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Abstract
Chronic lung allograft dysfunction (CLAD) following lung transplantation limits
long-term survival considerably. The main reason for this is a lack of knowledge
regarding the pathological condition and the establishment of treatment. The
consensus statement from the International Society for Heart and Lung
Transplantation on CLAD in 2019 classified CLAD into two main phenotypes:
Bronchiolitis obliterans syndrome and restrictive allograft syndrome. Along with
this clear classification, further exploration of the mechanisms and the
development of appropriate prevention and treatment strategies for each
phenotype are desired. In this review, we summarize the new definition of CLAD
and update and summarize the existing knowledge on the underlying
mechanisms of bronchiolitis obliterans syndrome and restrictive allograft
syndrome, which have been elucidated from clinicopathological observations and
animal experiments worldwide.

Key words: Lung transplantation; Chronic lung allograft dysfunction; Bronchiolitis
obliterans syndrome; Restrictive allograft syndrome; Interaction of immune cells;
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Core tip: Long-term prognosis following lung transplantation has not improved due to
chronic lung allograft dysfunction (CLAD). Although a decade has passed since
restrictive allograft syndrome with poor outcome was proposed, which was subsequently
included as a new CLAD phenotype in the consensus report from International Society
for Heart and Lung Transplantation in 2019, detailed mechanisms involved remain
largely unknown. Here, we discuss the mechanisms of CLAD from an immunological
point of view.
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INTRODUCTION
Lung transplantation is an established surgical treatment for end-stage respiratory
failure. Since the first successful case of clinical lung transplantation in 1983[1], the
short-term survival within 1 year is over 80% because of better surgical techniques
and perioperative management[2].  However, the overall survival at 5 years is still
approximately 50%–70% without much improvement[3],  and is worse than that of
other solid-organ transplantations[4]. Chronic lung allograft dysfunction (CLAD) has
been the most common cause of poor survival for the past 35 years. Half of recipients
receiving lung transplantation develop CLAD within 5 years[5,6], which aggravates
their respiratory condition and worsens prognosis. The pathological condition of
CLAD is thought not to be associated with chronic rejection alone, but rather as a
multifactorial syndrome[7-12]. The lung is a unique organ that is consistently exposed to
the  external  environment  and  is  easily  affected  by  external  stimuli  including
infection[8-11], air pollution, and aspiration[12,13]. Until recently, CLAD was recognized as
bronchiolitis obliterans syndrome (BOS) when it was first introduced in 1993[14]. The
main histologic findings of BOS include obliterative bronchiolitis (OB) accompanying
chronic inflammation and fibrosis in the respiratory tract[15,16]. In 2010, the concept of
restrictive  allograft  syndrome (RAS),  which  accompanies  restrictive  ventilatory
impairment  and  a  poor  prognosis,  was  proposed  as  a  new  entity  of  CLAD[17].
Interestingly, in pathological specimens of RAS patients, inflammation and fibrotic
lesions were observed in the respiratory tract  as  well  as  the visceral  pleura and
peripheral  lung tissues.  RAS accounts  for  one-third to  one-fourth of  all  cases  of
CLAD. A lower survival rate after RAS onset was shown in multiple lung transplant
centers (survival period: 1 year for RAS vs 2.5 years for BOS)[18,19]. In response, the
pulmonary council  of  International  Society  for  Heart  and Lung Transplantation
(ISHLT)  formulated  the  international  diagnostic  criteria  for  RAS  in  2019[20].
Accordingly, the new definitions and diagnostic criteria for CLAD and BOS were also
published  in  another  consensus  report[21].  The  framework  of  CLAD  has  greatly
changed, and further study is now needed to elucidate the mechanisms involved for
each phenotype. This review summarizes the new definition of CLAD and provides
some mechanistic insights obtained from clinicopathological observations and animal
experiments.

NEW DEFINITION OF CLAD
CLAD is  defined as  a  substantial  and persistent  decline  in  the  measured forced
expiratory  volume in  1  second (FEV1)  with  ≥  20% from the  baseline  value.  The
baseline value was set as the mean value of the two best FEV1 values following lung
transplantation, which were measured at least 3 wk apart[21].

