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Abstract

Electronic polarization effects have been suggested to play an important role in proton binding to 

titratable residues in proteins. In this work, we describe a new computational method for pKa 

calculations, using Monte Carlo (MC) simulations to sample protein protonation states with the 

Drude polarizable force field and Poisson-Boltzmann (PB) continuum electrostatic solvent model. 

While the most populated protonation states at the selected pH, corresponding to residues that are 

half-protonated at that pH, are sampled using the exact relative free energies computed with Drude 

particles optimized in the field of the PB implicit solvation model, we introduce an approximation 

for the protein polarization of low-populated protonation states to reduce the computational cost. 

The highly populated protonation states used to compute the polarization and pKa's are then 

iteratively improved until convergence. It is shown that for lysozyme, when considering 9 of the 

18 titratable residues, the new method converged within two iterations with computed pKa's 

differing only by 0.02 pH units from pKa's estimated with the exact approach. Application of the 

method to predict pKa’s of 94 titratable sidechains in 8 proteins shows the Drude-PB model to 

produce physically more correct results as compared to the additive CHARMM36 (C36) force 

field (FF). With a dielectric constant of two assigned to the protein interior the Root Mean Square 

(RMS) deviation between computed and experimental pKa's is 2.07 and 3.19 pH units with the 

Drude and C36 models, respectively, and the RMS deviation using the Drude-PB model is 

relatively insensitive to the choice of the internal dielectric constant in contrast to the additive C36 

model. At the higher internal dielectric constant of 20, pKa's computed with the additive C36 

model converge to the results obtained with the Drude polarizable force field, indicating the need 

to artificially overestimate electrostatic screening in a nonphysical way with the additive FF. In 

addition, inclusion of both syn and anti orientations of the proton in the neutral state of acidic 

groups is shown to yield improved agreement with experiment. The present work, which is the 

first example of the use of a polarizable model for the prediction of pKa’s in proteins, shows that 

the use of a polarizable model represents a more physically correct model for the treatment of 

electrostatic contributions to pKa shifts in proteins.
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INTRODUCTION

Titratable sites are abundant in proteins1 and play an essential role in the structure, function 

and stability.2 Thus, it is essential to reliably predict proton dissociation constants, pKa's, 

and to understand factors that modulate them.3 A large multitude of methods to predict 

proton binding affinities in proteins have been developed over the last decades.4 However, 

the accurate prediction of pKa's of protein titratable sites is still a major challenge and an 

active area of research.4b Accurate pKa prediction faces several challenges including the 

need to consider protein conformational changes associated with the changes in protonation 

states, solvent contributions and interactions between titratable sites, which depend on each 

particular configuration of bound protons. Also contributing is the complex electronic 

response of the heterogeneous protein/solvent environment to changes in protonation states.5

A number of pKa prediction methods rely on continuum dielectric models to describe the 

solvent degrees of freedom.2a, 6 In these methods, frequently the protein in solution is 

treated using the continuum dielectric approximation based on the Poisson or Poisson-

Boltzmann (PB) model7 or generalized Born (GB) model in the context of an additive force 

field, with the GB model having the advantage of being more computationally efficient.8 

Bashford and Karplus were first to develop and apply the PB model using detailed 3D 

structural information for pKa calculations and taking into account interactions between 

titratable sites as defined by a particular arrangement of bound protons.9

The number of possible protonation states of the protein grows exponentially with the 

number of titratable sites. The exact calculation of all accessible protonation states is not 

feasible for proteins containing a large number of titratable residues and different 

approximations have been introduced to overcome this challenge.7b, 9-10 The early method 

of Tanford & Roxby introduced an approximation in the energy function which effectively 

reduces an ensemble of protonation micro-states to one.10b In this method a titratable residue 

interacts with protonated and deprotonated forms of all other residues weighted based on 

their pKa's and the targeted pH value. However, it was shown that this approximation is 

inaccurate for strongly interacting sites.10b, 10c Later methods include different site-

reduction methods9-10, 10c and hybrid methods.11 With site-reduction methods, most of 

configurations of bound protons are eliminated, for example based on precalculated 

occupancies or distances between titratable sites.10a Arguably, a more precise method is to 

perform Monte-Carlo (MC) simulations since, in principle, all protonation states can be 

sampled.7b With additional approximations, MC methods can be used together with a 

limited protein flexibility, for example, allowing for discrete side-chain conformational 

sampling with a rigid protein backbone.7c, 8a

For computational efficiency, all these methods normally rely on the ability to decompose 

the free energy of the protein in a particular protonation state into energy contributions that 
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depend only on the protonation states of individual residues or pairs of residues.10c This is 

possible as the field or potential determined by the Poisson equation is additive.6a The 

energy components can be precomputed and stored for subsequent free energy calculations 

performed during sampling of protonation states. However, with polarizable force fields the 

free energy cannot be represented in the pair-wise form, since the electronic state of the 

protein and, therefore, the free energy is defined by the protonation state of all titratable 

sites. To overcome this an effective approximation is needed to implement a polarizable 

model, such as the Drude-PB model, in constant-pH Monte Carlo simulations.

In this work, we present a new computational method to resolve the need to explicitly treat 

the polarization of a protein during pKa calculations. While the calculation of pKa’s for 

small molecules with a polarizable force field has been performed previously,12 the present 

study represents their first application towards the estimation of pKa’s in proteins. The 

approach is based on our previous study where we implemented and parametrized an 

implicit PB solvent model in conjunction with the Drude force field; similar work has been 

done with the AMOEBA polarizable force field.13 In the new method, the most populated 

protonation states at the target pH, as defined by those residues that titrate in the region of 

the target pH, are sampled using the relative free energies that include a self-consistent field 

(SCF) calculation of the Drude particles in the field of the PB implicit solvation model. The 

states used to compute the electronic polarization and pKa's are iteratively improved until 

convergence. In addition, to facilitate the calculations, the interactions between titrating 

groups are calculated for a single electronic structure for each ionization state of each 

residue, with that approximation explicitly validated. The model was tested to predict the 

pKa’s of 94 titratable sidechains in 8 proteins for which experimental pKa's are available.

METHODS

Classical electrostatic pKa calculations with additive force fields

The classical theory of pKa calculations of a titratable residue group in the protein 

environment using the pKa of the model compound in solvent is based on the 

thermodynamic cycle shown in Figure 1.

It is assumed that the proton binding affinity difference of a titratable residue in the protein 

and a model compound in solvent is only due to the electrostatic interactions. For a protein 

containing one titratable residue:

pKa
protein = pKa

model + ΔΔG ∕ ln(10) ∕ RT, [Eq 1]

where pKa
model is the pKa of a model compound in solvent; R is the gas constant; T the 

temperature and ΔΔG is a double difference of the electrostatic free energy associated with 

the residue being in the protein environment. It is further assumed that the electrostatic field 

is governed by the macroscopic Poisson (or Poisson-Boltzmann) equation:

∇ε(r̄)∇φ(r̄) = − 4πρ(r̄), [Eq 2]

Aleksandrov et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where φ is the electrostatic potential, ρ is the charge density and ε is the dielectric constant. 

This equation can be numerically solved, for example on a cubic lattice by finite difference 

methods, to give the charging free energy, W, of a set of protein atomic charges:

W = 1
2 ∑i Qi

Pφ(r̄i), [Eq 3]

where the summation is done over the protein atomic charges, Qi
P ;φ(r̄i) is the electrostatic 

potential that satisfies Equation 2 and computed at the position r̄i of the atomic charge Qi
P .

