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The question of whether a population will persist or
go extinct is of key interest throughout ecology and
biology. Various mathematical techniques allow us to
generate knowledge regarding individual behaviour,
which can be analysed to obtain predictions
about the ultimate survival or extinction of the
population. A common model employed to describe
population dynamics is the lattice-based random
walk model with crowding (exclusion). This model
can incorporate behaviour such as birth, death and
movement, while including natural phenomena
such as finite size effects. Performing sufficiently
many realizations of the random walk model to
extract representative population behaviour is
computationally intensive. Therefore, continuum
approximations of random walk models are
routinely employed. However, standard continuum
approximations are notoriously incapable of making
accurate predictions about population extinction.
Here, we develop a new continuum approximation,
the state-space diffusion approximation, which explicitly
accounts for population extinction. Predictions from
our approximation faithfully capture the behaviour
in the random walk model, and provides additional
information compared to standard approximations.
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We examine the influence of the number of lattice sites and initial number of individuals on the
long-term population behaviour, and demonstrate the reduction in computation time between
the random walk model and our approximation.

1. Introduction
Determining whether the behaviour of individuals in a population results in the extinction or
survival of the population is a key question in cell biology, population biology and ecology
[1–9]. For example, tumour cells can undergo migration from the original tumour site to form
metastases [10]. However, this relies on the successful colonization of a new site by a small
number of tumour cells. As such, the question of whether the new colony of cells will survive or
go extinct is paramount [11]. Similarly, in the field of drug development, determining whether a
novel treatment results in the eradication of a target cell population is crucial [12]. In an ecological
context, predicting whether the introduction of a threatened species to a particular area will be
successful is critical for selecting suitable sites [3,8].

Mathematical models provide a framework for incorporating knowledge about population
behaviour such that the evolution of the population can be evaluated [1,4,7,13–20]. The most
common mathematical models used to investigate population dynamics are continuum models,
such as ordinary differential equation (ODE) or partial differential equation (PDE) models. These
approaches aim to predict the temporal and spatio-temporal distribution of the average density of
individuals, respectively [15,20–22]. While such models are employed widely, they are ill-suited
for describing extinction of finite populations, as the population is not restricted to integer states,
that is, whole numbers of individuals within the population. Discrete models enforce the number
of individuals to be an integer, as each individual in the model is simulated explicitly [23]. Further,
discrete models have the benefit that biological mechanisms, such as birth, death, and movement,
can be directly imposed at the level of individuals [23–26].

A popular choice of discrete model for describing population dynamics is the lattice-based
random walk [14,23–29]. Individuals in the model reside on a pre-defined lattice, and undergo
processes such as birth, death and movement in a stochastic manner according to biologically
inspired rules [14,23–26]. The lattice provides a natural method for incorporating population
limits and finite size effects, known as an exclusion process, by imposing the restriction that each
lattice site contains, at most, one individual [30,31]. These lattice-based random walks have been
successfully used to investigate processes in cell biology and ecology, among others [14,27,32,33].

While the simplicity and flexibility of the lattice-based random walk is appealing, there
are limitations to this modelling framework. In particular, the stochastic nature of the random
walk means that a considerable number of simulations of the random walk process must
be performed to obtain representative average behaviour of the population. This can be
extremely computationally demanding, particularly if the random walk model is employed
to perform parameter inference [33,34]. Furthermore, the random walk model is typically
analytically intractable, and the amount of analytic insight is limited. To address this, continuum
approximations of random walk processes have been developed, where time is treated as a
continuous variable [23,24,26,35]. Provided a judicious choice of approximation is made, typically
depending on the rates of birth, death and movement, these approximations accurately describe
the average behaviour in the random walk [24,26,35]. However, as noted previously, standard
continuum models are ill-suited for describing population extinction. Therefore, the development
of a continuum approximation that avoids the computational burden of repeated simulations of
a stochastic random walk process, while faithfully capturing the behaviour in the random walk
and accurately predicting population extinction would be beneficial.

Here we introduce a new PDE approximation of the underlying birth–death–movement
lattice-based random walk, which we refer to as the state-space diffusion approximation (SSDA).
The SSDA involves two major components. First, the underlying random walk is approximated
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via a state-space representation. The approximate state space of this random walk corresponds
to the number of sites occupied by individuals. Second, the state-space representation is
approximated via the diffusion method, which is also known as the Fokker–Planck approximation
[36,37]. In contrast to other PDE approximations of lattice-based random walks, the dependent
variables in the PDE are time and state space, rather than time and physical space. As such, the
solution to the PDE can be interpreted as the distribution of the number of occupied sites at a
particular time. Here, we consider two mechanisms for birth and death [14,25]:

(i) Logistic growth, where the intrinsic rates of birth and death of an individual are
independent of the neighbouring lattice sites, and;

(ii) Allee growth, where the intrinsic rates of birth and death depend on whether an
individual has zero occupied neighbouring sites, or at least one occupied neighbour site.