Three steps to diagnose CLAD according to its progress
Possible CLAD: FEV1 declined by ≥ 20% from the reference value but the duration of
functional decline is still within 3 wk, irrespective of any forced vital capacity (FVC)
changes.

Probable CLAD: FEV1 is still < 80% of the reference value after more than 3 wk but
less  than 3  months,  despite  appropriate  treatment  for  secondary causes  such as
infection, acute rejection [cellular- or antibody-mediated rejection (AMR)], aspiration,
and airway stenosis.  In  this  case,  new CLAD staging (Figure 1)  and phenotypic
clinical subtyping (Table 1) should be temporarily decided.

Definite CLAD: FEV1 has a persistent decline of ≥ 20% from the reference value after
more than 3 months.  Finally,  a definite CLAD phenotype should be determined.
Based on respiratory function examined by spirometry and computed tomography
(CT) findings, CLAD is classified into four groups: BOS, RAS, mixed (BOS and RAS),
and undefined.

WJT https://www.wjgnet.com May 29, 2020 Volume 10 Issue 5

Yoshiyasu N et al. Chronic lung allograft dysfunction

105



Table 1  Phenotypes of chronic lung allograft dysfunction

Obstruction findings Restriction findings CT findings

FEV1/FVC < 0.7 TLC decline ≥ 10% from baseline Parenchymal opacities and/or pleural thickening

BOS √

RAS √ √

Mixed √ √ √

Undefined (2 types) √ √

√ √

BOS: Bronchiolitis obliterans syndrome; CLAD: Chronic lung allograft dysfunction; CT: Computed tomography; FEV1: Forced expiratory volume in 1
second; FVC: Forced vital capacity; RAS: Restrictive allograft syndrome; TLC: Total lung capacity; √: Yes; Black box: No.

If patients meet the CLAD criteria, their stage is determined by the new CLAD
staging based on the decline rate of FEV1 during the disease course (Figure 1).

CLAD 0: Current FEV1 > 80% FEV1 baseline.
CLAD 1: Current FEV1 > 65%-80% FEV1 baseline.
CLAD 2: Current FEV1 > 50%-65% FEV1 baseline.
CLAD 3: Current FEV1 > 35%-50% FEV1 baseline.
CLAD 4: Current FEV1 ≤ 35% FEV1 baseline.
The old BOS staging[22]  will  no longer be used because RAS is included in this

CLAD criterion. The four phenotypes (Table 1) represented mainly by BOS and RAS,
and CLAD staging (5 stages: from 0 to 4) will be used to describe each disease state.

RISKS AND MECHANISM
Risk factors for CLAD include alloantigen-dependent (cellular and antibody-mediated
rejection) and alloantigen-independent factors (infection, aspiration, ischemia, and
autoimmunity). However, it is difficult to categorize them clearly into risk factors of
BOS or of RAS because of the small amount of pooled evidence for RAS at present.
For  patients  who  underwent  lung  transplantation,  the  risk  of  developing  BOS
increased because of primary graft dysfunction (PGD), acute rejection, infections such
as cytomegalovirus (CMV) pneumonitis or colonization by Pseudomonas aeruginosa or
Aspergillus, and gastroesophageal reflux[5,23]. In contrast, RAS is also associated with
acute  cellular  rejection (ACR),  lymphocytic  bronchiolitis,  chronic  lung infection
caused by Pseudomonas aeruginosa, and neutrophil increase caused by bronchoalveolar
lavage  (BAL)[23].  However,  among  these  risk  factors,  only  severe  lymphocytic
bronchiolitis was thought to be associated with the onset of RAS compared with BOS.
As described above,  some risk  factors  overlapped between the  two phenotypes.
According to further clinical data, early-onset diffuse alveolar damage (DAD) (within
3 months after lung transplantation)[24] was considered a risk for BOS development.
However,  the  following  factors  might  increase  the  risk  of  RAS relative  to  BOS:
elevated eosinophils in blood and BAL[25], preoperative lung diseases in recipients (not
cystic fibrosis but interstitial lung disease/idiopathic pulmonary fibrosis (ILD/IPF) or
chronic  obstructive  pulmonary  disease  (COPD)[26],  antibody-mediated  rejection
(AMR)[27], HLA mismatching at the eplet level (HLA-DRB1/3/4/5+DQA/B)[28], late-
onset DAD (more than 3 months after lung transplantation)[24]  and acute fibrinoid
organizing pneumonia (AFOP)[29] (Table 2). In our recent animal experiments, airway
stimulation  of  rats  with  lipopolysaccharide  (LPS)  induced  airway-centered
inflammation similar to BOS in humans[30]. We think BOS is caused by inflammation
in the local respiratory tract, whereas RAS may be caused by fulminant rejection.

