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Pooling of samples can increase lab capacity when using Polymerase chain reaction (PCR) to detect dis-
eases such as COVID-19. However, pool testing is typically performed via an adaptive testing strategy
which requires a feedback loop in the lab and at least two PCR runs to confirm positive results. This
can cost precious time. We discuss a non-adaptive testing method where each sample is distributed in
a prescribed manner over several pools, and which yields reliable results after one round of testing.
More precisely, assuming knowledge about the overall incidence rate, we calculate explicit error bounds
on the number of false positives which scale favourably with pool size and sample multiplicity. This
allows for hugely streamlined PCR testing and cuts in detection times for a large-scale testing scenario.
A viable consequence of this method could be real-time screening of entire communities, frontline
healthcare workers and international flight passengers, for example, using the PCR machines currently
in operation.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction While a classic pooling strategy has the advantage that less
One key to containing and mitigating the COVID-19 pandemic is
suggested to be rapid testing on a massive scale (Huang et al.,
2019; Siegenfeld and Bar-Yam, 2003). It would be beneficial to
develop the ability to routinely, and in particular rapidly, test
groups such as frontline healthcare workers, police officers, and
international travellers. Testing for SARS-CoV-2 is currently per-
formed via the polymerase chain reaction (PCR) on nasopharyngeal
swabs (Kai-Wang To et al., 2019). Typically, the population size sig-
nificantly exceeds the capacity for testing, with the number of
available PCR machines and reagents an important bottleneck in
this process.

There are two basic approaches to PCR testing in populations: 1.
individual tests, where every single sample is examined, and 2.
pooled tests where larger sets of samples are mixed and tested
en bloc. Pooled testing was pioneered by Dorfman in 1943
(Dorfman, 1943) in the context of blood tests and led to a host of
research activity, both on the lab side as well as the theoretical side
(Aldridge et al., 2019; Du and Hwang, December 1999; Du and
Hwang, 2006). If the disease is rare in the population, pooled test-
ing may be advisable. In this case it can assist in optimizing pre-
cious testing capacity since most individual results would be
negative. Pooling relies on the fact that the PCR is reasonably reli-
able under the combination of samples: the preprint (Yelin et al.,
2020) suggests that a detection of SARS-CoV-2 in pools of size 32
and possibly 64 is feasible.
overall PCR tests are required, there are disadvantages in terms
of lab organisation and – more crucially – time: pooling only indi-
cates whether a pool contains at least one infected individual. If
samples are tested in pools of size n and the incidence q is small
(more precisely, if q � n is small) then a number of samples will
be in pools that are tested positive and hence undergo a second
round of testing. In other words, pooled testing with individual
verification of positive pools is an adaptive testing strategy, the
lab organisation for which is a labour, management, and resource
intensive process. It has several drawbacks, since it requires keep-
ing multiple lab samples and re-running of the time-intensive PCR
process. The lab feedback loop makes the entire workflow more
susceptible to delays (see Fig. 2). This may result in delays in indi-
vidual results – a particular problem when the objective is to
rapidly identify infected individuals, who may infect others while
waiting for the test outcome. Furthermore, since the number of
samples undergoing a second round of testing is an unknown
quantity, some reserve capacity is required to prevent further
delays. This makes it more challenging for the lab to operate near
its maximal capacity.

In the theoretical research on testing strategies the distinction
is made between adaptive testing, for example when all samples
in a positive pool undergo a second round of testing, and non-
adaptive strategies, where all tests can be run simultaneously (Du
and Hwang, December 1999). Testing every sample individually
can be considered as a trivial non-adaptive strategy, but there exist
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Fig. 1. Pooling along rows and columns to arrange N ¼ 64 samples into 16 pools of
size 8 to form a ð64;8;2Þ-multipool. Different background patterns and colours
represent different pools.
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non-adaptive strategies which combine the benefit of pooling with
the advantages of non-adaptive testing.