The logistic growth model is widely used to describe populations where low-density growth is
close to exponential but the population eventually tends to a finite carrying capacity density due
to competition for a shared resource [38]. Note that growth refers to the net birth/death rate of
the population, whereas intrinsic rates of birth/death refers to the birth/death of an individual.
The logistic growth model has been used to describe the dynamics of populations of tumour
cells [15,20], spruce budworms [38] and jellyfish polyps [39], among others. The logistic model
is relatively simple, but still captures key features of population behaviour. The Allee growth
model is slightly more complicated, and describes population dynamics where growth is either
inhibited or negative below a threshold population density [7,17,40–42]. This reduced growth
rate can represent mechanisms where a threshold number of individuals are needed to maintain
a population, such as for effective predator avoidance or for a viable number of breeding pairs
[40,41]. Reduced or negative growth rates have been observed in populations of cancer cells [7,17],
as well as in animal populations, such as the gypsy moth [43]. The widespread relevance of both
the logistic and Allee growth models ensure that insight gleaned from analysis of population
extinction in such models will be instructive in a range of research areas.

For both the logistic and Allee models, we demonstrate that the SSDA faithfully predicts
the behaviour of the random walk process, provided that the standard mean-field assumption
is satisfied. Further, as the SSDA explicitly accounts for the possibility that an individual
random walk will undergo extinction, we demonstrate that the SSDA provides a more accurate
approximation of the average random walk behaviour compared to standard mean-field ODEs.
The SSDA provides an estimate of both the rate of extinction and the state-space distribution, and
we show that these estimates are consistent with the underlying random walk process. Finally,
we highlight that the time taken to obtain the solution to the SSDA is orders of magnitude lower
than the time taken to perform sufficiently many realizations of the random walk.

2. Model

(a) Logistic model
Consider an n-dimensional lattice-based birth–death–movement random walk with exclusion on
a lattice with N sites [24,30]. While, in theory, n is arbitrary as continuum approximations of the
random walk under spatially uniform initial conditions are independent of n, the most relevant n
for biological and ecological processes are n = 1, 2, 3. Here, we present results corresponding to a
square lattice with n = 2. Individuals in the random walk undergo birth, death and movement
events at rates per unit time Pb, Pd and Pm, respectively [24,44] (figure 1a–f ). During a birth
event, we select an individual at random, and select one of 2n nearest-neighbour sites in the von
Neumann neighbourhood of the selected individual. The individual attempts to place a daughter
individual at the target site and is successful provided that the target site is unoccupied; otherwise
the event is aborted. Similarly, during a movement event, we select an individual at random,
as well as a nearest-neighbour site. The individual attempts to move to the target site, and the
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Figure 1. Mechanisms in the logistic random walk model. (a) Potential movement events for the individual in the centre of
the lattice. (b) Potential birth events for the individual in the centre of the lattice. Green arrows indicate directions that would
result in a successful event, red arrows indicate directions that would result in an unsuccessful event. (c) Potential death events
for the individual in the centre of the lattice. (d)–(f ) Lattice configuration after the corresponding event in (a)–(c). (g) Typical
growth rate curve as a function of the occupancy of the lattice. Cyan regions correspond to positive growth and purple regions
correspond to negative growth. K = (Pb − Pd)/Pb is the carrying capacity. (Online Version in colour.)

event is only successful if the target site is unoccupied. During a death event, an individual is
selected at random and removed from the lattice. Initially, N0 sites are selected at random, and
an individual is placed at each selected site. We select this method of determining whether an
event is successful to be consistent with previous investigations into continuum approximations
of lattice-based birth–death–movement processes [24,44]. For spatially uniform initial conditions,
periodic boundary conditions and under the mean-field assumption, where the probability that
a particular lattice site is occupied is independent of all other sites, the evolution of the average
proportion of occupied sites 0 ≤ S ≤ 1 is given by [24,44]

dS
dt

= PbS(1 − S) − PdS, (2.1)

as highlighted in figure 1g.
Here we instead consider the probability, f (S, t), that the system has S occupied sites at time

t. The system evolves in terms of the state variable S during a single time step of duration τ ,
denoted δf (S, t) = f (S, t + τ ) − f (S, t), according to

δf (S, t) = Pb

(
S − 1

N

)(
1 − S − 2

N − 1

)
f (S − 1, t) + Pd

(
S + 1

N

)
f (S + 1, t)

− Pb
S
N

(
1 − S − 1

N − 1

)
f (S, t) − 1

N
PdSf (S, t). (2.2)

The first term corresponds to the transition from state S − 1 to state S due to an individual
undergoing a birth event. This occurs proportional to the birth rate, Pb, the proportion of the
lattice that is occupied by individuals, (S − 1)/N, the probability that a nearest-neighbour site
is unoccupied, 1 − (S − 2)/(N − 1), and the probability that the system is in state S − 1, f (S − 1, t).
We note that this term involves the standard mean-field assumption that the probability that a site
is occupied by an individual is independent of whether a nearest-neighbour site is occupied [24].
The second term corresponds to the transition from state S + 1 to state S due to an individual
undergoing a death event. This occurs proportional to the death rate, Pd, the proportion of the
lattice that is occupied by individuals, (S + 1)/N, and the probability that the system is in state
S + 1, f (S + 1, t). The third and fourth terms represent events that result in the system moving
from state S to states S + 1 and S − 1, corresponding to birth and death events, respectively. Note
that the rate of movement, Pm, does not appear in equation (2.2), as movement events do not
change the number of individuals in the system. Instead, the ratio of Pm/Pb and Pm/Pd influences
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whether the assumption of independence between the occupancy of nearest-neighbour sites is
appropriate [24].