Although RAS has been clearly categorized in the ISHLT CLAD consensus report,
most previous studies used the term, BOS, which may also include RAS. Therefore, it
is still unclear why CLAD following lung transplantation can take the form of one of
the  two phenotypes:  BOS or  RAS.  The  mechanism that  differentiates  these  two
phenotypes is unknown. Thus, based on the findings of previous research, we can
start by considering the common pathways involved including innate immunity,
cellular  rejection,  antibody-mediated  rejection  (humoral  immunity),  and  auto-
immunity.
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Figure 1

Figure 1  Chronic lung allograft dysfunction staging. CLAD: Chronic lung allograft dysfunction; FEV1: Forced
expiratory volume in 1 second.

INTERACTION OF IMMUNE CELLS

Innate immunity
Innate immunity refers to a nonspecific biological defense mechanism that plays an
essential role in the initial recognition of pathogens such as bacteria and viruses, the
initiation of subsequent inflammatory reactions, and the establishment of adaptive
immunity. Inflammatory cell groups are generated in secondary lymphoid organs
such as the bone marrow, spleen, and lymph nodes[31]. These cells infiltrate damaged
tissues  through  blood  vessels  and  defend  and  repair  the  tissues.  In  acute
inflammation,  edema  is  caused  by  the  action  of  vasoactive  mediators  such  as
histamine and leukotriene immediately  after  injury[32].  Subsequently,  tissues  are
infiltrated by cells, mainly consisting of neutrophils, and tissue damage is repaired by
infiltrating monocytes or  macrophages[33].  In general,  the innate immune system
detects  pathogen  invasion  through  pattern-recognition  receptors  (PRRs)  that
recognize  pathogen-associated  molecular  patterns[34].  PRRs  including  Toll-like
receptor (TLR), RIG-I-like receptor, NOD-like receptor, C-type lectin receptor, and
intracellular DNA sensors have been identified[35].

PRRs are mainly expressed by dendritic cells and macrophages. Dendritic cells
serve as a bridge between innate and adaptive immunity because they induce T cell
responses  after  being activated and matured via  innate  immune receptors.  TLR
recognizes microbial components and autologous molecules. They have attracted
increasing  attention  because  of  their  involvement  in  autoimmune  diseases  and
lifestyle-related diseases[36].  After  lung transplantation,  alloantigen-independent
factors such as air pollution or bacterial infection may act directly on patient airways
to induce the release of endogenous danger signals, such as alarmins from injured
cells[37]. Dendritic cells and macrophages are activated through PRRs to promote the
innate immune system and inflammatory responses, which is followed by activation
of the adaptive immune system. This serial activation of the immune system might
trigger CLAD. Indeed, TLR signaling was reported to activate alloimmune responses
after  lung  transplantation.  TLR2,  TLR4,  and  TLR9  polymorphisms,  which  are
involved in bacterial and viral recognition, were associated with CLAD development
in humans[38].  Rat studies showed that activation of TLR4 resulted in obstructive
bronchiolitis induced by the administration of synthetic double-stranded DNA or
repeated doses of aerosolized lipopolysaccharide (LPS)[39,40].

We established a BOS model by inducing airway inflammation with LPS[30,42] and
demonstrated the mechanism of fibrosis by direct  TLR4-mediated stimulation of
fibroblasts [46 ].  In  an  animal  model  of  BOS  where  LPS  was  transtracheally
administered, increased levels of Th1-type transcription factors and cytokines were
only present in the grafts, but not in secondary lymphoid organs[43]. Although LPS
induced  macrophage  infiltration,  effector  molecules  of  innate  immunity,  the
expression of  proinflammatory cytokine  mRNAs,  and T cell  reactivity  were  not
enhanced. Furthermore, we found that TLR4 signaling contributed to the activation of
fibroblasts in coordination with transforming growth factor (TGF)-β1 in vitro. TLR4
signaling may play an important role in allograft fibrosis in addition to activation of
alloimmune responses.