For a macromolecule containing more than one titratable site, the protonation state of a 

residue, μ, is affected by the charge state of all other titratable residues. In this case, the 

fraction of molecules, θμ, protonated at site μ at a particular pH value is given by the 

Boltzmann average of all microstates where this residue is protonated:

〈θμ〉 = (∑{x̄}xi, μ exp( − ΔG(xı, pH) ∕ RT)) ∕ (∑{x̄} exp( − ΔG(xı, pH)
∕ RT)), [Eq 4]

where the summation is done over all possible protonation microstates {x̄}; xı is a vector that 

defines protonation microstate i; xi,μ is a μ-th element of the vector xı and is 1 or 0 if residue 

μ is protonated or deprotonated, respectively, in the microstate i; ΔG(xı, pH) is the relative 

free energy of protonation of microstate xı, and within the context of additive force fields 

can be expressed as follows:

ΔG(xı, pH) = E(xı, pH) + ∑μ (ΔGBorn, μ(xi, μ) + ΔGback, μ(xi, μ))
+ 1

2 ∑μ ≠ vW μv(xi, μ, xi, v), [Eq 5]

where ΔGBorn,μ is the relative Born energy of a titratable residue located in the protein 

environment and related to its desolvation electrostatic free energy; ΔGback,μ is due to 

interactions with the background charges on non-titratable residues; Wμν(xi,μ, xi,ν) is 

electrostatic interaction energy between two titratable residues μ and ν being in protonation 

states xi,μ and xi,ν respectively. E(xı, pH) is a contribution from solvent pH and reference 

model compounds:

E(xı, pH) = ∑μ E(xi, μ, pH) = ∑μ xi, μ RT ln(10) (pH − pKa, μ
model) − 〈Eμ

model

(xi, μ)〉 ,
[Eq 6]

where 〈Eμ
model(xi, μ)〉 is the average electrostatic free energy of the reference model 

compound for residue μ being in protonation form xi,μ in solvent computed using the same 

force field model. For the convention, in summations we will use letters from the Latin 

alphabet to designate protein particles (atoms, Drudes, lone-pairs) and protein microstates, 

while Greek letters to denote residues in the protein. The ⟨θμ⟩ are evaluated at a discrete 

number of pH values to obtain a titration curve for site μ. pKa,μ of a titratable residue μ in the 

protein is then defined as the pH value where the titratable residue is half-protonated.
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In practice calculations of titration curves directly using Equation 4 are limited to 

macromolecules containing only a few titratable residues since it requires sampling of a 

large number of protonation microstates that grows exponentially (2N) with the number of 

titratable residues. To solve this problem MC simulations are performed to sample only 

relevant protonation states, while high-energy states that do not contribute significantly in 

Equation 4 are not visited. To perform MC simulations, energies appearing in Equation 5 

must be precomputed and stored in the first step. Relative free energy of the protein in a 

particular protonation state is then recovered from the energy matrices as a simple sum of 

energy terms in the MC simulations.

The Poisson-Boltzmann method for pKa calculations with a polarizable force field and 
multiple titratable sites

In the case of polarizable force fields, ΔGBorn,μ, ΔGback,μ and Wμν in Equation 5 depend on 

the electronic state, or polarization, of all protein atoms. In particular, with the Drude force 

field ΔGBorn,μ, ΔGback,μ and Wμν are functions of the position of the Drudes on all atoms 

including titratable residues. In turn, the positions of all Drudes, including on protein 

backbone atoms, depend on the protonation states of all residues. In the case of polarizable 

force fields the relative free energy ΔG(x̄, pH) contains additional contributions. In the 

context of the additive force field, these contributions do not depend on the protein 

protonation state x̄, and thus do not contribute in Equation 5. These energy terms include (i) 

a contribution from interactions between background charges with background charges, 

since polarization of background atoms depends on the protonation state; (ii) the Born 

energy of background atoms, which now depends on the polarization affected by the 

protonation state of all residues; and (iii) the polarization work needed to polarize titratable 

and non-titratable groups of atoms from the polarization in solvent to the polarization in a 

protein. We will use GBB(x̄) to denote the sum of the first two terms (i) and (ii), and the term 

(iii) will be included in GBB(x̄), GBorn, μ(x̄), and Gback, μ(x̄). The term (iii) is computed within 

the Drude force field as the bond energy contributed by the atomic core-Drude particle 

bonds (i.e. self-polarization energy term or polarization work), which is different due to the 

different polarization in solvent and protein as well as being coupled to the protein 

protonation state. Thus, the total relative free energy of a microstate within the Drude 

polarizable force field is calculated using the following formula:

ΔG(x̄, pH) = E(x̄, pH) + ΔGBB(x̄) + ∑μ (ΔGBorn, μ(xμ, x̄) + ΔGback, μ(xμ, x̄))
+ 1

2 ∑μ ≠ ν W μν(xμ, xν, x̄), [Eq 7]

where x̄ is, as above, a vector with element xμ defining the protonation state of residue μ; 

and the argument x̄ in functions GBorn, μ(xμ, x̄), Gback, μ(xμ, x̄) and W μν(xμ, xν, x̄) is repeated to 

emphasize that in contrast to Equation 5, these terms depend on the protonation state of all 

residues including titratable residues μ and ν.

In contrast to additive force fields, G(x̄, pH) given by Equation 7 is not a residue-pairwise 

function. This means that the free energy of all protein protonation microstates cannot 

readily be recovered in MC simulations. Accordingly, in what follows, we present an 
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approximate MC method suitable for the polarizable Drude force field in the context of a 

constant pH formalism. We first note that to define pKa,1/2 of a titratable residue only the 

point on the titration curve where pH = pKa,1/2 needs to be identified. Thus, the approach 

just needs to reproduce exactly the free energies of microstates highly populated at pH ~ 

pKa,1/2 that contribute significantly in Equation 4. In the method presented later in this 

section, free energies of the most populated states for the protonated and deprotonated forms 

of a residue are computed exactly using minimization of the position of the Drudes particles 

(i.e. performing the polarization SCF calculation) in the field of the implicit solvent. Thus, 

polarization effects for the most populated microstates are taken into account exactly, while 

free energies of less populated microstates perturbed by the polarization response to the 

change of the protonation state are computed less accurately during the MC simulation. To 

calculate ΔGBB(x̄), ΔGBorn, μ(xμ, x̄), ΔGback, μ(xμ, x̄) and W μν(xμ, xν, x̄) in Equation 7 the 

position of all Drude particles should be defined. In the method, the highly populated 

protonation states at pH = pKa,μ are used to calculate these energies for the protonated and 

deprotonated forms of residue μ.

pKa calculations with the Drude force field and Poisson-Boltzmann model

In this section the calculation protocol of the new method is given. A flow chart of the 

computational protocol is presented in Scheme 1. Protonation states for all residues are 

predefined in the initial calculation of energy terms appearing in Equation 7, with titratable 

residues assigned neutral protonation states. These predefined states will be refined 

iteratively in subsequent steps. The method starts with molecular mechanics (MM) and 

Poisson-Boltzmann calculations of free energies needed to perform MC simulations:

Step 1.—Calculate protein free energies for both ionization states of all titratable residue 

with the remaining titratable residues assigned neutral protonation states. For each 

protonation state of titratable residue μ, neutral protonation states are used for all other 

titratable residues giving the vector defining the protonation microstate x̄i. These protonation 

microstates x̄i are used to optimize the Drude particles. The free energies of the protein in 

each of these protonation microstates is calculated as Gi = G(x̄i), based on the system MM 

energy and the PB implicit solvation energy, with these energies including the polarization 

energy following the Drude SCF calculation.