The system has two boundary cases that occur at S = 1, where

δf (1, t) = 2
N

Pdf (2, t) − 1
N

(Pb + Pd)f (1, t),

implying that probability mass is lost to the system at S = 1 corresponding to Pdf (1, t)/N; and
S = N, where

δf (N, t) = Pb

(
N − 1

N

)(
1 − N − 2

N − 1

)
f (N − 1, t) − Pdf (N, t),

and hence no probability mass passes through S = N.
Introducing a change of variables S = Ns, where 1/N ≤ s ≤ 1 is the proportion of occupied sites

[45,46], the system becomes

δf (s, t) = Pb
N

N − 1

(
s − 1

N

)(
1 − s + 1

N

)
f
(

s − 1
N

, t
)

+ Pd

(
s + 1

N

)
f
(

s + 1
N

, t
)

− Pb
N

N − 1
s(1 − s)f (s, t) − Pdsf (s, t).

Expanding f (s, t) in a Taylor series, neglecting terms O(N−3), and dividing by the time step τ ,
we obtain

δf (s, t)
τ

= 1
2N2τ

[
Pb

N
N − 1

(
s − 1

N

) (
1 − s + 1

N

)
+ Pd

(
s + 1

N

)]
∂2f (s, t)

∂s2

− 1
Nτ

[
Pb

N
N − 1

(
s − 1

N

) (
1 − s + 1

N

)
− Pd

(
s + 1

N

)]
∂f (s, t)

∂s

+ 1
Nτ

[
Pb

N
N − 1

(
2s − 1 − 1

N

)
+ Pd

]
f (s, t) + O(N−3),

or in conservative form,

δf (s, t)
τ

= 1
Nτ

∂

∂s

(
1

2N

[
Pb

N
N − 1

(
s − 1

N

) (
1 − s + 1

N

)
+ Pd

(
s + 1

N

)]
∂f (s, t)

∂s

−
[

Pb
N

N − 1

(
s − 1

N

)(
1 − s + 1

N

)
− Pd

(
s + 1

N

)

+ 1
2N

{
Pb

N
N − 1

(
1 − 2s + 2

N

)
+ Pd

}]
f (s, t)

)
.

Taking the limit N → ∞ and τ → 0 jointly such that Nτ is constant [47], and noting that, in
practice, N and τ are finite, we obtain

∂f (s, t)
∂t

= ∂

∂s

(
1

2N

[
Pb

N
N − 1

(
s − s2 + 2s

N

)
+ Pd

(
s + 1

N

)]
∂f (s, t)

∂s

−
[

Pb
N

N − 1

(
s − 1

N

) (
1 − s + 1

N

)
− Pd

(
s + 1

N

)

+ 1
2N

{
Pb

N
N − 1

(
1 − 2s + 2

N

)
+ Pd

}]
f (s, t)

)
.

Simplifying, the PDE gives

∂f (s, t)
∂t

= ∂

∂s

(
1

2N

[
a(s) + b(s)

]
∂f (s, t)

∂s
+

[
b(s) − a(s) − 1

2N

{
a′(s) + b′(s)

}]
f (s, t)

)
, (2.3)

where

a(s) = Pb
N

N − 1

(
s − 1

N

)(
1 − s + 1

N

)
, (2.4)
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and

b(s) = Pd

(
s + 1

N

)
, (2.5)

noting that terms O(N−3) are neglected. The boundary conditions are given by

1
2N

[a(s) + b(s)]
∂f (s, t)

∂s
+

[
b(s) − a(s) − 1

2N
{a′(s) + b′(s)}

]
f (s, t) = Pd

N
f (s, t) at s = 1

N
,

and
1

2N
[a(s) + b(s)]

∂f (s, t)
∂s

+
[

b(s) − a(s) − 1
2N

{a′(s) + b′(s)}
]

f (s, t) = 0 at s = 1.

We note that the approach employed here is similar to obtaining diffusion approximations of
infectious disease processes, where the size of the state space renders solution impractical [36,45,
46,48]. However, to the best of our knowledge, this type of approach has not been employed to
analyse and approximate lattice-based random walks with exclusion.

Consistent with the hyperbolic scaling imposed in the SSDA, we expect advection to provide
the dominant contribution to transport of the probability distribution. That is, we expect the
initial condition to evolve primarily according to the advective velocity b(s) − a(s). While this
does neglect the contribution of diffusive transport, this approximation is appropriate provided
that N is large, as the diffusive contribution is inversely proportional to N (see equation (2.3)). As
such, we expect the mode of the probability distribution, smo, to evolve from the initial location
of the peak of the initial condition to the stable steady state of

dsmo

dt
= a(smo) − b(smo).

Note that this is similar to the standard mean-field ODE, but that this describes the mode of the
probability distribution, rather than the mean of the probability distribution.

