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Abstract

Intellectual disability (ID) and autism spectrum disorder (ASD) are clinically and genetically 

heterogeneous diseases. Recent whole exome sequencing studies indicated that genes associated 

with different neurological diseases are shared across disorders and converge on common 

functional pathways. Using the Ion Torrent platform, we developed a low-cost next generation 

sequencing (NGS) gene panel that has been transferred into clinical practice, replacing single 

disease gene analyses for the early diagnosis of individuals with ID/ASD. The gene panel was 

designed using an innovative in silico approach based on disease networks and mining data from 

public resources to score disease-gene associations. We analyzed 150 unrelated individuals with 

ID and/or ASD and a confident diagnosis has been reached in 26 cases (17%). Likely pathogenic 

mutations have been identified in another 15 patients, reaching a total diagnostic yield of 27%. 

Our data also support the pathogenic role of genes recently proposed to be involved in ASD. 

Although many of the identified variants need further investigation to be considered disease-

causing, our results indicate the efficiency of the targeted gene panel on the identification of novel 

and rare variants in patients with ID and ASD.
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INTRODUCTION

Neuro-developmental disorders (NDDs) are common conditions including clinically diverse 

and genetically heterogeneous diseases. Intellectual disability (ID) is the most common 

NDD disorder, with a prevalence varying between 0.5 to 3% in general population, 

depending on patient and parent age, or the measure of intellectual quotient used (Leonard et 

al., 2011). ID is characterized by deficits in both intellectual and adaptive functioning that 

first manifest during early childhood. Children with intellectual disability (ID) exhibit 

increased risk to present potential co-occurring developmental conditions, such as autism 

spectrum disorders (ASDs) (28%), epilepsy (22.2%), stereotypic movement disorders 

(25%), and motor disorders, which substantially affect daily living and well-being 

(Almuhtaseb et al., 2014; Jensen and Girirajan, 2017; Kazeminasab et al., 2018). ASD in 

particular is characterized by deficits in social communication and interactions, as well as by 

repetitive behaviors and restrictive interests, is associated with poorer psychosocial and 

family related outcomes than ID alone (Totsika et al., 2011). ASD as well as epilepsy 

commonly coexist in specific neurodevelopmental disorders with ID, such as Fragile-X and 

Rett syndromes, or in phenotypes associated with specific copy number variations (CNVs) 

and single gene mutations. These make the differential diagnosis among these disorders 

extremely difficult based only on clinical features. Furthermore, it seems that patients 

affected by one of these disorders have high risk to develop other comorbid NDDs.

Exome sequencing studies of family trios with ID, ASD, and epilepsy have revealed a 

significant excess of de novo mutations in probands, when compared to the normal 
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population, and yielded a rich source of candidate genes contributing to these 

neurodevelopmental defects (Neale et al., 2012; Epi4K Consortium et al., 2013; Fromer et 

al., 2014). It has been estimated that mutations in more than 1,000 different genes might 

cause ID (Chiurazzi and Pirozzi, 2016). Both common and rare genetic variants in up to 

1,000 genes have been linked to increased ASD risk (SFARI database, https://

gene.sfari.org/). However, significant numbers of genes harboring de novo mutations are 

shared across different neurodevelopmental or neuropsychiatric disorders (Vissers et al., 

2010; Cukier et al., 2014). Many genes have already been shown to cause both ID and/or 

ASD, including PTCHD1, SHANK3, NLGN4, NRXN1, CNTNAP2, UBE3A, FMR1, 
MECP2, and others (Harripaul et al., 2017). Despite the apparent distinct pathogenesis for 

these disorders, analysis of network connectivity of the candidate genes revealed that many 

rare genetic alterations converge on a few key biological pathways (Vissers et al., 2010; 

Krumm et al., 2014). In the case of ASD, diverse integrative systems biology approaches 

highlighted how disease genes cluster together in networks enriched in synaptic function, 

neuronal signaling, channel activity, and chromatin remodeling (Gilman et al., 2012; 