Step 2.—Interaction free energies between titratable residues, which include MM 

electrostatic interactions and the solvent contribution, are calculated. This involves 

individually calculating the electrostatic potential for each titratable residue μ, by zeroing the 

charges on all atoms in the protein (including lone pairs and Drude particles) except those on 

the residue μ. The positions of Drude particles optimized in step 1 and corresponding to 

selected protein protonation microstates for residues μ and ν are used, so no optimization of 

Drude particles is needed at this step. To avoid the problem of artificial contributions arising 

when interaction energies are computed between neighboring residues due to 1,2 and 1,3 

dipole-dipole interactions included in the Drude model, the contribution to the interaction 

energy from solvent is computed using the PB model and combined with the MM energy to 

obtain the total interaction free energy between residues. The PB equation is solved to obtain 
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the electrostatic potential φRμ (εext = εw, εint = εp), due to the charges of residue μ being in 

the protonation state xμ. Calculations are repeated using the protein dielectric constant for 

the protein exterior to obtain the electrostatic potential φRμ(εext = εp, εint = εp). The 

electrostatic potential is used to calculate the electrostatic interaction W μν
xμ, xν ∗

 between the 

titratable residues μ and ν being in protonation state xμ and xν, respectively, according to 

W μν
xμ, xν ∗ = 1 ∕ 2∑ijqiqj ∕ εp ∕ rij + ∑jqj(φRμj(εext = εw, εint = εp)‐ φRμj(εext = εp, εint = εp)), 

where qi and qj are charges of residues μ and ν, respectively. Note that in principle 

W μν
xμ, xν ∗ ≠ W νμ

xν, xμ ∗
, and these interaction energies are different from those appearing in 

Equation 7 since the polarization used for residues μ and ν corresponds to different protein 

protonation microstates. We use an asterisk to distinguish these energies from the interaction 

energies in Equation 7.

Step 3.—For each free energy, Gi computed in step 1 it is possible to write Equation 7 as 

follows:

Gi = GBB(x̄i) + ∑μ ΔGBorn, μ(xi, μ, x̄i) + ΔGback, μ(xi, μ, x̄i) + 1
2 ∑μ ≠ ν W μν

(xi, μ, xi, ν, x̄i),
[Eq 8]

The latter expression does not form a closed system of linear equations relative to the terms 

ΔGBorn ∕ back μ(xi, μ, x̄i) = ΔGBorn μ(xi, μ, x̄i) + ΔGback, μ(xi, μ, x̄i), since the latter terms are 

different for different protonation microstates x̄i. To recover Gi later in MC simulations, 

instead of using Equation 8 we introduce a system of linear equations:

∑
μ

GBorn/back, μ
xμ1

+ GBB = G1 − 1
2 ∑

μ ≠ ν
W μν

xμ1, xν1 ∗

∑
μ

GBorn/back, μ
xμ2

+ GBB = G2 − 1
2 ∑

μ ≠ ν
W μν

xμ2, xν2 ∗
[Eq 9]

where GBB is again due to interactions between background atoms with themselves, but 

invariant relative to the protonation state of titratable residues; W μν
xμ1, xν1 ∗

 is the interaction 

energy between residues μ and ν computed in step 2; GBorn/back, μ
xμi

 and GBB can be regarded 

as unknowns that satisfy the system of equations. The right hand expressions in the system 

are calculated in steps 1 and 2. The system of linear equations can be resolved to find all 

GBorn/back, μ
xμi

 and GBB.

We note that GBorn/back, μ
xμi

 are not calculated directly in step 1 as was performed in the 

original constant-pH MC method. This is due to the need to calculate free energies from step 

1 in the MC simulations as required to identify the most likely protonation microstates for 

each titratable residue as a function of pH when residues titrate (at pH = pKa,μ) rather than 
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GBorn/back, μ
xμi

 energies. In other words, G1, G2 … Gn are used in MC simulations to sample 

probabilities of protonated and deprotonated states and, thus are required to calculate the 

titration curves. It should be emphasized that in MC simulations with the Drude force field it 

is prohibitively expensive to calculate the free energies of all protein microstates in contrast 

to the calculations with additive force fields; instead, we recover free energies of the most 

important states using the above method.

It may happen that the most likely protein microstates are identical for protonation states of 

different residues at the pH where they are half-protonated. In this case, equations for the 

protonation states of these residues are identical in the system of equations 9 and the system 

is not complete as required to define GBorn/back, μ
xμi

 and GBB. To complete the system we 

introduce additional equations in the free energy Gl computed with zero charges on all 

titratable residues except residue μ. The additional equation added to the system of equations 

9 is: GBorn/back, μ
xμ1

+ GBB = Gl.

Step 4.—Perform MC simulations. During the MC simulations at the pH corresponding to 

the pKa,ϑ of residue θ, the free energy of microstates is computed according to:

G(x̄) = GBB + ∑μ GBorn/back, μ
xμ + 1

2 ∑μ ≠ ν W μν
xμ, xν ∗

[Eq 10]

In Equation 10, W μν
xμ, xν ∗

 are the same energies used in the system of equations 9 and 

GBorn/back, μ
xμ  and GBB are the solutions. For the most populated microstate x̄i, selected in 

Step 1, this equation should give exactly Gi. Thus, this approximation allows the free 

energies to be recovered in the MC simulations computed with the correct polarization (e.g. 
SCF Drudes). It should be noted that GBB is a constant for all microstates and thus, cancels 

out when relative free energies of microstates are computed in the MC simulations. The 

dependence of GBB(x̄) on the protonation state does not appear in Equation 10 explicitly. 

However, for the most populated states it is included in GBorn/back, μ
xμ , as they are solutions of 

the system of equations 9.

MC simulations are performed in the range of pH values between −10 to 30 with a step of 

0.5 pH unit to obtain a titration curve for each titratable residue. The contribution E(x̄, pH)
computed by Equation 6 is added to Equation 10 to obtain relative free energies of protein 

microstates. During the MC simulations one randomly selected titratable residue protonation 

state is changed with acceptance or rejection of that change based on the Metropolis criteria. 

In 50% of the MC steps a second residue is allowed to change its protonation state. In the 

present study, 100,000 MC steps were performed for each titratable residue in the system 

(eg. with 20 titratable residues 2·106 MC steps are performed). To test the convergence of 

MC simulations the number of MC steps was doubled, but the change in relative populations 

of protonated and deprotonated forms was less than 10−3 observed for residues in eight 
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proteins. Finally, using the titration curves the set of pKa,μ values of all titratable residues 

can be defined based on the pH at which they are half-protonated.

Step 5.—MC simulations for each titratable residue μ and each of its protonation state xμ 

are repeated at pH = pKa,μ determined in the previous step. In contrast to the MC 

simulations in step 4, the targeted titratable residue μ is fixed in the protonation state xμ to 

find the most likely protonation states for all other titratable residues. Note that the most 

likely protonation states may be different for the protonated and deprotonated forms of the 

same residue μ. The same number of MC steps was performed as in step 4.

Step 6.—Steps 1-5 are repeated with the most likely states of each titratable residue 

obtained from step 5. These iterations are required since initially in step 1 the most likely 

protonation states are not known but rather estimated based the neutral protonation state. 

Iterations over steps 1-5 are performed until the calculated pKa,μ of all the titratable residues 

and the states computed in step 5 converge. Overall, the protocol has two types of self-

consistent iterations: (i) in step 1 the position of the Drudes and the PB solvent polarization 

are fully optimized and (ii) globally, steps 1-6 are repeated to converge the individual 

titratable residue pKa,μ values.

To summarize, using this method the polarization effects are included without any 

approximation in free energies for the most populated protonation microstates of a protein 

when residues titrate (at pH = pKa,μ). Within this method, it is achieved at an additional 

computational cost to perform multiple iterations. It should be noted that polarization of less 

populated states is still incorrectly treated, since a surrogate of GBorn/back, μ
xμ  and W μν

xμ, xν ∗

corresponding to protonation states that differ from that of the less populated states is used. 

The latter error is expected to be small, since those microstates make small contributions to 

the titration curves at pH equal pKa,μ. Notice, that in principle, one could consider exact free 

energies for a limited number of less occupied microstates in Equation 4, however, in this 

work we limit to one state per protonation and rotameric state of a residue.