(b) Allee model
We now consider a two-dimensional birth–death–movement random walk with exclusion on a
lattice with N sites [30]. Here the birth and death rates depend on whether an individual agent
has zero nearest-neighbour agents or at least one nearest-neighbour agent, referred to as isolated
and grouped individuals, respectively [14,25] (figure 2a–l). These rates are Pi

b, Pg
b , Pi

d and Pg
d for

birth and death of isolated and grouped individuals, respectively. This corresponds to either a
competitive or co-operative process, depending on whether it is beneficial to be part of a group
of individuals or to be isolated [25]. It has been shown that in one dimension these birth and
death mechanisms give rise to an Allee effect [25] and, in two dimensions, these mechanisms
give rise to a per capita growth rate that is qualitatively similar to the Allee effect [14]. In certain
parameter regimes, growth rates can be obtained that are qualitatively similar to the weak, strong
and hyper Allee effects [14]. The weak Allee effect refers to a per capita growth rate where growth
is inhibited, but remains positive, at low individual densities [17,41]. The strong Allee effect
refers to the case where growth is negative below a threshold individual density, and positive
otherwise [41,49]. The hyper Allee effect refers to per capita growth rates that may have additional
steady states [14]. As the strong Allee effect is perhaps the more interesting model with respect to
population extinction, as fluctuations in the number of individuals that take the population below
the threshold density can result in extinction [49], we focus on parameter suites that correspond
to the strong Allee effect, noting that it is straightforward to analyse other parameter regimes. In
figure 2m, we present the growth curve as a function of the proportion of occupied lattice sites.
Under the standard mean-field assumption for a spatially uniform initial condition and periodic
boundary conditions, the evolution of the average proportion of occupied sites, 0 ≤ S ≤ 1, for the
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Figure 2. Mechanisms in the Allee random walk model. (a)–(c) Potential movement, birth and death events, respectively,
for the isolated individual in the centre of the lattice. (d)–(f ) Potential movement, birth and death events, respectively, for
the grouped individual in the centre of the lattice. Green arrows indicate directions that would result in a successful event, red
arrows indicate directions thatwould result in an unsuccessful event. (g)–(l) Lattice configuration after the corresponding event
in (a)–(f ). Isolated individuals are shown in purple, grouped individuals are shown in cyan. (m) Typical growth rate curve as a
function of the occupancy of the lattice. Cyan regions correspond to positive growth and purple regions correspond to negative
growth. A is the threshold parameter and K is the carrying capacity. (Online Version in colour.)

strong Allee effect is [25,41]

dS
dt

= rS(K − S)(C(S) − C(A)), (2.6)

where r > 0 is the net birth rate, 0 ≤ K ≤ 1 is the carrying capacity, 0 < A < K is the threshold
parameter, and C(S) satisfies C(S) < C(A) for 0 ≤ S < A, and C(S) > C(A) for A < S ≤ K. The most
common form of the strong Allee effect [25,41] has C(S) = S, though we note that the qualitative
dynamics do not change provided that the above conditions for C(S) are satisfied.

For the strong Allee effect, it is known that the standard mean-field ODE is inaccurate near the
unstable steady state, where the growth rate transitions from negative to positive [14]. As above,
we consider how the system evolves in terms of the state variable, the number of occupied sites,
during a single time step:

δf (S, t) = Pg
b

S − 1
N

(
1 − S − 2

N − 1

)(
1 −

[
1 − S − 2

N − 2

] [
1 − S − 2

N − 3

] [
1 − S − 2

N − 4

])
f (S − 1, t)

− Pg
b

S
N

(
1 − S − 1

N − 1

) (
1 −

[
1 − S − 1

N − 2

] [
1 − S − 1

N − 3

] [
1 − S − 1

N − 4

])
f (S, t)

+ Pi
b

S − 1
N

(
1 − S − 2

N − 1

) (
1 − S − 2

N − 2

) (
1 − S − 2

N − 3

)(
1 − S − 2

N − 4

)
f (S − 1, t)

− Pi
b

S
N

(
1 − S − 1

N − 1

)(
1 − S − 1

N − 2

) (
1 − S − 1

N − 3

)(
1 − S − 1

N − 4

)
f (S, t)

+ Pg
d

S + 1
N

(
1 −

[
1 − S

N − 1

] [
1 − S

N − 2

] [
1 − S

N − 3

] [
1 − S

N − 4

])
f (S + 1, t)

− Pg
d

S
N

(
1 −

[
1 − S − 1

N − 1

] [
1 − S − 1

N − 2

] [
1 − S − 1

N − 3

] [
1 − S − 1

N − 4

])
f (S, t)

+ Pi
d

S + 1
N

(
1 − S

N − 1

) (
1 − S

N − 2

)(
1 − S

N − 3

) (
1 − S

N − 4

)
f (S + 1, t)

− Pi
d

S
N

(
1 − S − 1

N − 1

) (
1 − S − 1

N − 2

)(
1 − S − 1

N − 3

)(
1 − S − 1

N − 4

)
f (S, t).

Note that if Pg
b = Pi

b and Pg
d = Pi

d, the above system reduces to the logistic model. Following the
same limit approach as previously, we obtain the following PDE describing the distribution of the
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state of the random walk process

∂f (s, t)
∂t

= ∂

∂s

(
1

2N
[a(s) + b(s)]

∂f (s, t)
∂s

+
[

b(s) − a(s) − 1
2N

{
a′(s) + b′(s)

}]
f (s, t)

)
, (2.7)

where

a(s) = Pg
b

N4

(N − 1)(N − 2)(N − 3)(N − 4)

(
s − 1

N

) (
1 − s + 1

N

)

×
(

(N − 2)(N − 3)(N − 4)
N3 − [1 − s]

[
1 − s − 1

N

] [
1 − s − 2

N

])

+ Pi
b

N4

(N − 1)(N − 2)(N − 3)(N − 4)

×
(

s − 1
N

)(
1 − s + 1

N

)
(1 − s)

