Table 4:
Method | PMSE | TP | FP | AUC | CE | TP | FP | AUC |
---|---|---|---|---|---|---|---|---|
Linear regression | Logistic regression | |||||||
True informative nodes form a connected component | ||||||||
Lasso | 21.7(0.6) | 9.5(0.1) | 54.4(3.8) | 0.936(0.004) | 43.3(1.6) | 8.4(0.2) | 29.6(3.4) | 0.771(0.028) |
Elastic-net | 23.2(0.7) | 9.6(0.1) | 69.0(3.9) | 0.931(0.004) | 57.9(2.4) | 7.7(0.2) | 22.4(3.2) | 0.928(0.006) |
TGLG-I | 21.7(0.8) | 9.1(0.1) | 13.5(1.9) | 0.950(0.007) | 37.2(1.3) | 7.7(0.2) | 8.9(0.9) | 0.892(0.011) |
TGLG-F | 21.8(0.9) | 9.3(0.1) | 14.6(1.5) | 0.968(0.006) | 35.2(1.3) | 8.0(0.2) | 7.8(0.9) | 0.902(0.011) |
TGLG-L | 20.7(0.7) | 9.1(0.1) | 10.1(1.5) | 0.957(0.006) | 35.4(1.4) | 7.9(0.3) | 8.3(1.0) | 0.893(0.011) |
TGLG-M | 21.2(0.8) | 9.1(0.1) | 11.3(1.5) | 0.952(0.007) | 37.1(1.3) | 7.8(0.2) | 9.3(1.1) | 0.892(0.012) |
True informative nodes are all disconnected | ||||||||
Lasso | 20.8(0.6) | 9.8(0.1) | 55.0(3.7) | 0.940(0.003) | 43.4(1.2) | 8.9(0.2) | 26.8(3.0) | 0.824(0.028) |
Elastic-net | 22.2(0.7) | 9.8(0.1) | 68.6(3.9) | 0.941(0.003) | 55.7(1.9) | 8.4(0.2) | 27.3(4.0) | 0.939(0.003) |
TGLG-I | 21.4(0.9) | 9.4(0.1) | 13.4(2.0) | 0.974(0.006) | 35.4(1.3) | 8.6(0.2) | 7.9(0.8) | 0.931(0.009) |
TGLG-F | 21.7(0.8) | 9.4(0.1) | 16.7(1.9) | 0.971(0.006) | 35.5(1.4) | 8.4(0.2) | 7.8(0.9) | 0.922(0.010) |
TGLG-L | 20.6(0.8) | 9.6(0.1) | 11.6(2.1) | 0.980(0.004) | 36.9(1.5) | 8.5(0.2) | 9.4(1.1) | 0.925(0.009) |
TGLG-M | 21.3(0.9) | 9.4(0.1) | 11.4(1.7) | 0.969(0.005) | 35.3(1.2) | 8.5(0.2) | 8.4(0.9) | 0.928(0.008) |