In this note, we propose a non-adaptive pooling strategy for
rapid and large-scale screening for SARS-CoV-2 or other scenarios
where detection time is critical. This allows for significant stream-
lining of the testing process and reductions in detection time.
Firstly because only one round of PCR is required, and secondly
because it eliminates actions in the lab workflow that require input
from results determined in the lab, i.e. the testing infrastructure
can be organized completely linearly, cf. Fig. 2 for an illustration.
The strategy will systematically overestimate the number of posi-
tives, but we can provide error bounds on the number of false pos-
itives which scale favourably with large numbers and will be small
in realistic scenarios.
2. Definition of the non-adaptive testing strategy: multipools

Our testing strategy is as follows: every individual’s sample is
broken up into k samples and distributed over k different pools
Fig. 2. Comparison of the work flow in adaptive testing and non-adaptive testing. In t
required. Furthermore, the interplay of data interpretation after the first PCR and the
adaptive case, shown in Figure (b), the work flow is completely linear. (For interpretatio
version of this article.)
of size n such that no two individuals share more than one pool.
An individual is considered as tested positive if all the pools in
which its sample has been given are tested positive or – in our case
equivalently – an item is considered as tested negative if it appears
in at least one negative pool. This decoding algorithm is also
known as COMP (Combinatorial Orthogonal Matching Pursuit),
an algorithm easily implementable in practice with low run-time
and storage (Johnson et al., February 2019).

Let us make our definition more formal:

Definition 1 (Multipools). Let a population (X1; . . . ;XN) of size N, a
pool size n, and a multiplicity k be given, and assume that Nk is a
multiple of n. We call a collection of subsets/pools of fX1; . . . ;XNg
an ðN;n; kÞ-multipool, or briefly multipool, if all of the following
three conditions hold:

(M1) Every pool consists of exactly n elements.
(M2) Every sample Xi is contained in exactly k pools.
(M3) For any two different samples Xi;Xj there exists at most
one pool which contains both Xi and Xj.

In the context of non-adaptive testing, designs as in Definition 1
are called ðk� 1Þ-disjunct matrices and it is known that such matri-
ces correctly identify up to k infected samples (Mazumdar, 2012).
However, we will be interested in scenarios where the number of
infected samples can exceed the multiplicity k. If N ¼ n2 and
k ¼ 2 the construction of an ðN;n;2Þ-multipool is quite straightfor-
ward, see Fig. 1: arrange the N samples in a rectangular grid and
then pool along every row and column, cf. (Sint et al., August
2016; Fargion, 2003; Zuzarte et al., April 2014). However, as we
shall see below, k ¼ 2 is in many realistic scenarios insufficient
for the desired precision.
he adaptive setting in Figure (a), two of the time-expensive PCR steps (in red) are
sample storage management introduces another possible bottleneck. In the non-
n of the references to colour in this figure legend, the reader is referred to the web



Fig. 3. Comparison of the ratio of false positives to positive results in simulations on synthetic data for 200 � 931 samples with different incidences q at pool size n ¼ 31 and
sampling strategieswithmultiplicitiesk 2 f4;5;6;7g, and the theoretical values calculated in the lead-up toTheorem1.Thecode for the simulation canbe found in (Täufer, 2020).
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Some recent contributions (Fargion, 2003; Mutesa et al., 2020)
propose to arrange samples in a (3 or higher dimensional) hyper-
cube and to pool along all hyperplanes. This makes every individ-
ual sample appear in three or more pools, but it is not a multipool
in the sense of Definition 1 above, since in dimension three and
higher, any two hyperplanes will intersect in more than one point,
in violation of Property (M3). This creates unnecessary correlations
between different pools and impairs performance. If k ¼ 3, systems
as in Definition 1 are also called Steiner triples and have been
recently used in non-adaptive group testing for SARS-CoV-2
(Ghosh et al., 2020). A flexible way to construct multipools of var-
ious multiplicities k is given by the Shifted Transversal Design
(Thierry-Mieg, 2006; Erlich et al., 0353) which we explain in
Section 4.