Alarmin might be a factor that helps us understand the mechanisms of CLAD and
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Table 2  Possible risk factors of bronchiolitis obliterans syndrome and restrictive allograft syndrome based on the clinical evidence

BOS Undetermined[5,23] RAS

Early-onset DAD[24] ACR AFOP[29]

Air pollution[37] AMR1[27]

Aspiration/GERD Elevated eosinophils in blood and BAL[25]

CMV pneumonitis HLA-DRB1/3/4/5+DQA/B[28]

Colonization of Pseudomonas aeruginosa and Aspergillus Late-onset DAD[24]

PGD LB1[23]

Specific recipients’ lung disease (COPD/ ILD/IPF)[26]

1AMR and LB might be associated with the development of RAS compared with BOS. ACR: Acute cellular rejection; AFOP: Acute fibrinoid organizing
pneumonia; AMR: Acute antibody-mediated rejection; BAL: Bronchoalveolar lavage; BOS: Bronchiolitis obliterans syndrome; COPD: Chronic obstructive
pulmonary disease; CLAD: Chronic lung allograft dysfunction; CMV: Cytomegalovirus; GERD: Gastro esophageal reflux disease; LB: Lymphocytic
bronchiolitis; RAS: Restrictive allograft syndrome.

distinguish  between RAS and BOS.  When blood flow to  the  respiratory  tract  is
impaired  by  primary  graft  dysfunction  or  gastroesophageal  reflux  disease,
intracellular molecules are released from damaged cells. Within a few hours after
transplantation,  high-mobility  group  box  1  (HMGB1)  is  released,  and  innate
immunity  is  mobilized.  HMGB1  is  secreted  from  necrotic  cells  under  ischemic
conditions,  by  TLR-mediated  signals,  and  receptor  for  advanced  glycation
endproducts (RAGE) signals[44]. HMGB1 induced by RAGE signals is involved in early
lung dysfunction, but it was also shown to be involved in the development of CLAD
through the activation of innate immunity. In patients with RAS, various alarmins,
such as S100A9 and HMGB1, were increased in alveolar lavage fluid at disease onset
compared with BOS patients[45], suggesting a more intense inflammatory process in
RAS than BOS. The analysis of specific alarmins may promote a better understanding
of the clinical conditions of the two phenotypes.

Cellular immunity
The two main modes of cellular immunity (i.e.,  T cell responses to alloantigens in
transplanted  organs)  are  direct  and  indirect  recognition.  Direct  recognition  is
associated with rejection that occurs immediately after transplantation[46].  In this
recognition pathway, the recipient T cell  recognizes donor cell  molecules (major
histocompatibility  complex)  via  its  T  cell  receptor [47].  In  the  early  stage  of
transplantation, donor-derived antigen-presenting cells interact with and activate
recipient CD4+  T cells.  For indirect recognition, allo-MHC and other antigens are
phagocytosed by recipient  antigen-presenting cells,  which are then presented to
recipient T cells as MHC-peptide complexes. This sequence continues for the duration
of the existence of the transplanted organ.

In recent years, exosomes have begun to attract attention as factors that trigger a
common immunological mechanism of rejection[48]. Exosomes contain self-antigens,
costimulatory  molecules,  MHC  class  II,  transcription  factors,  and  the  20S
proteasome[49]. Cellular immunity is activated after exposure to these molecules. When
a donor lung sustains an injury caused by PGD, viral infection, or acute rejection,
stress-induced exosomes are released from the donor lung tissue[50]. The antigenicity
of the donor lung is enhanced, leading to more intense immune responses against
alloantigens and autoantigens (as discussed later), finally resulting in CLAD.