(
1 − s − 1

N

)(
1 − s − 2

N

)
, (2.8)

and

b(s) = Pg
d

N4

(N − 1)(N − 2)(N − 3)(N − 4)

(
s + 1

N

)

×
(

(N − 1)(N − 2)(N − 3)(N − 4)
N4 −

[
1 − s − 1

N

] [
1 − s − 2

N

] [
1 − s − 3

N

] [
1 − s − 4

N

])

+ Pi
d

N4

(N − 1)(N − 2)(N − 3)(N − 4)

×
(

s + 1
N

)(
1 − s − 1

N

)(
1 − s − 2

N

)(
1 − s − 3

N

)(
1 − s − 4

N

)
. (2.9)

The boundary conditions are given by

1
2N

[
a(s) + b(s)

]
∂f (s, t)

∂s
+

[
b(s) − a(s) − 1

2N
{a′(s) + b′(s)}

]
f (s, t) = Pi

df (s, t) at s = 1
N

and
1

2N
[a(s) + b(s)]

∂f (s, t)
∂s

+
[

b(s) − a(s) − 1
2N

{a′(s) + b′(s)}
]

f (s, t) = 0 at s = 1.

Note that the boundary condition at s = 1/N only depends on Pi
d as it is impossible to have any

grouped agents at this s value, which corresponds to a single occupied lattice site. Similar to the
logistic model, the standard approach to examine how the system evolves is to use a mean-field
approximation, which results in the following ODE [14,25]

dS
dt

= Pg
bS(1 − S)(1 − (1 − S)3) + Pi

bS(1 − S)4 − Pg
dS(1 − (1 − S)4) − Pi

dS(1 − S)4. (2.10)

Note that equation (2.10) is equivalent to equation (2.6) in parameter regimes that correspond to
the strong Allee effect. In these parameter regimes, C(S) is a cubic function such that C(S) < C(A)
for 0 ≤ S < A and C(S) > C(A) for A < S ≤ K.

In general, the form of the PDE arising from a lattice-based birth–death–movement random
walk process is

∂f (s, t)
∂t

= ∂

∂s

(
1

2N
[a(s) + b(s)]

∂f (s, t)
∂s

+
[

b(s) − a(s) − 1
2N

{a′(s) + b′(s)}
]

f (s, t)
)

,

where a(s) are the coefficients of the f (S − 1, t) terms and b(s) are the coefficients of the f (S + 1, t)
terms, cast with respect of the scaled variable s rather than S. That is, the coefficients represent the
probability of transitioning from S − 1 to S and from S + 1 to S, respectively.
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3. Results
We first highlight the stochastic nature of the random walk, and the resulting need for an
approximation technique that provides the distribution of the number of occupied sites. In
figure 3, we present simulation results for both logistic and Allee models where, for two
identically prepared simulations, two completely different lattice configurations arise at t =
Tend. In one realization, the population persists (figure 3b,f ), while in another realization,
the population undergoes extinction (figure 3c,g). This information is not captured by the
corresponding mean-field ODE, presented in figure 3d,h, which only provides information
regarding the average occupancy. However, as detailed in §2, the SSDA explicitly accounts for
population extinction and describes the distribution of the proportion of occupied sites. We refer
to the latter throughout as the occupancy distribution.

We next verify that the predictions obtained from the SSDA are consistent with the average
random walk behaviour and the mean-field ODE for parameter regimes where it is known
that the mean-field approximation is appropriate, and where we expect the rate of population
extinction to be small. Specifically, these parameter regimes correspond to regimes where
Pm/Pb � 1 and Pm/Pd � 1 [24]. Details of the numerical techniques employed to obtain solutions
to the SSDA PDE are provided in appendix A. In figure 4a,d, we demonstrate that the evolution
of the average occupancy obtained from the solution to the SSDA matches the average occupancy
obtained from both the random walk and the mean-field ODE for both the logistic and Allee
models. Results are obtained from 104 identically prepared realizations of the random walk. The
average occupancy obtained from the SSDA is calculated via

S(t) =
∑

i

sif (si, t)�s,

where si are the values of s where a grid point is defined in the numerical solution, and �s is the
space between grid points (appendix A). The SSDA provides additional information, compared to
the mean-field ODE, with respect to the occupancy distribution, presented in figure 4b,e, and the
probability that the population has undergone extinction by time t, PE(t), presented in figure 4c,f.
The extinction probability is calculated via

PE(t) =
∑

i

f (si, 0)�s −
∑

i

f (si, t)�s,

that is, the difference in probability mass between the initial occupancy distribution and the
occupancy distribution at time t. Note that throughout this work t refers to the number of time
steps of arbitrary length in the underlying random walk, and does not refer to any particular
physical time scale. For both the occupancy distribution and the probability of population
extinction, the predictions obtained from the SSDA match the average random walk behaviour.