3. Controlling the number of false positives

We always assume that the incidence q of the disease is small
compared to the inverse pool size 1=n. This is a reasonable require-
ment, also in classical pooling strategies (a qn portion of samples
PðXi negative j all pools containing Xi positiveÞ

¼ Pðall pools containing Xi positive j Xi negativeÞ Pðsample Xi negativ
Pðall pools containing Xi positiveÞ

¼
ð1� qÞ 1� ð1� qÞn�1

� �k

qþ ð1� qÞ 1� ð1� qÞn�1
� �k
will have to undergo second testing, thus a large qn would atten-
uate the benefit of pooling).

Assuming perfect performance of the PCR, also under pooling
(see Section 6 on how to deal with uncertainty here), multipooling
will identify all infected individuals, since all their pools will be
positive. However, a sample might falsely be declared positive if
all pools in which it is contained happen to contain an infected
sample.

The expected portion of false positives in a multipool strategy is

qfp ¼PðXi negative but all its pools positiveÞ ð3:1Þ
¼ ð1�qÞ �Pðall pools containingXi positive jXi negativeÞ ð3:2Þ
¼ ð1�qÞ 1�ð1�qÞn�1

� �k
ð3:3Þ

Here, the third identity crucially uses the property (M3) which guar-
antees independence between the poolmates in the different pools
of a sample. By Bayes’ rule, the probability to actually be negative
when tested positive by the multipool (i.e. the portion of subjects
falsely declared positive among all subjects declared positive) is
ð3:4Þ

eÞ ð3:5Þ

ð3:6Þ
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Let us calculate for which k the probability of a positive test result
being a false positive does not exceed �fp > 0:

ð1�qÞ 1�ð1�qÞn�1
� �k

qþð1�qÞ 1�ð1�qÞn�1
� �k

6 �fp ð3:7Þ

() ð1�qÞ 1�ð1�qÞn�1
� �k

6 �fpð1�qÞ 1�ð1�qÞn�1
� �k

þ �fpq

ð3:8Þ
() 1�ð1�qÞn�1

� �k
6 �fpq
ð1� �fpÞð1�qÞ ð3:9Þ

() kP
ln �fp

1��fp

� �
þ ln q

1�q

� �

ln 1�ð1�qÞn�1
� � : ð3:10Þ

This provides a lower bound on the necessary multiplicity k in
terms of the sample size n, the knowledge on the incidence q, and
the acceptable portion �fp of false positive results among all posi-
tives. Assuming �fp < 1 and q 6 1

2 (which are both reasonable
assumptions, recall that qn is small), the lower bound in (3.10) is
monotone increasing in q. Hence, if the exact incidence is unknown
but we have an upper bound on it, we can work with the largest/
worst case q. Let us summarize these findings in the following

Theorem 1. Let the incidence be at most q 6 1
2, and let 0 < �fp < 1. If

k P
ln �fp

1��fp

� �
þ ln q

1�q

� �

ln 1� ð1� qÞn�1
� � ð3:11Þ

then in any multipooling strategy with pool size n and multiplicity k,
the probability of a positive test being a false positive does not exceed
�fp.

The number of tests required in a multipool strategy is Nk=n, an
improvement compared to individual testing by a factor n=k. A key
observation is that the lower bound on k in Inequality (3.11) scales
favourably with large multiplicities n. Indeed, recall that in an
adaptive pooling strategy one wants on the one hand large pool
sizes n, but on the other hand nq should be small. It is therefore
reasonable to have n proportional to the inverse of q, i.e. nq � C.