Humoral immunity
Acute phase humoral immunity typically involves AMR mediated by donor-specific
antibodies (DSA). Clinical AMR is sub-categorized into three categories (Definite,
Probable or Possible) according to (1) the presence of allograft dysfunction; (2) presence
of DSA; (3) positive histology suggestive of AMR; and (4) positive C4d staining[51]. A
representative DSA is the anti-human leukocyte antigen (HLA) antibody, which is
involved  in  alloimmunity  and  might  be  associated  with  the  development  of
CLAD[52,53].  The  emergence  of  anti-HLA  antibodies  might  induce  alloimmune
responses  and  graft  injury  through  various  pathways,  including  complement-
dependent mechanisms (classical, alternative and lectin pathways) and complement-
independent mechanisms that induce intracellular signaling in endothelial cells, and
finally cause vasculopathy by MHC ligation[54]. After binding to airway epithelial cells,
anti-HLA class I induces cell death and the release of fibrogenic growth factors such
as platelet-derived growth factor, insulin-like growth factor-1, and TGF-β[55]. These
events activate fibroblasts and myofibroblasts, and induce inflammatory cascades and
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extracellular matrix regeneration.
As reported for other organs, DSA-positive patients against HLA have a higher

incidence of CLAD and a lower survival rate[56]. In addition, patients with anti-HLA
antibodies prior to transplant determined by a panel reactive antibody test were
found to have poor survival[57]. Furthermore, the development of de novo DSA was
associated with CLAD and graft failure[58]. In a prospective study, preformed and de
novo anti-HLA antibodies were monitored regularly every 3 months for 1 year after
transplantation  using  the  LABScreen®  Single  Antigen  assay  (One  Lambda  Inc.,
Canoga Park, CA)[59]. The incidence of CLAD did not change between the de novo DSA
positive group who received antibody-directed therapy and the negative group.
However, if the DSA did not disappear after treatment, chronic rejection developed
resulting in poor survival. Therefore, the continuous monitoring of de novo DSA after
lung  transplantation  using  a  highly  sensitive  solid-phase  antibody  detection
immunoassay is considered important for early disease detection and treatment[60].
There have been few studies on differentiating between the development of BOS and
RAS by DSA or AMR. Long-term continuous AMR might be associated with CLAD[51].
It was reported that patients with persistent DSA were more likely to develop RAS
than BOS[56].

However,  it  has been recognized that  during AMR, DSA can disappear in the
serum of the recipient. An explanation might be that DSA are absorbed by the graft.
In a study that examined human CLAD lungs, levels of tissue-bound graft DSA and
serum  DSA  were  measured  and  showed  differences  between  serological  and
pathological findings[61]. In patients with RAS, the level of anti-HLA antibody as DSA
in  grafts  was  higher  than  in  BOS,  which  indicated  a  strong  relationship  with
fibrosis[61].  Furthermore,  our  laboratory  reported  that  local  anti-donor  antibody
production occurred in tertiary lymphoid structures of the donor lung in a rat lung
transplant model[62]. Thus, the humoral immune response may occur locally in rejected
lung allografts as well as in the spleen, a secondary lymphoid tissue.

Autoimmunity
Researchers have reported a relationship between CLAD and immune responses to
lung-associated  self-antigens[63].  The  immunogenic  antigens  identified  included
collagen type I, collagen type V (Col-V), and k-alpha 1 tubulin. Col-V is a heterotrimer
consisting of two-fragment α1 (V) and one-fragment α2 (V). Many patients without
anti-HLA antibodies at  transplantation harbored autoantibodies predisposing to
chronic rejection. Another study reported that in cases where autoantibodies might
exist before transplantation, the incidence of DSA and BOS was increased[64].  The
development of autoimmune responses is promoted by interleukin-17 (IL-17) among
many other  factors[65].  IL-17-dependent  cellular  immunity  to  Col-V  predisposes
human lung transplants to obliterative bronchiolitis. While alloimmunity initiates
lung transplant rejection, de novo autoimmunity for Col-V mediated by specific Th17
cells and monocytes or macrophages as accessory cells may ultimately contribute to
progressive airway obstruction[66]. At BOS onset, the number of IL-10 secreting T cells
was decreased and the numbers of CD4+ T cells secreting interferon-γ and IL-17 were
significantly  increased[67].  Some  researchers  have  reported  a  loss  of  peripheral
tolerance mechanisms after transplantation, mainly mediated by a decrease in Treg
and loss of IL-10 response to self-antigens[63,67]. This Th phenotype switch may lead to
an autoimmune response that predisposes towards chronic rejection. However, there
is no evidence for differences in autoantibodies between BOS or RAS.