Proton binding sites and protein structure relaxation

In the present study, only titratable protons are allowed to change their positions to preserve 

the dielectric boundary. Otherwise, the PB equation would need to be solved for each Wμν 
element, which is prohibitively expensive. It should be noted that different approximations 

have been proposed with the sacrifice of the exact protein boundary to allow limited 

flexibility of sidechains8a, 14, which will be explored in future studies with the Drude force 

field.

In the case of the acidic aspartate and glutamate residues, we consider five protonation 

states: one ionized negative state and four neutral states with the proton on either oxygen and 

in the syn and anti orientations. Two rotamers were included for neutral tyrosine that differ 

by the orientation of the hydroxyl group, and three rotamers for the neutral lysine, 

distinguished by the dissociation of amino protons. Histidines had two possible neutral 

tautomers: protonated on Nε (pKa of the model compound 7.0) and Nδ (pKa of the model 

compound 6.5). In the implementation, the neutral tautomers of histidines are simply treated 
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as "rotamers" with a different contribution to the pH dependent term due to the pKa 

difference of the Nε and Nδ sites. The total number of rotamers for neutral and ionized 

forms for titratable residues was chosen to be identical to avoid the problem of artificial 

biasing in MC simulations of protonation forms having a larger number of rotamers.

Reference state

Following the thermodynamic cycle shown in Figure 1, to calculate the protonation free 

energy in the protein the free energy of the model compound in solution, called the reference 

free energy, is subtracted. This free energy is estimated using the same force field model, 

which is needed for the cancelation of artefacts due to the employment of the empirical force 

field model. The force field term of the reference free energy is estimated as the free energy 

of the model compound in solution averaged over all possible compound conformations. In 

this work, we neglect the contribution from the bonded terms not associated with the Drude 

particles, since a single conformation for the protein calculations is used. Thus, the reference 

free energy of a model compound with a titratable residue x in solvent is:

Gx
ref = Eelec + Ebond

Drude + Gsolv
PB , [Eq 11]

where Eelec is the intramolecular electrostatic energy computed with the same dielectric 

constant εp, which is used to calculate the solvation free energy 

Gsolv
PB = Gεext = 80

PB − Gεext = εp
PB . The same dielectric constant is also used for the protein 

calculations. Ebond
Drude is the bond energy from the atomic core-Drude particle bonds (i.e. self-

polarization energy term or polarization work).15 N-acetyl-x-N-methylamide with the 

corresponding titratable residue x was used as the model compound in solution. In this 

compound, charges involved in all 1-4 electrostatic interactions, including Drudes are 

identical to those charges in the protein system, leading to the cancelation of artefacts arising 

from the employment of the force field. To obtain pKa 's in the protein, the computed pKa 

shifts due to the protein environment were added to pKa
model's given in Table S2. The 

experimental pKa shifts were computed as the difference between the pKa in the protein 

environment and the pKa of the corresponding model compound.

To obtain average free energies in solvent we performed molecular dynamics (MD) 

simulations of the N-acetyl-x-N-methylamides immersed in a cubic solvent box. The 

minimum distance between the compound atoms and the edge of the system was 12 Å. 

Periodic boundary conditions were assumed. All long range electrostatic interactions were 

computed efficiently by the particle mesh Ewald method16 using a real space cutoff of 12 Å. 

The Lennard-Jones term was evaluated out to 12 Å with a force switch smoothing function 

from 10 to 12 Å. MD simulations were performed at a constant temperature of 298 K and 

pressure of 1 ATM after 20 ps of thermalization. During MD simulations the center of mass 

of the model compound atoms was weakly harmonically restrained to the origin of the 

system with a force constant of 1.0 kcal·mol−1·Å−2. For the model compounds the 

CHARMM36 (C36)17 and Drude18 protein force fields were used along with the CHARMM 

TIP3P19 and SWM4-NDP20 model for water for the additive and polarizable calculations, 

respectively. Simulations were done with the NAMD program.21 50 nanoseconds of MD 

Aleksandrov et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were performed at constant temperature and pressure for the compound containing each 

titratable residues. To calculate PB free energies, structures from the MD simulations were 

saved every 100 ps. The final PB free energies were averaged over these structures. The 

convergence was confirmed by dividing the data into five blocks corresponding to 10 ns MD 

simulations and computing the standard deviation, which was lower than 0.1 kcal·mol−1 in 

all cases.

For the protonated form of the carboxylic acids, Asp and Glu, the syn and anti positions of 

the OH proton were simulated separately. The reference energy of the protonated form of 

Asp and Glu was Boltzmann-averaged over the free energies of the two forms.

Internal dielectric constant

As demonstrated and discussed in the work of Warshel et al, the dielectric constant ascribed 

to the protein medium is meant to represent physical contributions that are not considered 

explicitly.22 In the early model of Tanford and Roxby a protein was treated as a medium 

with a dielectric constant εint = 4 and solvent with a dielectric constant of 80, the 

experimental value. The protein dielectric constant of 4 is larger than the electronic 

polarizability estimate of 2, presumably to take into account the contribution due to the 

fluctuations of protein polar groups about their equilibrium positions.9, 23 In the model of 

Tanford and Roxby, the uniform continuum medium representing the interior of the protein, 

itself treated as a fixed object, was meant to implicitly incorporate the effects of the atomic 

fluctuations. This model is clearly an approximation. Obviously, the choice of the dielectric 

constant ascribed to the protein interior depends on the physical effects that are treated 

explicitly in the model.10a, 24 In this work, we do not treat fluctuations of protein atoms 

explicitly, which justifies the use of a higher dielectric constant for the protein interior (εint > 

1). However, since reorganizations in the protein electronic structure are treated explicitly in 

the polarizable model, the protein dielectric constant is expected to be smaller than in the 

model with the additive force field. This conjecture will be verified with practical examples 

below. Following our previous work, the ionic strength was set to 0 M.15

Poisson-Boltzmann free energy calculations with the Drude Force field

The Poisson-Boltzmann free energy with the Drude force field is calculated in accord with 

our previous work.15 In brief, we need to calculate the electrostatic free energy, 

Gεext=εw,εint=εp of a solute with an internal dielectric constant of εp immersed in a dielectric 

medium with a high dielectric constant of εw. The free energies computed using the 

potential obtained by numerically solving the Poisson-Boltzmann equation and Equation 3 

contain the artificial contributions of the grid as well as from electrostatic interactions 

between 1-2 and 1-3 bonded atoms. These contributions in the PB model should be removed 

by subtraction. To correct the electrostatic component of the free energy we modify 

Gεext=εw,εint=εp by the free energy computed with a uniform dielectric constant of εp:

Gεext = εw, εint = εp = Gεext = εw, εint = εp − Gεext = εp, εint = εp
+ Gεext = εp, εint = εp, [Eq 12]
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where Gεext=εp,εint=εp is the contribution from the solute-solute interactions in a uniform 

dielectric medium with a dielectric constant of εp and is computed using 

Gεext = εp, εint = εp = 1
2 ∑i ≠ j

qiqj
εprij

. The first two terms are computed using the Poisson-

Boltzmann equation using the same set of parameters including those that define the grid, 

except the external dielectric constant. In this case, the artificial contributions cancel out, 

since the internal dielectric constant in both calculations is the same. In these calculations 

the state with the uniform dielectric constant, εp, is used as a reference state. To obtain the 

total free energy of a solute, the electrostatic component given by Equation 12 should be 

supplemented by self-polarization work, which is computed within the Drude force field as 

the bond energy contributed by the atomic core-Drude particle bonds.

An additional complication with a polarizable force field is that the interaction energy 

Wμν(xi,μ,xi,ν) in Equation 7 includes the electronic energy of the entire system that includes 

the self-polarization energy and the 1-2, 1-3 contributions from Drude particles. These terms 

disallow the calculation of Wμν(xi,μ,xi,ν) for two neighboring residues using only the 

Poisson-Boltzmann model. This is not the case for additive force fields where charges on the 

backbone atoms are normally fixed to the same values in the protonated and deprotonated 

forms, and thus these contributions cancel out for neighboring residues when the protonation 

free energy is computed. Thus, for the Drude force field the combination of the MM energy 

and PB solvation free energy are used to calculate the interaction energy, Wμν(xi,μ,xi,ν), as 

described above.