We now consider two parameter regimes for the logistic model where the possible extinction
of the population has a significant impact, calculate the evolution of the average occupancy,
the occupancy distribution and the probability of extinction, and present the results in figure 5.
Note that for all cases we choose parameters such that Pm/Pb � 1 and Pm/Pd � 1 to satisfy the
mean-field approximation [24]. In all cases, results obtained from the SSDA match the average
behaviour of the random walk well. In the first regime, presented in figure 5a–c, the birth rate
is twice the death rate, and hence the positive steady state in equation (2.1) occurs at S = 1/2.
Interestingly, despite the steady state existing well away from S = 0, there is a non-zero chance
that the population undergoes extinction. As such, the mean-field ODE overestimates the average
occupancy in the random walk as time increases, as this approximation does not account for
population extinction. At early time, it is unlikely that the population has undergone extinction,
so the mean-field ODE provides a reasonable approximation. By contrast, the SSDA accounts for
population extinction, and hence accurately reflects the average occupancy for all t considered.
The non-zero extinction chance can be observed in the occupancy distribution (figure 5b). The
distribution is centred around s = 1/2 but the distribution is broad relative to the range of
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Figure 3. Differences in the random walk obtained from identically-prepared initial conditions for (a)–(d) logistic growth
model and the (e)–(h) Allee model. (a),(e) The initial condition in the random walk model. (b),(c),(f ),(g) The final result of
the random walk model for two realizations. (d),(h) The evolution of average occupancy obtained from the mean-field ODE.
Parameters used are (a)–(d) Pm = 1, Pb = 0.075, Pd = 0.05, Tend = 104, N = 100, N0 = 50 and (e)–(h) Pm = 1, Pib = 0.01,
Pgb = 0.01, Pid = 0.04, Pgd = 0.0025, Tend = 1000, N = 100, N0 = 49. (Online Version in colour.)
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Figure 4. Comparison between the average behaviour of the lattice-based randomwalk (black), the SSDA PDE (cyan, dashed)
and the mean-field ODE (orange) for the (a)–(c) logistic growth model and the (d)–(f ) Allee model. (a),(d) The evolution of
the average occupancy. (b),(e) The occupancy distribution probability density function. (c),(f ) The evolution of the extinction
probability. Parameters used are (a)–(c) Pm = 1, Pb = 0.005, Pd = 0.001, Tend = 1000, N = 36, N0 = 8 and (d)–(f ) Pm =
1, Pib = 0.03, Pgb = 0.01, Pid = 0.02, Pgd = 0.01, Tend = 2000, N = 100, N0 = 50. Results are obtained from 104 identically
prepared realizations of the randomwalk. (Online Version in colour.)

possible average occupancy values. As such, the flux through s = 1/N is non-negligible. In the
second parameter regime, presented in figure 5d–f, there is no positive steady-state solution to
equation (2.1), and we expect the population to tend toward extinction. Both the mean-field ODE
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and the mean-field ODE (orange) for the logistic growth model. (a,d) The evolution of the average occupancy. (b),(e) The
occupancy distribution probability density function. (c),(f ) The evolution of the extinction probability. Parameters used are
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and the SSDA predict that the average occupancy will tend to zero; however, the mean-field
ODE significantly overestimates the average occupancy compared to the SSDA. For example,
at t = 1000, the mean-field ODE predicts an average occupancy that is approximately five times
larger than that obtained from both the random walk and the SSDA. Further, it is unclear how the
average occupancy is related to the probability that the population has undergone extinction,
and hence the additional information provided by the SSDA is instructive in this regard. By
t = 1000, there is approximately a 92% chance that an individual population will have gone extinct
and, for the non-extinct populations, the probability density of the occupancy distribution is
monotonically decreasing with respect to the number of occupied sites. This indicates that for
non-extinct populations, it is likely that the population is nearly extinct. This is in contrast to the
results in figure 5b, where non-extinct populations are not close to extinction.

Next, we consider three cases of the Allee model. In each case, we maintain the same rates
of birth and death; only the number of initially occupied sites changes. The choice of birth and
death rates is for illustrative purposes only; we could select other parameter values provided that
the parameters result in a strong Allee effect. The three different numbers of initially occupied
sites correspond to initial average occupancies that are at (S(0) = A, figure 6a–c), below (S(0) <

A, figure 6d–f ) and above (S(0) > A, figure 6g–i) the unstable steady state. As such, the mean-
field ODE, equation (2.6), predicts that the evolution of the average occupancy should remain
on the unstable steady state, tend towards extinction and tend towards the carrying capacity,
respectively.

For the initial occupancy corresponding to S(0) = A, we observe that the average occupancy
obtained from both the SSDA and the random walk tends below S = A as time increases, but
does not rapidly undergo extinction. This result is perhaps somewhat unintuitive based solely
on the evolution of the average occupancy, but is clearer when considered in context of both the
extinction probability and the occupancy distribution. Interestingly, the occupancy distribution is
still centred around the carrying capacity S = K, despite the average occupancy being below the
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Figure 6. Comparison between the average behaviour of the lattice-based randomwalk (black), the SSDA PDE (cyan, dashed)
and the mean-field ODE (orange) for the Allee model. (a,d,g) The evolution of the average occupancy. (b,e,h) The occupancy
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Results are obtained from 104 identically prepared realizations of the randomwalk. (Online Version in colour.)

unstable steady state. Combined with the probability of extinction at t = 2000 of approximately
50%, this implies that in an individual realization of a random walk one of two possibilities occur:
either the population will become extinct or the population will tend to the carrying capacity.
Due to this dichotomy, reporting the average occupancy is not an informative measure of average
population behaviour. Instead, both the occupancy distribution and the extinction probability are
required to understand the population behaviour.

