
For all other minor bands, we do not know what base RT is stalling over, so our
prior estimate was 25% for each base. Given these prior parameters and the
amounts of each cDNA species from Fig. 2d and library dsDNA in our Bioanalyzer
trace (Source Data), we can calculate a predicted nucleotide frequency for the 3′
position depicted in Fig. 2e. For reads, we simply calculated nucleotide frequencies
of the first three bases across all reads.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. The datasets generated during and/or analyzed during the current
study are all available in the NCBI Gene Expression Omnibus repository with accession
number GSE141436. Source data are provided with this paper.

Code availability
Code used to perform the analyses presented in Figs. 1–5 and all Supplementary figures
utilized only published packages for R that are detailed in “Methods”. Custom code for

the analyses presented in Fig. 6 was written in Python. All code is provided as a
Supplementary Software file.
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