Using that 1� q � 1 and 1� ð1� qÞn�1 � ðn� 1Þq � nq, the lower
bound in (3.11) behaves approximately as

kJ
ln �fp

1��fp

� �
þ lnq

lnðnqÞ �
ln �fp

1��fp

� �
þ lnðn=CÞ

lnC
: ð3:12Þ

that is k grows only logarithmically with the pool size n. An analo-
gous analysis shows that k also grows logarithmically with the
inverse of �fp when the error probability �fp is sent to zero. In
Fig. 3, we compare the theoretical ratio of false positives to posi-
tives, calculated for Theorem 1, with numerical simulations.
Fig. 4. Pooling along rows, columns, and periodically continued diagonals to arrange
background patterns and colours represent different pools.
4. Generating multipools

The question for which combiniations ðN;n; kÞ a multipool
exists seems to be in general a non-trivial combinatorial problem.
We focus here on the case when N ¼ n2 and on constructions based
on the Shifted Transversal Design (Thierry-Mieg, 2006).

It is useful to imagine all N samples arranged in an n� n-square
and label samples by their x and y-coordinate, i.e. denoting the
sample at position ði; jÞ 2 N2

0 by Xij, where we define the sample
in the lower left (south-west) corner to be X00. For multiplicity
k ¼ 2, a ðN; n; kÞ-multipool can be constructed by pooling along
rows and columns, as in Fig. 1.

Unfortunately, for reasonable parameter choices, a multiplicity
of k ¼ 2 turns out to lead to large false positive rates: For instance,
arranging N ¼ 64 samples from a population with incidence
q ¼ 0:01 in a rectangular grid and pooling along all rows and col-
umns (in our notation this is an ð64;8;2Þ-multipool), Identity
(3.6) will imply that on average 31:4% of positive results will actu-
ally be false positives. To improve on this and pass to multiplicity
k ¼ 3, one can sample along diagonals, where the diagonals are
continued periodically, see Fig. 4. This works for any pool size
n P 2 and leads to.

Theorem 2. Let N ¼ n2 and n P 2. Then there exists an ðN;n;3Þ-
multipool, obtained by sampling along rows, columns, and all
periodically continued south-west-to-north-east diagonals.
In the situation of N ¼ 64 and n ¼ 8, this allows for the con-
struction of a ð64;8;3Þ-multipool in which, by (3.6), the probability
of a positive result being erroneous is reduced to 3:01%. In such a
scenario, one would test 64 individuals with 24 tests, a compres-
sion by a factor 0:375. A higher compression rate would require
larger pool sizes n. Since the lower bound (3.11) on k in Theorem 1
is monotonous in n, this will in turn also require to higher multi-
plicities k in order to achieve comparable false positive error prob-
abilities. To pass to k ¼ 4, one might now be tempted to pool along
the other (north-west-to-south-east) diagonals, but this is not
going to yield a multipool in general, see for instance Fig. 5 where,
in the case n ¼ 8, two diagonals intersect in more than one point, in
violation of Property (M3) in Definition 1.

This is due to the fact that n ¼ 8 has non-trivial divisors, i.e. it is
not a prime number. South-west-to-north-east diagonals are of the
form

Xj;lþjðmod 8Þ : j ¼ 0; . . . ;7
� �

; l 2 f0; . . . ;n� 1g; ð4:1Þ
and north-west-to-south-east diagonals

Xj;l�jðmod 8Þ : j ¼ 0; . . . ;7
� �

; l 2 f0; . . . ;n� 1g ð4:2Þ
were, ðmod nÞ means that we use arithmetic modulo n, that is as
soon as we exceed n� 1, we start counting from 0 again. These
diagonals are lines of slope þ1 and �1, respectively, and the differ-
N ¼ 64 samples into 24 pools of size 8 to form a ð64;8;3Þ-multipool. Different



Fig. 5. The two diagonals (red and blue) intersect in two points (black). They cannot
both be used as pools in a multipool. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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ence of these slopes is 2, which divides 8. Since intersections of two
such lines are given by solutions to the equation

l1 þ j ¼ l2 � jðmod 8Þ ð4:3Þ
() 2j ¼ ðl2 � l1Þðmod 8Þ ð4:4Þ

there can be more than one j solving (4.4): Indeed, if some
j0 2 f0; . . . ;7g solves (4.4), then j0 :¼ jþ 4ðmod 8Þ is a solution as
well, since 2j0 ¼ 2jðmod 8Þ.