Similar results are observed for the initial average occupancies corresponding to S(0) < A
and S(0) > A. The average occupancy in the case where S(0) < A appears to tend to a finite
positive value in the random walk, and the corresponding SSDA. By contrast, the mean-field
ODE predicts that the average occupancy will be near-zero by t = 400. Again, this discrepancy
can be understood by considering the occupancy distribution, and the extinction probability.
Here, a single population will become extinct approximately 90% of the time, but will otherwise
tend to the carrying capacity. This is again observed for the case where S(0) > A, albeit with a
much lower probability of extinction due to the higher initial occupancy. We observe that the
occupancy distribution is extremely similar for all three initial occupancies, to a scaling factor.
This suggests that provided a population does not go extinct, we expect the population to exist
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Figure 7. SSDA predictions for the (a,d) the evolution of the average occupancy, (b,e) the occupancy distribution probability
density function, and (c,f ) the evolution of the extinction probability for (a)–(c) the logistic model and (d)–(f ) the Allee model
for a range of N values. Arrow indicates direction of increasing N. Parameters used are (a)–(c) Pm = 1, Pb = 0.05, Pd = 0.04,
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near the carrying capacity. Note that the additional noise in figure 6(e) is due to the higher
probability of extinction. Further, the probability that a population goes extinct depends on the
initial occupancy. However, this dependence is less strict than in the standard Allee model,
equation (2.6), where the population will tend to extinction with certainty if S(0) < A and will
tend to the carrying capacity with certainty if S(0) > A.

As the difference between the SSDA and the standard mean-field approximation arises from
whether the population size is finite or infinite, it is instructive to examine how different
population sizes impact the average occupancy, occupancy distribution and the probability of
extinction. We consider both the logistic model and the Allee model for a range of population
sizes, with a consistent proportion of the lattice initially occupied. The parameter regimes
considered have a stable steady state that is below the initial average occupancy but occurs
at positive average occupancy. As such, we expect that the average occupancy should tend
towards this positive value, aside from extinction events associated with finite population size.
For the results obtained from the logistic model, presented in figure 7a–c, we observe that the
size of the population has a dramatic effect. For the smallest population (N = 60), we observe
that the average occupancy is close to zero by t = 2000 and that the extinction probability
is approaching one. Increasing the population size, we observe that the average occupancy
increases, corresponding to a decrease in extinction probability. Further, we see that the spread
in the occupancy distribution decreases with an increase in population size. This corresponds to a
smaller proportion of this distribution occurring near the boundary corresponding to extinction.
The population size has a similar effect in the Allee model, as observed in the results presented
in figure 7d–f. As noted in the results presented in figure 6, provided that the population does not
undergo extinction, the occupancy distribution is centred around the stable steady state.

Finally, we evaluate the probability that a population will undergo extinction by a particular
time for a suite of population sizes and initial average occupancies for both the logistic and Allee
models, and present the results in figure 8. For the logistic model, we observe that increasing the
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Table 1. Comparison between the time taken, in seconds, to perform 104 realizations of the randomwalk process and the time
taken to obtain the numerical solution to the SSDA PDE. All simulations were performed on a 3.1 GHz Intel i7 Processor (7920HQ)
in Matlab R2018b.

result figure 4(a)–(c) figure 4(d)–(f ) figure 5(a)–(c) figure 5(d)–(f ) figure 6(a)–(c) figure 6(d)–(f ) figure 6(g)–(i)

randomwalk 1.17 × 103 s 7.09 × 102 s 7.09 × 102 s 1.93 × 102 s 3.43 × 103 s 8.87 × 102 s 5.27 × 103 s


SSDA PDE 1.03 × 100 s 2.41 × 100 s 1.94 × 100 s 1.93 × 100 s 1.79 × 100 s 1.73 × 100 s 1.78 × 100 s


population size corresponds to a decrease in the extinction probability. Interestingly, the initial
occupancy is less important than the number of sites. This is consistent with the observation that
the occupancy distribution will approach a quasi-steady-state distribution on a faster timescale
than extinction [42]. For the Allee model, the initial average occupancy is important due to the
presence of the Allee threshold. If the initial average occupancy is below this threshold density,
the population will tend to extinction. However, if the population size is sufficiently small,
fluctuations in average occupancy can result in the population size crossing this threshold, and
hence a portion of populations will tend to the carrying capacity. Similarly, if the initial average
occupancy is above the Allee threshold density, the majority of populations will tend to the
carrying capacity. The exact size of this majority depends on the distance between the initial
average occupancy and the Allee threshold density, as well as the population size. This can be
observed in figure 8b, where increasing both the initial average occupancy and the population
size results in a decrease in the probability of extinction.

In table 1, we present a comparison of the computation time required to perform sufficient
realizations of the random walk process to obtain representative average behaviour, and the time
required to obtain a numerical solution to the SSDA PDE, for the results presented in figures 4–6.
For all cases, we observe that it is significantly faster, up to three orders of magnitude, to obtain
predictions from the SSDA rather than the random walk.

4. Discussion and conclusion
Determining whether a population will undergo extinction is relevant throughout biology and
ecology [1–3,6–9]. Population extinction may be beneficial, such as in the case of treating a
malignant tumour cell population [10], or detrimental, such as in the case of endangered
animal populations [3,8]. However, in both cases, being able to accurately predict whether
population extinct will occur is invaluable. Lattice-based random walks with finite size effects
are widely used to model the dynamics of populations of individuals [14,27,32,33]. Performing
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sufficiently many realizations of such random walks to obtain representative average behaviour is
computationally intensive, which has motivated the use of continuum approximations of random
walks [24]. However, previous continuum approximations are incapable of predicting population
extinction.