O’Roak et al., 2012; Pinto et al., 2014). Accordingly, many ASD genes are synaptic 

proteins, chromatin remodelers, or FMRP targets, i.e. genes encoding transcripts that bind to 

FMRP (Iossifov et al., 2012). Alterations of the same classes of protein functions and 

biological processes involved in neuronal development, such as the mammalian target of 

rapamycin (mTOR) pathways, GABA receptor function or glutamate NMDA receptor 

function, have been also found implicated in intellectual disability, epilepsy, and 

schizophrenia (Endele et al., 2010; Gilman et al., 2011; Paoletti et al., 2013; Cristino et al., 

2014; Krumm et al., 2014; Reijnders et al., 2017). The multiple genes and molecular 

pathways shared by ID, ASD and other developmental or psychiatric disorders indicate a 

common origin that explains the co-occurrence of these conditions (Barabási et al., 2011; 

Cukier et al., 2014).

Based on the hypothesis that common functional pathways explain comorbidity between 

diverse NDDs disorders, we developed an efficient and cost-effective amplicon-based 

multigene panel to assess the pathogenic role of genes involved in ID and ASDs 

comorbidity. The 74-gene panel was designed using an innovative in silico approach based 

on disease networks and mining data from public resources to score disease-gene 

association. Here, we present the genetic findings after applying this panel to 150 individuals 

from our cohort of individuals with ID and/or ASD, most of them were negative for array-

CGH (aCGH), Fragile-X test and other specific genetic analyses (MECP2, CDKL5, 

UBE3A, chr15q methylation test, etc.). We adopted a manual prioritization procedure based 

on expert knowledge related to the disease phenotype and gene functions, which allowed 

detecting a causative or likely pathogenic variant in 27% of these patients. We describe 

diagnosed cases that highlight the critical steps of variant interpretation, in the clinical 

diagnostic context of neurodevelopmental conditions such as ID and ASDs. For each tested 

individual, we report a clinical description and genetic data from the 74 genes providing a 

set of genotype – phenotype associations, which can be used to train or test computational 

methods for prioritization of potential disease-causing variants.
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MATERIALS AND METHODS

Patient selection

Patients were referred from clinical geneticists of 17 Italian public hospitals with a diagnosis 

of non-specific neurodevelopmental disorder. Clinical data were collected with a 

standardized clinical record describing clinical and family history, clinical phenotype 

(auxological parameters, neurological development, physical features, and behavioral 

profile), and presence of associated disorders. Data from neurophysiological profiles, 

electroencephalograms (EEG) and brain magnetic resonance imaging (MRI) were also 

collected. Table 1 summarizes the clinical data of the patients, while Supp. Table S1 reports 

for each of 150 patients the presence of ID, ASD, epilepsy, micro- or macrocephaly, 

hypotonia, and ataxia. Written informed consent was obtained from the patient’s parents or 

legal representative. This study was approved by the Local Ethics Committee, University-

Hospital of Padova, Italy.

Gene panel selection

For the construction of an efficient and low-cost gene panel, we selected the most promising 

ID and/or ASD genes gathering data from public databases (AutismKB http://

autismkb.cbi.pku.edu.cn, and SFARI https://sfari.org/resources/sfari-gene, Abrahams et al. 

2013), OMIM, and PubMed. Candidate genes were extracted in particular from recent 

exome sequencing and meta-analysis studies (Supp. Table S2). We collected a list of 972 

genes scored according to recurrence in different sources, annotated for clinical phenotype, 

gene function, subcellular localization, and interaction with other known causative genes. 

Separated lists were generated considering ASD or ID association. The extracted 

information was stored in a dedicated SQL database used in conjunction with the disease 

network construction. Using data from STRING 9.0 (Franceschini et al., 2013), a disease 

protein-protein interaction (PPI) network was built starting from 66 high confidence genes 

(intersection list), shared by both ASD and ID gene lists. Emerging features of the network 

were assessed by enrichment analysis with Enrich web-server (Kuleshov et al., 2016). The 

same list was used as training set for Endeavour gene prioritization (https://

endeavour.esat.kuleuven.be/) (Tranchevent et al., 2016). Hub direct interactors (i.e. genes 

with STRING degree score above 0.45) belonging to the top ranking prioritized list, but not 

included in the intersection, were also included in the most promising candidate gene list. To 

this list, we also added the top ranked genes associated to ID or ASD only (i.e. genes with at 

least five evidences for ID or ASD) (Supp. Figure S1). The final panel set resulted in a 

manually curated list of 74 genes, comprising selected known causative genes, top-ranked 

genes by gene prioritization, and genes meeting PPI network parameters (Supp. Table S3).