We use the solvation radii that were optimized in our previous work to reproduce 

experimental solvation free energies of a set of small molecules.15 The solvation radii were 

defined for all atom types except the deprotonated hydroxyl oxygen in tyrosine. The missing 

solvation radius of the O− oxygen was optimized to reproduce the experimental absolute 

solvation free energy of the deprotonated tyrosine as described in the Supplementary 

Information.

PB free energy calculations were performed with the PBEQ module25 implemented in the 

CHARMM program.26 To include polarization effects explicitly the positions of Drude 

particles were optimized with the nuclear positions constrained in each protein microstate in 

step 1 using 50 steps of the Steepest Descent minimizer. Previously we showed that 20 steps 

of optimization was adequate for the minimization convergence for a set of protein 

complexes.15 As previously, dummy atoms were added to fill internal cavities not accessible 

by water molecules with a low dielectric medium.15 The protein PB energies were computed 

using the focusing method with a coarse grid of 0.8 Å resolution and fine grid with 0.4 Å 

resolution. The ion concentration was set to zero; we continue to call this method PB for the 

sake of simplicity, but use the finite-difference Poisson equation with no electrolyte present 

in the continuum solvent. The program to perform Monte-Carlo simulation for pKa 

calculations was written in C++. The system of linear equation 9 was solved using the Eigen 

library for linear algebra.27

Aleksandrov et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Protein data set for pKa calculations

The data set includes 94 titratable residues from eight proteins (Table S1, Supporting 

information). Protein structures were retrieved from the Protein Data Bank (PDB) and used 

for the position of heavy atoms in all calculations. Hydrogens were built using CHARMM,26 

and optimized with a uniform dielectric constant of 4 and titratable residues set to the 

standard protonation states at pH 6.5 (carboxylic acids deprotonated; lysines and tyrosines 

protonated; histidines doubly protonated). In this work we consider Asp, Glu, His, Lys, and 

Tyr as titratable, while Arg residues were present only in the protonated form. The protein 

data set did not contain any titratable cysteines. The N- and C-termini were not considered 

as titratable and were fixed in the standard protonation state, i.e. the terminal amino group is 

protonated and terminal carboxylate group is deprotonated. Thus, the data set included 31 

aspartic acids, 30 glutamic acids, 10 tyrosines, 17 lysines and 6 histidines. Most of the 

experimental pKa values used in this study were compiled by Georgescu et al.14 The 

experimental pKa's for the SNase variant Δ+PHS were taken from Castaneda et al.3

RESULTS

Polarization effect on interaction free energies between titratable residues

We first examine the effect of polarization due to protonation of protein titratable sites on 

interaction free energies, W μν
xμ, xν to test the approximation that these terms do not change 

significantly in the polarizable force field. Within classical additive force fields W μν
xμ, xν are 

independent of protonation states of all residues except the protonation state xμ and xν of the 

corresponding pair of residues μ and ν. With polarizable force fields, in principle W μν
xμ, xν

depends on the protonation state of all protein titratable sites: W μν
xμ, xν = W μν

xμ, xν(x̄). To 

estimate the magnitude of this dependence we computed W μν
xμ, xν for different pairs μ and ν 

in the eight proteins from the data set and random protein protonation states as follows. 

Random protonation states for each of the proteins were generated with the number of the 

generated random protonation states proportional to the number of titratable residues. The 

positions of the Drude particles were then fully optimized for each of these protonation 

states using the PB implicit solvent model for the complete protein structures. For these 

calculations, the dielectric constant of two was used for the protein interior. The interaction 

free energies, W μν
xμ, xν, were then calculated yielding around 20 values for each W μν

xμ, xν

interaction energy when all the randomly generated models were considered. These 

interaction free energies for a pair of residues are different due to the protonation states of 

other residues through induced polarization. Table 1 gives statistics of computed 

interactions. The average absolute difference in the interaction free energy over all pairs of 

titratable residues is just 5·10−4 kcal·mol−1 for the protein 1a2p, and values of a similar 

magnitude were found for the other proteins in the data set. The maximum absolute 

difference in W μν
xμ, xν due to the protein protonation state is less than or equal to 0.15 

kcal·mol−1 for all protein except SNase variant Δ+PHS (PDB reference code 3bdc) and 

ribonuclease A (PDB reference code 3rn3). In SNase the large effect on the interaction is 
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observed for the pair Tyr91-Glu75. This is explained by the fact that these residues directly 

interact with other titratable residues: Tyr91 makes a hydrogen bond with Asp77, and Glu 75 

interacts with Tyr93 and His121. Deprotonation of these residues has a strong effect on the 

polarization of Tyr91 or Glu75 due to strong and unfavorable electrostatic interactions. In 

fact, we expect this effect to be smaller if the protein flexibility is taken into account and 

these pairs are allowed to rearrange upon titration. The maximum variation in W μν
xμ, xν in 

SNase excluding this pair is less than 0.1 kcal·mol−1. Overall, we find that the effect of the 

induced polarization on interactions between ionizable residues due to the protein 

protonation state to be negligible for the eight proteins in the data set thereby allowing this 

term to be calculated based on a single protonation state of the system.

Contribution of the polarization on background atoms induced by titration

Next the polarization effect of background atoms due to changes in protonation state of 

titratable residues on computed pKa's was examined. This polarization contributes directly to 

interactions between titratable residues and background atoms, i.e. to the term GBorn/back, μ
xμ , 

as well as changes the interactions of background atoms with themselves GBB(x̄). To test if 

GBB(x̄) can significantly influence the population of the protonated versus deprotonated 

forms of a titratable residue we computed GBB(x̄) with different protonation states of the 

protein as follows. First, the most likely protein protonation state x̄ was computed at the pH 

where a titratable residue is half protonated with a protein dielectric constant of 4. GBB(x̄)
were then computed for all residues from the data set and all possible protonation states with 

the correct polarization, i.e. the polarization computed in the first step presented in the 

Methods section. The results are given in Table 2. As can be seen GBB(x̄) depends on the 

protonation state of titratable residues only moderately. For all studied proteins, the average 

values of GBB(x̄) are close to those obtained through solution of the system of equations 9. 

For example, for lysozyme (PDB 1a2p), the standard deviation of GBB(x̄) due to residue 

protonation states is just 0.3 kcal·mol−1. Further analysis demonstrated that the largest 

variations in GBB(x̄) are associated with either interactions with arginines treated as 

background non-titratable atoms in the present work or very unfavorable interactions with 

the background atoms, explained by the fact that no explicit relaxation is taken into account. 

Thus, the results in Table 2 indicate that the polarization of the background charges induced 

by titration can be neglected in the calculation of GBB(x̄) for pKa calculations thereby 

avoiding recalculation of this term for all protonation states.

pKa calculation with the Drude-PB model

Comparison to the exact solution—Initially, the method for pKa calculations with the 

Drude model was tested on a simple system with fewer titration sites, for which the direct 

application of Equation 4 is still feasible. Lysozyme (PDB reference code 2LZT) was chosen 

as a test protein. To allow the application of Equation 4 only aspartates and glutamates were 

considered in the calculations as titratable and all other titratable residues were fixed in the 

standard protonation state at physiological pH, i.e. lysines and tyrosines protonated. Only 

one syn orientation for the proton in the protonated form was considered. With 7 aspartic 
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and 2 glutamic acids, it gives 512=29 possible protonation states. The structures 

corresponding to all possible protonation states were generated, and Drude particles were 

fully optimized in the field of the PB implicit solvation model in each of the structures. The 

internal dielectric constant of two was used. The total free energies were used to compute an 

average number of bound protons using Equation 4. pKa's were estimated as the pH where 

residues were half-protonated on average. pKa's were also calculated using the new method.