ANATOMICAL CHANGES IN TRANSPLANTED LUNGS

Lymphoid neogenesis
At sites of chronic inflammation in lungs, tertiary lymphoid structures (TLS) or lymph
node-like cell aggregates are formed by lymphoid neogenesis, which are considered
to play an immunoregulatory role[68]. They have been observed in transplanted organs
with chronic rejection as well as at sites of chronic inflammation caused by viruses,
bacterial  infections,  autoimmune  diseases,  and  chronic  obstructive  pulmonary
disease[69]. Bronchus-associated lymphoid tissue (BALT) is a representative TLS in the
lungs[70], and might actively promote local immune responses and cause rejection by
triggers including infection or GERD.

Chronic inflammation occurs when there is insufficient repair of tissue damage in
acute inflammation. It can also be observed when mild tissue damage persists without
significant acute inflammatory responses as seen in patients with collagen diseases
such  as  rheumatoid  arthritis[71].  During  this  chronic  inflammation  phase,  tissue
remodeling may occur with the replacement of blood vessels and connective tissues.
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Although this remodeling was also reported in donor lungs affected by CLAD, the
initiation of lung-specific lymphoid structures such as BALT further complicate the
elucidation of the mechanism of CLAD[68,72]. During acute rejection, de novo lymphatic
vessels are formed within 2 wk after transplantation[73]. This constructed lymphatic
network further promotes the immune response and might be associated with the
eventual formation of TLS in CLAD.

When inflammation persists chronically, the activation of resident stromal cells
such as epithelial and endothelial cells plays an important role in immune responses.
The resident stromal cells induce immune cells in transplanted lungs by expressing
ectopic lymphoid chemokines and adhesion molecules (Figure 2). CCL21 attracts DCs
and  T  cells,  CXCL12  attracts  immature  DCs,  and  CXCL13  attracts  B  cells[74-76].
Furthermore, the peripheral lymph node address (PNAd) of adhesion molecules is
expressed by endothelial cells and induces lymphocyte extravasation from the blood
circulation[77]. Indeed, among lung transplant recipients that developed OB, BALT
contained effector memory T cells and high endothelial venules (HEV) characterized
by the expression of PNAd[68]. Previous reports provided evidence showing ectopic
lymphoid tissues in chronically rejected grafts in the heart and kidney play a role in
generating local humoral alloimmune responses[72]. Moreover, in a recent study of
mouse orthotopic lung transplantation, chronic rejection after ischemia-reperfusion
injury  showed an  increase  in  B  cells  in  TLS  of  the  graft[78].  Thus,  BALT may be
associated with rejection after lung transplantation by inducing immune cells. In our
investigation on the development of OB after human lung transplantation, we showed
that lymphoid tissue was generated around small airways[68], which was thought to be
a pathological feature of BOS. Furthermore, in another animal model of OB, lymphoid
neogenesis  in the lung contributed to allograft  airway rejection[68].  However,  the
association between BALT and CLAD (BOS or RAS) remains controversial because
another group confirmed lymphoid follicles in transplanted lungs affected by RAS
but not BOS[79]. However, in transplanted lungs, which maintained allograft tolerance,
the induction of BALT was related to the local immune static state[80]. Of note, the
existence of Foxp3+ T (Regulatory T; Treg) cells in BALT was considered a key factor
to prevent CLAD after lung transplantation. Mouse lung retransplant studies showed
that untreated mice with reimplanted lung allografts survived for a long time after the
first 72 hours of engraftment to immunosuppressed recipients[80]. This suggests that
immunoregulatory pathways are established within lung allografts  after  a  short
period in immunosuppressed hosts. B cells and Treg cells are abundant in BALT.
Recently, the development of HEV with the expression of PNAd, and mobilization of
B cells  was  shown to  be  dependent  on IL-22  but  not  on Treg cells  in  intra-graft
BALT[81]. Treg cells maintain tolerance of the autoimmune system by controlling the
activity of effector T cells. Furthermore, they inhibited Th1 autoimmunity by inducing
IL-10-producing T cells following human lung transplantation[82] and prevented AMR
by inhibiting the local activation of B cells. In a study of the long-term peripheral
blood dynamics of CD4+ CD25high CD127− Treg cells in lung recipients with CLAD, the
number of Treg cells gradually decreased with the higher severity of CLAD. High
numbers of Treg cells was associated with a low risk of CLAD development[83]. Thus,
Treg cells  are considered to play a major role in maintaining “calm” status after
transplantation[84]. However, there have been no studies on the association of Treg
cells and the two phenotypes in CLAD.