Gene Panel Sequencing

Nucleic acids were extracted from blood samples using the Wizard genomic DNA Promega 

Kit (Promega Corporation). Multiplex, PCR-based primer panels were designed with Ion 

AmpliSeq™ Designer (Thermo Fisher Scientific) to amplify all exons and flanking regions 

(10 bp) of the 74 selected genes (Thermo Fisher Scientific). Template preparation and 

enrichment were performed with the Ion One Touch 2 and Ion One Touch ES System, 

respectively (Thermo Fisher Scientific). Read alignment to the human genome reference 

Aspromonte et al. Page 4

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://autismkb.cbi.pku.edu.cn/
http://autismkb.cbi.pku.edu.cn/
https://sfari.org/resources/sfari-gene
https://endeavour.esat.kuleuven.be/
https://endeavour.esat.kuleuven.be/


(hg19/GRCh37) and variant calling were performed with the Ion Torrent Suite Software 

v5.02 (Thermo Fisher Scientific).

Variant filtering

An in house pipeline was built to create a database of genetic variants identified in our 

cohort and to annotate them with features provided by ANNOVAR, i.e. allelic frequency 

(AF) in control cohorts, variant interpretation from InterVar automated, ClinVar report, 

pathogenicity predictions and conservation scores. Detected variants were ranked for their 

frequency in the gnomAD (Lek et al., 2016), 1000G (1000 Genomes Project Consortium et 

al., 2015), and ExAC (Kobayashi et al., 2017) databases, as well as in our in house database 

of 150 patients. We excluded SNVs found more than twice in our cohort or reported with an 

AF higher than expected for the disorder, which has been calculated to be <0.002% and 

<0.45% for autosomal dominant and recessive genes, respectively (Piton et al., 2013). 

Variants reported as risk factors for autism in the literature were nevertheless considered for 

further segregation analysis even if their frequency in the control populations exceeded the 

ID incidence. Rare variants were ranked for their pathogenicity prediction considering the 

consensus among twelve computational methods. ANNOVAR provides predictions from 

SIFT (Sim et al., 2012), the Polyphen-2 (Adzhubei et al., 2013) HDIV and HVAR versions, 

LRT (Chun and Fay, 2009), Mutation Taster (Schwarz et al., 2014), MutationAssessor (Reva 

et al., 2011), FATHMM (Shihab et al., 2014); PROVEAN (Choi and Chan, 2015), MetaSVM 

(Dong et al., 2015), MetaLR (Dong et al., 2015), M-CAP (Jagadeesh et al., 2016), 

fathmmMKL (Shihab et al., 2013, 2014) and CADD (Kircher et al., 2014). Conservation 

was evaluated with the scoring schemes GERP++ (Davydov et al., 2010), PhyloP (Pollard et 

al., 2010) and SiPhy (Garber et al., 2009). Intronic or synonymous variants near the exon-

intron junction were also evaluated in silico for their impact on splicing using Human 

Splicing Finder (Desmet et al., 2009). The Integrated Genome Viewer platform (Robinson et 

al., 2011) has been used to exclude sequencing or alignment errors around selected SNVs.

Variant validation and functional assays

Selected variants were validated by Sanger sequencing. Segregation analysis was performed 

in the patient relatives when DNA samples were available. For apparent de novo variants, 

paternity and maternity were confirmed by the inheritance of rare detected variants in 

parental samples. In other cases pedigree concordance was checked using polymorphic 

microsatellite markers of chr15q described in (Giardina et al., 2008). For maternally 

inherited X-linked variants, the X-inactivation pattern of the mother was evaluated on the 

highly polymorphic androgen receptor (ARA locus) at Xq11-q12, as described in (Bettella et 

al., 2013). The X-inactivation was classified as random (ratio < 40:60) or significantly 

skewed (ratio ≥ 80:20).