For the lysozyme system the new method converged within two self-consistent iterations as 

computed pKa's were invariant with more iterations. The results indicate that the computed 

pKa's with the new method and two iterations are practically identical to those estimated 

with the exact form of Equation 4. The RMS deviation between pKa's computed with the 

two methods is just 0.02 pH units. pKa's computed with one iteration of the new method 

differ more from the ones computed with the exact statistical approach, by 0.07 pH units.

pKa calculations were performed with the protein dielectric constant of 4 and the Drude-PB 

model for all 8 proteins. The self-consistent iterations were repeated four times. The results 

for the pKa calculations versus the experimental values as well as subsequent iterations as a 

function of the number of iterations are given in Table 3. The RMS deviation between pKa's 

computed after the second iteration relative to those after the first iteration is 0.15 pH units, 

and reduces to 0.10 and 0.08 pH units after the third and the fourth iterations, respectively. 

However, that RMS deviation between computed and experimental pKa’s only changes 

insignificantly from 1.94 to 1.93 pH units after the second iteration and stays practically the 

same after the third and fourth iterations. The linear correlation between computed and 

experimental pKa's, R, does not improve. However, the computed pKa's slightly change as a 

function of the number of iterations. Importantly, the difference between the first and 

subsequent iterations is that the polarization is inconsistent in the first round of pKa 

calculations, but it is improved in the subsequent iterations. Though we find only a moderate 

change due to the consistent treatment of the polarization, it may be attributed, at least in 

part, to the lack of the protein flexibility in this work. In the following sections, all results of 

pKa calculations with the Drude-PB model will be presented using two iterations, since the 

computed pKa's change less than 0.1 pH units with more iterations and the exact pKa's were 

reached within two iterations for the reduced lysozyme system.

Comparison of the polariable Drude and additive C36 force fields.—To test the 

dependence of the result on the internal dielectric constant, pKa calculations were performed 

with εp in the range between 1 and 20 with the Drude and C36 force fields. For the 

calculations with the Drude force field, the resulting pKa’s were taken after the second self-

consistent iteration. For the calculations with C36, only one iteration is required as 

electronic polarization is included implicitly. The results are summarized in Table 4. The 

computed and experimental pKa shifts are given in Table S3, and absolute pKa's are given in 

Table S4 in the Supplementary Information. Figure 2 shows the dependence of the RMS 

deviation against the internal dielectric constant. The correlation is best with both models at 

the internal dielectric constant of two. However, in contrast to the results obtained with the 

C36 force field, with the Drude model the RMS deviation is characterized by a shallow 

minimum at ε in the range of 4-8. With the additive force field, the RMS deviation is 

improving monotonically in the tested range of ε. Overall, the Drude model demonstrates a 
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better agreement with the experimental pKa's than the C36 model at low values of the 

dielectric constant. The RMS deviation between the experimental pKa's and pKa's computed 

using the protein dielectric of two is 2.07 and 3.19 units with the Drude and C36 force fields, 

respectively. With the protein dielectric constant of four, the RMS deviation is 1.93 and 2.58 

units with the Drude and C36 force field, respectively. With the Drude-PB model, the RMS 

deviation between the experimental pKa's and pKa's computed with the protein dielectric 

constant of 20 is 1.93, which is very close to the result of 1.93 and 2.07 units computed with 

the protein dielectric constant of four and two, respectively. In contrast to the results with the 

additive C36 model, the RMS deviation computed with the Drude-PB model is substantially 

less sensitive to the choice of the internal dielectric constant. However, with the Drude 

model, the RMS deviation sharply increases with an internal protein dielectric constant εp 

=1, and the linear correlation decreases to 0.46. A Drude-PB model with εp = 1 accounts 

only for the induced polarization, leaving out all contributions from structural fluctuations. 

The poor performance suggests that such a model does not represent the protein interior as 

sufficiently polarizable. Interestingly, the RMS deviation for the Drude model with εp = 1 is 

very similar to the RMS deviation for the additive force field with εp ≈ 1.7, a value that 

corresponds roughly to the expected dielectric constant associated with electronic induced 

polarization.

Figure 3 gives the comparison between experimental and predicted pKa shifts with the 

protein dielectric constant of two and the Drude and C36 models. As may be seen, with both 

Drude and C36 models computed pKa shifts are both systematically underestimated and 

overestimated relative to the experimental values, so that a linear fit has a constant positive 

slope. This slope is also given in Table 2 as a function of the protein dielectric constant. 

However, the pKa computed with the Drude model are systematically less over and 

underestimated in comparison with the results obtained with the C36 model. The slope with 

the internal dielectric constant of two is 1.7 and 2.6 with the Drude and C36 models, 

respectively. The slope is decreasing with the higher protein dielectric constant and with εint 

= 20 it is practically 1.0 with both models. Figure 3 also contains comparison of the absolute 

computed and experimental pKa values. The correlation coefficients for the absolute pKa’s 

were 0.93 and 0.91 for the Drude and C36 force fields, respectively. These values are higher 

than those for the pKa shifts reported in Table 4 due to the wider range of absolute pKa’s 

associated with the different classes of residues.

Table 5 gives the comparison between pKa shifts computed with the Drude and C36 models. 

With the low internal dielectric constant of two, the RMS deviation between pKa shifts of 

the titratable residues in the eight proteins computed with the two methods is 1.78 units and 

decreases with the higher dielectric constant values. With εint = 20, the pKa shifts computed 

by the two methods are very close with the RMS deviation of just 0.34 units. The linear 

correlation between pKa shifts computed by the two methods is 0.92 and 0.99 with εint = 2 

and εint = 20, respectively. This further demonstrates that at the high internal dielectric 

constant pKa's computed with the C36 model converge to those obtained with the 

polarizable Drude model. This result may be understood by the fact that with the high 

dielectric constant, electrostatic interactions are screened strongly, and thus polarization 

contributions due to those interactions are expected to be smaller. In other words, with the 

high internal dielectric constant, protein polarization is close to that observed in individual 
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residues in solvent, so the difference in polarization observed in solvent and in the protein 

plays a smaller role in pKa calculations in accordance with the thermodynamic cycle in 

Figure 1.

The agreement between experimental and computed pKa shifts for different residue types is 

given in Table 6. pKa's were computed using the C36 and Drude force fields and the 

dielectric constant of 2. For all residue types, the RMS deviation with the Drude force field 

is better than with the additive force field. The RMS deviation is 3.23 units for tyrosines 

with the Drude force field, which is higher than the RMS deviation obtained for the other 

types. A similar result was obtained with the C36 force field. This may be due to the need 

for larger conformational rearrangements of the protein to occur upon changes in the 

protonation state of tyrosines, since they are larger than other residues and are frequently 

buried in the protein. The poorer correlations for His and Lys with both force fields may 

indicate the need for larger conformation changes of those sidechains upon changes in 

protonation. Further studies are required to address these issues.

Proton orientation in the protonated form of carboxylic acids—The majority of 

constant pH studies to date have limited treatment of the orientation of the proton in neutral 

carboxylic acids to the syn form,28 omitting consideration of the anti orientation, which is 

known to be accessible in condensed phase environments.29 To investigate if this 

approximation may be limiting the accuracy of the pKa estimates of acidic residues we 

undertook calculations of the carboxylic acid pKa with and without consideration of the anti 
proton orientation in the protonated form of carboxylic acids. Calculations with the 

dielectric constant of two and only with the syn orientation of proton were performed and 

compared with the results of calculations considering both syn and anti positions of protons. 