More generally, it is well-known that for m 2 f1; . . . ;n� 1g and
j 2 f0; . . . ;n� 1g, the equation

mj ¼ lðmod nÞ; ð4:5Þ

has a unique solution j if and only if the greatest common divisor of
m and n is 1. Since this must hold for all m 2 f1; . . . ;n� 1g;n must
be a prime number. In this case, the integers modulo n form an alge-
braic structure called a field, in which every non-zero element has a
well-defined multiplicative inverse. For prime n, the unique solu-
tion of (4.5) is therefore given by j ¼ m�1l, where m�1 denotes the
multiplicative inverse of m in arithmetic modulo n.

This suggests to use a prime pool size n and sample along lines
of different slopes, that is to use pools of the form

Pðl;mÞ :¼ Xj;lþjmðmod nÞ : j ¼ 0; . . . ;n� 1
� �

; l;m 2 f0; . . . ;n� 1g:
ð4:6Þ

We can add one more type of pool by sampling along all vertical
lines (their slope can be considered as ”infinity”) which we denote
by

Pðl;1Þ :¼ Xl;j : j ¼ 0; . . . ; n� 1
� �

; l 2 f0; . . . ; n� 1g: ð4:7Þ

Such ensembles of pools are sketched in Fig. 6 for the case n ¼ 5.
Fig. 6. Pools of different slopes as in Theorem 3 for n ¼ 5.
This construction is also referred to as the Shifted Transversal
Design in (Thierry-Mieg, 2006). We summarise our findings in the
following.

Theorem 3. Let n be a prime number and let N ¼ n2. Then, there
exists a ðN;n; kÞ-multipool for k ¼ ðnþ 1Þ, and consequently also for
every smaller k. This multipool is given by pooling along all sloped
lines, that is:
Pðl;mÞ :¼ Xi;lþmjðmod nÞ : j ¼ 0; . . . ;n� 1
� �

; l;m 2 f0; . . . ;n� 1g;
ð4:8Þ

and pooling along all columns (or lines of slope infinity), that is

Pðl;1Þ :¼ Xl;j : j ¼ 0; . . . ;n� 1
� �

; l 2 f0; . . . ;n� 1g: ð4:9Þ
Fig. 6 contains an illustration of elements of such a multipool in

the case n ¼ 5 with multiplicity k ¼ 6. Theorem 3 allows for multi-
plicities up to k ¼ nþ 1, but in practice, one will want to work with
much lower multiplicities k since a high multiplicity would require
many tests and defeat the purpose of pooling. From a practical per-
spective it seems reasonable to generate large pools by a sequence
of unions of two equally diluted pools. This leads to pool sizes
which are a power of 2, certainly not a prime number (except for
2 itself). One approach to accomodate for that would be population
sizes N ¼ n2 where n is a prime just below a power of 2, e.g. n ¼ 31,
which is just below 32 or n ¼ 61 which is just below 64. Then pools
of size n can be mixed by adding a small number of negative
dummy samples and proceeding as if n was a power of 2.
5. Examples and scenarios

Let us sketch some concrete examples where the pool sizes are
a prime number and where the multipooling strategy might be
useful:

N ¼ 961;q 6 1%;n ¼ 31

Let the population size be N ¼ 312 ¼ 961. This could for
instance be the number of employees in a company or passengers
which depart from an international airport within a certain time
window. Let the incidence rate q be no more than 1:0% and let
us work with a pool size n ¼ 31. Since n is prime, Theorem 3 allows
to construct ð961;31; kÞ-multipools for any k 6 32 and Theorem 1
allows to bound the probability of a positive test being erroneous
for different multiplicities k as in Table 1. Accepting for instance
a false positive probability of 3% requires 6N=n ¼ 186 PCR tests,
19:4% of what would be required in individual testing. Let us
emphasize again here that this means that 3% among the results
flagged as positive will be false positives, not 3% of the overall test
results.