Analysis of the transcripts was performed to confirm putative splicing variants. RNA was 

extracted from patient peripheral blood leukocytes and reverse-transcription Polymerase 

Chain Reaction (RT-PCR) performed using random primers. cDNA was used as template in 

nested PCR reactions with specific primers in order to amplify the regions containing the 

mutation. PCR products were tested on 1.5% agarose gel and sequenced.
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Variant classification

A clinical interpretation of selected variants was first evaluated using InterVar (Li and Wang, 

2017), providing an automated variant interpretation based on 18 criteria published by the 

American College of Medical Genetics and Genomics (ACMG). The InterVar web server 

has a manual adjustment step that allows to review the automated interpretation by selecting 

appropriate criteria according to additional information and knowledge about the involved 

domain.

According to the ACMG recommendations, we classified filtered candidate variants into five 

categories (pathogenic, likely pathogenic, uncertain significance, likely benign, benign) 

based on multiple lines of evidence (conservation, allele frequency in population databases, 

computational inferences of variant effect, mode of inheritance, X-inactivation pattern, and 

disease segregation) (Figure 1). Assuming that a patient phenotype is consistent with a 

Mendelian disorder, variants be classified as pathogenic are considered causative, i.e. 

responsible for the phenotypic manifestations of the carrier patient. Likely pathogenic 

variants instead require further investigation to be classified as pathogenic/causative variants, 

e.g. segregation analysis and/or functional analysis. Rare or novel variants predicted as 

pathogenic and altering genes conferring an increased risk of autism have been classified as 

possible contributing factors if inherited from parents reported as healthy, as they alone are 

not sufficient to cause the disease (see Supp. Table S5). The criteria used to classify the 

variants (Richards et al., 2015) are reported for both causative and likely pathogenic variants 

(Tables 2 and 3). All the causative and likely pathogenic variants have been submitted to the 

LOVD database.

In silico analysis of candidate variants

Canonical protein sequences were retrieved from UniProt (Apweiler et al., 2004) and protein 

domains predicted by InterPro (Mitchell et al., 2018). To evaluate conservation, orthologous 

sequences were downloaded from OMA Browser (Schneider et al., 2007) and aligned with 

MAFFT (Katoh and Standley, 2013). When available, crystal structures were retrieved from 

PDB (Rose et al., 2017). Structures of protein domains were modelled with MODELLER 

(Alva et al., 2016) (automatic best template selection), using templates predicted by HHpred 

(Alva et al., 2016). Structure of the CASK L27 domain and its complex with SAP97 have 

been analyzed using Mistic2 (Colell et al., 2018) to evaluate covariation between residues. 

Structures were manually explored with Pymol (Janson et al., 2017) or UCSF Chimera 

(Pettersen et al., 2004).

Disorder content and the presence of short linear motifs for protein interactions were 

assessed combining MobiDB (Potenza et al., 2015) and ELM (Gibson et al., 2015), using the 

interactive exploration tool ProViz (Jehl et al., 2016).

RESULTS

Gene panel description

The computational approach adopted to select panel genes includes genes recurrently 

mutated in ID or ASD conditions, genes shared among ID and ASD disease networks, and 
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genes directly connected to ID/ASD. Of the 74 selected genes, 42 are FMRP targets, 21 

postsynaptic proteins, and 16 chromatin modifiers. The majority of the selected genes are 

associated with autosomal dominant diseases; of these DEAF1, PTEN and RELN are also 

associated with a recessive disorder. Moreover, the panel includes 8 genes associated with 

autosomal recessive disorders and 19 genes associated with X-linked diseases. Twenty genes 

are associated with non-specific ID, while 40 genes are responsible for defined genetic 

syndromes. Seven genes have been found to confer autism susceptibility (SHANK2, 
CNTNAP2, RELN, CHD8, NLGN3, NLGN4X, and PTCHD1). At the time of panel design, 

for 11 of the selected genes there was only scant evidence in the literature about their 

association with ID and/or ASD (ASH1L, NTNG1, KATNAL2, MIB1, MTF1, MYH10, 
PTPN4, TANC2, TBR1, TRIO, and WAC). Two more genes associated with an OMIM ID 

have been meanwhile reclassified and the disease association confirmation is pending 

(HDAC4 and KIRREL3) (Supp. Table S3).