The results were obtained using the Drude-PB model and after the second iteration. Results 

are summarized in Table 7. The average population of the anti protonated form for all 

aspartates and glutamates in the protein data set at a very low pH of 0, where practically all 

carboxylic acids are protonated, is 27.6%; for aspartic acids, this population is 34.0% and 

19.5% for glutamic acids. Accordingly, inclusion of the anti orientation leads to a large 

improvement in the predicted pKa's relative to the experimental values. For aspartates the 

RMS deviation is improved from 2.87 units considering only the syn orientations to 2.10 

units when allowing both syn and anti rotamers. A similar improvement is observed for 

glutamates. In barnase (PDB reference code 1a2p), the large improvement with the anti 
orientation was found for residue Asp101. Both oxygens of Asp101 participate in hydrogen 

bond interactions with the backbone and sidechain of Thr105 and the sidechain of Thr99. 

These hydrogen bond interactions make energetically unfavorable the placement of proton in 

the syn orientation in the protonated form Asp101. Thus, the calculated pKa shift of Asp101 

is −6.7 pKa units if only the syn orientations are considered, and −3.8 pKa units if both syn 
and anti orientations are included. The latter value agrees better with the experimental value 

of −2.0 pKa units for Asp101. However, as Asp101 as well as other acid moieties may 

change their orientation upon protonation. The improvement in the pKa prediction needs to 

be addressed in future studies with methods that allow for conformational changes to occur 

upon changes in protonation state.
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Comparison to other methods—Assuming the null hypothesis,30 i.e. that all residues 

have their solution pKa in the protein environment, the RMS deviation with the experimental 

pKa's is 1.16 pH units, lower than the RMS deviation obtained with the C36 or Drude force 

field. This implies that increasing electrostatic screening, in principle would improve the 

RMS deviation, since absolute pKa shifts become smaller.

We first compare to the results of the H++ server, which uses a single-conformation version 

of the MEAD program for pKa calculations.31 The server only provides pKa's for the range 

between 0 and 12 pH units. Thus, the comparison will be limited to pKa's within this range 

(70 values total). In principle, H++ relies on the same method that we used for the 

calculations with the additive C36 force field, but uses the AMBER force field and van der 

Waals radii defined by Bondi.32 With the internal dielectric constant of 4 and implicit salt 

concentration of 0, the RMS deviation between the experimental and computed pKa's using 

the H++ server is 1.55 pH units, and the linear correlation coefficient is 0.65. The RMS 

deviation for the same 70 pKa values computed using εint = 4 and the C36 force field and the 

radii specifically optimized previously for PB calculations33 is 2.08 pH units and the linear 

correlation coefficient is 0.59. However, the Bondi radii are significantly smaller than the 

Born radii derived by Nina et al33 that were optimized targeting explicit solvent molecular 

dynamics simulations with an internal dielectric constant of 1. For example, the radius of the 

OH oxygen of tyrosine is 1.85 Å and 1.5 Å in the Nina et al33 and Bondi sets, respectively. 

The radius of Nδ and Nε of the protonated form of histidine is 2.3 Å and 1.55 Å in Nina et 

al and Bondi sets respectively. With the C36 force field and Bondi radii and εint = 4 and the 

molecular surface as the dielectric boundary (the water probe radius of 1.4 Å), the RMS 

deviation with the experimental pKa's is 1.06 with a linear correlation of 0.70. However, 

with the Bondi radii, the absolute solvation energies of small molecules are significantly 

overestimated. The RMS deviation between computed and experimental absolute solvation 

free energies for the set of small molecules that was used in our previous study15 to optimize 

the Drude PB radii is 4.1 kcal·mol−1, while with the optimized set of radii from Nina et al33 

the RMS deviation is 2.5 kcal·mol−1. In the continuum dielectric model, the induced charges 

in the solvent continuum dielectric medium are located within an infinitesimal layer at the 

boundary of the solute volume. In contrast, the solvent charge density in an atomic model is 

distributed over a microscopic region of space of finite dimension.33 Thus, the PB model 

with the van der Waals radii and dielectric constant of one significantly overestimates 

solvation energies. The radii that were optimized specifically to reproduce results of 

molecular dynamics free energy simulations are significantly larger than the Bondi (van der 

Waals) radii. Similar to using the higher internal dielectric constant, using smaller atomic 

radii significantly increases solvent screening leading to smaller absolute pKa shifts and, 

thus giving a lower RMS deviation.

The reported pKa's computed with the MCCE2 method7c were used to compare with the 

results of the current work. MCCE2 introduces the conformational relaxation and uses the 

Poisson-Boltzmann model for electrostatic calculations, which involves approximations to 

the protein-solvent boundary, and uses the PARSE charges and radii.34 The PARSE charges 

and radii were optimized to reproduce experimental solvation energies, but with the 

dielectric constant of two. Thus, like van der Waals radii, the PARSE radii are significantly 
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smaller than the radii optimized with the internal dielectric constant of 1. For example, the 

radius of the OH oxygen of tyrosine is 1.85 Å and 1.5 Å in Nina et al33 and PARSE sets, 

respectively. The radius of Nδ and Nε of the protonated form of histidine is 2.3 Å and 1.5 Å 

in Nina et al33 and PARSE sets, respectively. The RMS deviation computed for the MCCE2 

results obtained with εint = 4 that do not include the SNase variant Δ+PHS protein and Tyr53 

in Lysozyme is 0.75 pH units with the linear correlation of 0.78. With the C36 force field 

and Bondi radii and εint = 4 using the same titratable residue sets the RMS deviation is 1.42 

pH units and the linear correlation is 0.73. With the Nina et al radii the RMS deviation is 

2.36 pH units and the linear correlation is 0.68. Overall, this demonstrates that the PB model 

strongly depends on the atomic Born radii, which is entirely expected.33, 35

Conclusion

In this study, a new method to estimate pKa of titratable residues is presented that uses the 

polarizable Drude-PB model and constant-pH Monte Carlo simulations. The main challenge 

in using the polarizable Drude-PB model, as well as any other polarizable PB force field, is 

due to the dependence of the energy terms on the electronic polarization of the entire system, 

which in turn depends on the protonation state of all protein residues. As this represents a 

large computational increase in the calculation of energy matrices used in the constant-pH 

simulations an additional approximation is required to make the calculation feasible, which 

we propose and implement in the present work. In this approximation, only the polarization 

of the highly populated protein protonation microstates (ie. when the pH is equivalent to the 

pKa of the residue associated with those microstates) are treated explicitly using the 

corresponding protein protonation state in conjunction with optimization of the Drude 

particles as required to model the polarization response. The method necessitates self-

consistent calculations of the most populated microstates and residue pKa's, since the pKa's 

are needed to define the most populated microstates and vice versa. A numerical test with a 

small protein, lysozyme, shows that the pKa's computed with the new method differ by only 

0.02 pH units from the ones estimated with the exact statistical approach, demonstrating that 

polarization effects are correctly included in the MC simulations.

The present method with the Drude-PB model considerably increases the computational cost 

relative to the calculations with the C36 additive force field. The extra cost is arising, first 

due to the need to compute the solute polarization, i.e. optimize the position of Drude 

particles for each protonation state of all residues. To optimize the position of the Drude 

particles, the solvent reaction field due to the PB implicit solvent model in the current 

implementation is allowed to fully relax after each minimization step to calculate solvent 

forces. In the previous work, we demonstrated that the optimization of the Drude particles 

converges within 50 minimization steps. Second, additional cost is due to the need to 

calculate the most populated microstates and pKa's iteratively. The self-consistent approach 

converged within two iterations with pKa’s computed after iteration 3 differing less than 0.1 

pKa units from pKa’s after iteration 2. Thus, the SCF protocol of the pKa calculation scheme 

increases the overall cost by two times. Overall, the method for pKa calculations using the 

constant-pH simulations with the Drude force field takes an average of two orders of 

magnitude more CPU time than the standard protocol for the pKa calculation with an 

additive force field and the PB solvation model. For example, the pKa calculation for 3bdc, 
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the protein with the largest number of titratable residues (44 residues) consumes 

approximately 2 CPU Hrs. with the additive force field versus 95 CPU Hrs. for the Drude 

force fields on an Intel Xeon E5-2630 type processor.