N ¼ 3721;q 6 0:1%;n ¼ 61

The multipool method scales well with larger numbers. Let the
population size be N ¼ 612 ¼ 3721 and the pool size n ¼ 61, which
is of the order of pools being used for the PCR today (Yelin et al.,
2020). Let furthermore be the incidence rate be no larger than
0:1%, a realistic upper bound for the prevalence of SARS-CoV-2 in
many countries (Office for National Statistics, 2020). Since n ¼ 61
is prime, Theorem 3 allows to construct ð3721;61; kÞ-multipools
for any k 6 62 and the error bounds in Theorem 1 lead to Table 2.
If we choose k ¼ 4 and accept �fp ¼ 1:2% as the probability for pos-
itive results being false positives, we need 4N=n ¼ 244 tests in
order to fast and efficiently test 3721 individuals, that is 6:6% of
what would be needed with individual testing.



Table 1
Probability of a positive result being a false positive and
the compression k=n compared to individual testing for
pool size n ¼ 31, incidence q 6 0:01 and different mul-
tiplicities k.

k �fp k=n

4 0:32 0:129
5 0:11 0:161
6 0:03 0:194
7 0:008 0:226

Table 2
Probability of a positive result being a false positive and
the compression k=n compared to individual testing for
pool size n ¼ 31, incidence q 6 0:01 and different mul-
tiplicities k.

k �fp k=n

3 0:17 0:049
4 0:012 0:066
5 0:0007 0:082
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6. Discussion and possible extensions

The non-adaptive multi-pooling strategy provides a stream-
lined and efficient organisation of the testing process and cuts in
detection time. This significant benefit comes with potential reduc-
tions in accuracy compared with adaptive testing, but this false
positive rate can be tightly controlled and tailored to suit the cir-
cumstance. The false positive probability �fp deemed an acceptable
cost for the increased testing efficiencies may depend on, for exam-
ple, the infection characteristics, the government policy and
resource levels.

A small modification of our strategy might furthermore allow
for an improvement of the false negative rate – even compared
to usual adaptive pool testing strategies: even though commonly
used, pooling samples can potentially dilute samples close to the
identification threshold of the PCR and increase the probaility of
false negatives. The recent preprint (Yelin et al., 2020) estimates
a false negative rate of 10% when detecting SARS-CoV-2 in pools
of size 32. One can reduce this type of false negative in our strategy
by declaring all samples which are in at least k� 1 positive pools as
tested positive.

This strategy is known as the ”Noisy COMP” (NCOMP) decoding
algorithm (Chan et al., 2011; Chan et al., 2014) where an item is
declared infected if more than a certain portion of its pools test
positive. This will on the one hand lower the probability of false
negatives, but more importantly it will only mildly affect the false
positive rate. This could be seen by adding a next-order term in the
error analysis performed leading up to Theorem 1. For a sound
analysis, knowledge on the false positive rate gained through
experiments would be required, but the general message that the
necessary multiplicity k will grow slowly with large n and small
�fp remains.

Let us finally note that the basic idea is close to compressed
sensing and sparse recovery (Candes and Tao, 2006; Foucart and
Rauhut, 2013). While in our situation the output space consists
of f0;1g-vectors, which make the mathematics we use rather ele-
mentary, there also seem to be applications of the PCR where
quantitative measurements are taken and where compressive
sensing techniques might be applied. A very recent approach in
this direction is Tapestry pooling (Ghosh et al., 2020; Ghosh et al.,
2020) which takes quantitative data from PCR measurements and
uses methods from compressed sensing to decode. In the scenario
of testing N ¼ 961 samples in pools of size n ¼ 31 discussed in
Section 5, this approach suggests reasonable results at multiplicity
k ¼ 3, a higher compression rate than in our approach. However
we emphasise that the (experimental) error analysis performed
in the context of Tapestry pooling focuses on fixed numbers of
infected samples and is therefore in a slightly different spirit than
our approach which is based on the prevalence of the disease in the
population.
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