Fibrosis
The representative pathological hallmark of CLAD is obliterans bronchiolitis (OB).
Although it is unclear how the two phenotypes of CLAD differentially develop in a
patient,  it  is  likely  that  these  factors  cause  a  fibroproliferative  response  in  a
transplanted donor lung. BOS is histologically correlated with OB of the terminal
bronchioles  and  results  in  abnormal  remodeling  of  the  airway  epithelium,
vasculature,  stroma,  and  lymphatic  system[85].  The  histological  findings  of  RAS
include OB and peripheral lesions such as pleural and interlobular hypertrophy. The
final morphology includes pleuroparenchymal fibroelastosis,  which is frequently
dominant in the upper lobe, and this finding was confirmed in half of RAS patients[86].
The different fibrotic sites in the BOS and RAS phenotypes might be explained by the
lymphangitic distribution of lymphoid neogenesis.

A potentially important mechanism that promotes the progressive and treatment-
resistant nature of BOS and probably that of RAS is a cycle of continuous damage and
abnormal  fibrotic  remodeling[87].  The  mechanism  of  inflammation  and  tissue
remodeling is likely to be multifactorial and complex. Particularly, myofibroblasts
play  a  central  role  in  fibroproliferative  airway  remodeling  by  producing  large
amounts of extracellular matrix in OB after lung transplantation[88], which is probably
related to the group of enzymes termed matrix metalloproteinases (MMPs). Immune
cells promote airway remodeling through the production of MMP-9[89]  or MMP-2,
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Figure 2

Figure 2  Anatomical and histopathological differences between bronchiolitis obliterans syndrome and restrictive allograft syndrome based on immune
responses in transplanted lungs. BOS: Bronchiolitis obliterans syndrome; CCL: CC chemokine ligand; CXCL: CXC chemokine ligand; DC: Dendritic cell; HEV: High
endothelial venules; PDGF: Platelet-derived growth factor; PNAd: Peripheral node addressin; RAS: Restrictive allograft syndrome; TGF-β: Transforming growth factor
beta.

which are expressed by myofibroblasts[90]. The potential origins of myofibroblasts are
considered to be (1) tissue-resident fibroblasts; (2) peripheral blood mononuclear cells
(PBMC) including bone marrow-derived fibrocytes[88,91]; (3) donor-derived multipotent
mesenchymal stem cells (MSC)[92],  or (4) the epithelial-to-mesenchymal transition
(EMT) of donor cells in transplanted lungs[93].  According to a study analyzing the
origin of myofibroblasts in OB lesions after lung transplantation, myofibroblasts were
derived from recipient and donor fibroblasts, indicating microchimerism[94]. These
results suggest the complexity of fibrosis after lung transplantation. Further research
is required to clarify the fibrotic mechanism of these two phenotypes.

ARTICLE HIGHLIGHTS
Currently, CLAD is mainly classified into two clinical phenotypes, BOS and RAS.
These mechanisms are not clear but considered to involve complex immune-mediated
mechanisms such as innate immunity, cellular immunity, humoral immunity and
autoimmunity. Finally, tissue remodeling takes place, resulting in irreversible fibrosis.
An apparent histological difference between BOS and RAS is the anatomical locations
involved: namely, BOS mainly involves small airways while peripheral lung tissue
remains relatively intact,  while RAS involves multiple anatomical compartments
including  airways,  pleura,  interlobular  septum,  alveoli,  and  vasculature.  Such
difference in the distribution of fibrosis may be associated with different magnitude
and quality of immune mechanisms including lymphoid neogenesis.

CONCLUSION
Consensus reports on the international classification of CLAD and the definition of
the  BOS  and  RAS  subtypes  were  published  in  2019.  Although  the  associated
mechanisms  are  largely  unknown,  multiple  complex  immunological  pathways
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including innate immunity and cellular and humoral adaptive immune responses are
likely to be involved.  Based on these new insights  into the refined classification
system  and  recent  basic  research,  strategies  for  individualized  diagnosis  and
treatment need to be explored further.
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