A significant improvement for the predicted pKa's was observed with the Drude-PB model 

compared to results based on the additive force field C36 at low dielectric constants. Using 

the Drude-PB model with an internal protein dielectric constant of 2, the RMS deviation 

from the experimental pKa's is 2.07 pKa units. In contrast, the C36 additive force field yields 

a RMS deviation of 3.19 pKa units with a dielectric constant of 2, and a RMSD of 2.58 pKa 

units with a dielectric constant of 4. The RMS is still higher than with the Drude-PB model 

with a dielectric of 2. Notably, the results with the Drude force field are less sensitive to the 

choice of internal dielectric constant, with a higher protein dielectric constant of 4 and the 

Drude-PB model the RMS deviation is 1.93 pKa units, close to 2.07 pKa units obtained with 

εint = 2. We also observe that the pKa's computed with the high internal dielectric constant 

of 20 are very similar for the two force fields with an RMS deviation of just 0.36 units and 

the linear correlation of 0.99. These results indicate that a model accounting explicitly for 

the induced polarization represents a physically more correct model that decreases the 

empirical requirement to ascribe an excessively high dielectric constant to the protein 

interior. Given the heterogeneity of the protein interior, it is likely that simply assigning a 

high dielectric constant to the protein interior cannot accurately substitute for an explicit 

treatment of polarization during protonation/deprotonation events.

An interesting observation was the better agreement with experimental pKa’s when the anti 
protonated from of carboxylic acids was explicitly considered. This is due to a relatively 

high contribution from the anti protonated form of carboxylic acids of ~28% at a very low 

pH. However, the contribution of the anti orientation of the proton is expected to be 

impacted by the ability of the side chains as well as surrounding protein to relax upon 

protonation. This effect, as well as the impact of conformational flexibility on pKa 

calculations using the polarizable model will be addressed in future studies.

The current implementation of the method for pKa calculations with the Drude-PB models 

bears several limitations. Only polarization of one protonation microstate for each possible 

protonation state of all residues is computed exactly, while for minor microstates a surrogate 

of the energy components that include the residue interaction free energies and self-energies, 

corresponding to different pH’s is used. In principle, one can consider additional protonation 

microstates in energy matrix calculations, and use those energies in the MC simulations. 

However, the main limitation of the presented method is the lack of conformational 

relaxation and fluctuations, which is required to preserve a fixed protein dielectric boundary 

in the Poisson-Boltzmann calculations. Various approximations have been introduced in 

previous studies to circumvent this prescription.7c, 8a, 36 We will explore the presented 

Drude-PB method in combination with existing approximations to treat protein 

conformational changes in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Thermodynamic cycle for proton binding. RH and R represent protonated and deprotonated 

forms of the residue, respectively, in the solvent environment as a model compound (upper) 

or in the protein environment (lower). The superscripts are used to highlight that the 

polarization of residue R/RH is different in the protein and solvent. With the additive force 

fields these polarizations are the same.
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Figure 2. 
RMS deviation between experimental and computed pKa’s. pKa’s with the Drude force field 

were calculated using two iterations to determine the most probable protonation microstates.
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Figure 3. 
Experimental vs computed pKa shifts and absolute pKa's. Left panels: (upper) pKa shifts and 

(lower) absolute pKa's computed with the C36 force field; right panels: (upper) pKa shifts 

and (lower) pKa's computed with the Drude force field after iteration 2. In both calculations, 

the protein dielectric constant of two was used. The solid line shows the linear fit to the data; 

the dashed line shows the perfect match between computed and experimental pKa shifts or 

pKa's.

Aleksandrov et al. Page 26

J Chem Theory Comput. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1. 
Flow Chart of the computations performed with the Drude-PB method. Steps 1-5 are 

repeated until pKa,μ and microstates converge. Initial microstates are updated using the 

computed microstates at the end of the previous iteration.
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Table 1.

Absolute difference in the interaction free energies due to randomly-generated variations in the protein 

protonation state. Calculations used the protein dielectric constant of two and the Drude force field. Energies 

are given in kcal·mol−1.

Protein Abs. difference

Max Average

1a2p 0.15 0.0005

1pga 0.06 0.0006

1ppf 0.02 0.0004

2lzt 0.02 0.0001

2trx 0.05 0.0003

3bdc 0.34 0.0009

3rn3 0.24 0.0003

4pti 0.01 0.0001
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Table 2.

Average contribution of background charges, GBB(x̄), to the calculated total free energy (kcal·mol−1).

protein A
exact GBB

B
GBB

sol

1a2p −467.3 (0.3) −467.3

1pga −29.6 (0.2) −29.5

1ppf −156.8 (0.1) −156.7

2lzt −1092.6 (0.3) −1092.5

2trx −117.8 (0.2) −117.8

3bdc −443.3 (0.3) −443.3

3rn3 −524.1 (0.9) −524.2

4pti −465.1 (0.1) −465.2

A
The average value of the exact GBB(x̄) computed for the most populated protonation states for each titratable residue in the proteins; standard 

deviations are given in parenthesis

BGBB(x̄) obtained as a solution to the system of equations 9.
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Table 3.

Convergence of the pKa calculation method with the Drude-PB model. Calculations were done using the 

protein dielectric constant of 4.

Iteration a
RMSD

b
RMSD

b
correlation

b
max ∣error∣

1 - 1.94 0.71 5.53

2 0.15 1.93 0.70 5.64

3 0.10 1.93 0.70 5.64

4 0.08 1.93 0.70 5.64

a
RMS deviation between pKa's computed in this step and in the previous step

b
relative to the experimental pKa's
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Table 4.

Performance of the methods for pKa calculations against experimental pKa‘s. RMS deviation and linear 

correlation coefficient between computed and experimental pKa shifts from the model compound reference 

values are given.

Protein
dielectric, εp

RMSD Correlation A
Slope

Drude C36 Drude C36 Drude C36

1 3.57 4.62 0.46 0.71 1.8 3.6

2 2.07 3.19 0.71 0.74 1.7 2.6

4 1.93 2.58 0.70 0.73 1.5 2.0

6 1.91 2.33 0.67 0.71 1.4 1.7

8 1.90 2.21 0.64 0.68 1.3 1.5

20 1.93 1.98 0.53 0.57 1.0 1.1

A
The slope of the liner fit to the computed and experimental pKa shifts.
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Table 5.

Comparison between pKa shifts computed using the Drude and additive C36 models. RMS deviation and 

linear correlation coefficient between pKa shifts computed with the Drude and C36 model are given. pKa shifts 

computed with the Drude model were taken after two iterations in the method.

Protein dielectric
constant, εp

RMSD Correlation

2 1.78 0.92

4 0.93 0.97

6 0.68 0.98

8 0.58 0.98

20 0.34 0.99
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Table 6.

Performance of the methods for pKa calculations against experimental pKa‘s for different types of residues. 

RMS deviation and correlation coefficient between computed and experimental pKa shifts.

Residue N sites RMSD Correlation

Drude C36 Drude C36

Asp 31 2.10 3.40 0.66 0.78

Glu 30 2.01 3.40 0.65 0.64

His 6 1.18 1.41 0.18 0.27

Tyr 10 3.23 4.25 0.73 0.69

Lys 17 1.38 1.88 0.19 0.23
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Table 7.

RMS deviation and correlation between computed and experimental pKa’s. Calculations were performed using 

the syn and anti rotamers or only the syn rotamers for the proton in the protonated form of carboxylic acids. 

The Drude-PB model was used with the protein dielectric constant of two.

Residue N sites RMSD Correlation

syn/anti only syn syn/anti only syn

Asp 31 2.10 2.87 0.65 0.68

Glu 30 2.01 2.82 0.65 0.63

All 94 2.07 2.60 0.67 0.69
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