The new continuum approximation of a lattice-based birth–death–movement random walk
presented here is capable of describing and predicting population extinction. This approximation
involves a state-space representation of the lattice-based random walk, obtained via a mean-
field assumption, followed by a continuum scaling of both the state space and time. Previous
continuum approximations of lattice-based random walks have focused on the average
occupancy of the lattice, which is ill-suited for analysing extinction [24,26]. By contrast, the SSDA
explicitly accounts for the possibility that an individual random walk will undergo extinction via
the distribution of the number of lattice sites occupied by individuals.

We have demonstrated that the SSDA faithfully captures the behaviour in the corresponding
random walk for two common models of population dynamics, the logistic growth model
and the Allee growth model [14,24,25]. Specifically, we have shown that the evolution of
average occupancy obtained from the SSDA matches the average occupancy obtained from
the corresponding random walk. This is in contrast with the standard mean-field ODE, which
provides inaccurate predictions of the evolution of average occupancy. Further, the SSDA
provides further relevant information about the average population behaviour, namely, the
occupancy distribution and the probability that the population has undergone extinction. Neither
of these measures can be obtained from the standard mean-field ODE. We have demonstrated
that this additional information accurately reflects the behaviour in the corresponding random
walk. Finally, we have highlighted the benefit of using the SSDA rather than the random
walk by comparing the computational time required to obtain representative population
behaviour.

Significant research effort has been directed towards continuum approximations of lattice-
based random walks [14,23,24,26,35,44]. In particular, the vast majority of previous work has
investigated the validity of the standard mean-field assumption for a suite of biologically
inspired mechanisms [24,26,35,44]. It is well known that the mean-field assumption is satisfied
provided that the positions of individuals in the population are not correlated [24,50]. That is, the
probability that a particular lattice site is occupied does not depend on the occupancy of other
lattice sites. However, certain mechanisms in the random walk induce short-range correlation
[33]. For example, the birth mechanism in the random walk considered here results in two
individuals occupying neighbouring lattice sites. Hence, without sufficiently many movement
events, compared to birth events, the mean-field assumption will be invalid due to this short
range correlation. To address this issue, corrected mean-field models have been proposed
[24,26,35,44,51]. Corrected mean-field models consider the evolution of pairs of lattice sites, and
hence can account for correlation between lattice sites. These models, and similar approaches,
extend the parameter regimes under which the random walk can be accurately approximated
[24,26,35,44,51]. However, all of these models have focused on the issue of correlation in the
random walk, and how to select an appropriate continuum approximation, based on the strength
of correlation between lattice sites in the underlying random walk.

In contrast, the continuum approximation considered here addresses the issue of population
extinction. In standard continuum approximations, the evolution of the occupancy of the lattice
is described via a continuum equation [24,26,44,51]. As such, the average occupancy will
never be exactly zero, and will eventually approach the stable steady state in the continuum
approximation equation. However, in the corresponding random walk, there is a non-zero
probability, monotonically increasing in time, that the population has undergone extinction.
As we have demonstrated in this work, this extinction probability significantly impacts the
evolution of the average occupancy, even if the mean-field assumption is valid. Therefore,
to accurately predict the average occupancy, the probability that the population undergoes
extinction must be considered. We expect that a technique that incorporates both the probability of
population extinction and the correlation in lattice site occupancy will be necessary to accurately
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predict population behaviour for parameter suites where the mean-field assumption is not valid.
However, we leave this investigation for future work.

The work presented can here can be extended in several directions. While we have only
considered a population of individuals that is a single species, a natural extension would be to
consider more than one species [51]. Increasing the number of species allows for the description
of more detailed individual behaviour, such as predation. However, the size of the state space
increases exponentially with the number of species; an n-species model would have a state space
of size O(Nn). This quickly becomes intractable to analyse via the state space representation,
necessitating the use of an appropriate continuum approximation [50]. The combination of the
SSDA and a multispecies model would allow for the analysis of competition between species, and
which species undergo extinction or survive. Alternatively, the PDE governing the population
behaviour, equation (2.3), could be investigated analytically via separation of variables or an
asymptotic expansion to obtain insight into the late-time population behaviour. Another potential
future direction would be to develop further mechanisms in the underlying random walk model,
informed by experimental data. This approach would not only develop new partial differential
equations, but may also provide insight into experimental mechanisms that were hitherto unclear
[14]. Finally, we could develop an extended version of the SSDA that preserves information about
the location of individuals in the random walk in order to describe invasion-type processes, such
as the spread of invasive species [25,41]. However, such an extension is beyond the scope of this
work.
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Appendix A.

(a) Numerical solution of the SSDA PDE
To obtain numerical solutions of the SSDA PDE, we first apply finite difference techniques to the
spatial derivatives in the governing equation, using a central difference approximation [52]. For
all results, we choose a node spacing of �s = 10−5. The node spacing is selected such that the
numerical solution was insensitive to further reduction in the node spacing. For the temporal
derivative, we implement the backwards Euler method [52] with time step �t = TEnd/1000. The
resulting tridiagonal system of algebraic equations is solved using the Thomas algorithm [52].

(b) Numerical solution of the mean-field ODE
To obtain numerical solutions of the mean-field ODE, we use Matlab’s inbuilt ode45 routine, which
implements an adaptive time step Runge–Kutta method [53].
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