Data Output and Quality

Our strategy allowed generating 263 reads per amplicon with 97% of them on target. The 

mean target region coverage for all patients ranged between 67 and 612. About 94% of 

target regions were covered at least 20x and 93% of amplicons had no strand bias. The 

uniformity of amplicon coverage resulted being 89%. A small proportion of targeted regions 

was weakly covered (<20x) throughout all patients. These are mainly first exons or GC-rich 

regions representing a well-known burden in an amplicon based strategy. Specifically, exon 

4 of MECP2, exon 5 of ARX, exon 1 of FMR1, part of exon 21 of SHANK3 have a read 

depth <10x. Depending on phenotype manifestations, otherwise these regions have been 

covered by Sanger sequencing, as they could not be analyzed reliably.

Cohort description and diagnostic yield

Our cohort of 150 individuals is enriched in males (61%). 81.3% were sporadic cases and 

the remaining had a family history of neurodevelopmental disorders with siblings affected in 

3.3% of cases. At the time of molecular testing, the age of the patients was ranging between 

2 and 42, with a median of 11 years. Although the vast majority of patients have ID, for four 

individuals clinicians did not report information about the presence of an intellectual defect. 

In 38 cases, the level of cognitive impairment has not been evaluated. Among the patients 

with a cognitive impairment evaluation, a slightly higher proportion have a moderate form 

(25.3%) than severe (22%) and mild ones (24.6%). 93 patients (62%) had both ID and ASD. 

53 (35.3%) had only ID, while 4 (2.6%) had ASD and no information was provided about 

the presence of ID. Epilepsy was reported for 55 (36.6%) individuals, of which 6 had early 

onset epilepsy (<24 months). 39 (26%) patients with ID and ASD present also epilepsy 

(Table 1). MRI and EEG abnormalities were reported, respectively, for 37.3% and 24.6% of 

the sequenced individuals (Table 1). In most of the patients a structural pathogenic alteration 

of chromosomes was excluded by FISH, karyotype, or aCGH; however, in 17 of these, 

aCGH analysis revealed a copy number variations (CNVs) inherited from unaffected parents 

or involving gene-poor regions (Supp. Table S4). 86 patients had a negative Fragile-X test, 

and 57 resulted negative to other single gene tests, such as MECP2, CDKL5, UBE3A, 

and/or to the Chr15q methylation test.

Aspromonte et al. Page 7

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Variant detection and prioritization

In coding exons or exon-intron boundaries regions of the 74 genes, we detected on average 

about 74 single nucleotide variants (SNVs), with a range of 60 to 80 SNVs per patient. 

Overall, 202 coding or splicing SNVs passing the quality control (GQ>30, DP>20) and 

frequency filters (MAF<1%), were observed only once in our cohort. Based on the 

prioritization criteria described in the Methods section, we selected about 170 variants for 

further analysis, 47 of which were absent from the general population (Supp. Table S5). We 

detected certainly causative mutations in 26 patients, leading to an overall diagnostic yield 

of 17.3% for the entire cohort. These rare or novel variants were predicted pathogenic by 

several approaches, found to be de novo or inherited from affected parents and consistent 

with the expected disease for the respective gene (Table 2). In other 15 patients, we 

identified 17 rare variants (missense, synonymous or splicing) with a putative although not 

established pathogenic role (Table 3). For these variants, either there were no family 

members available for segregation analysis, or the clinical features did not fit those that 

would have been expected for the respective gene. With the availability of functional studies 

or further sequencing data, we expect that a number of these variants will turn out to be 

benign, but some variants might be proven pathogenic. In particular, five of these putative 

pathogenic variants meet most of the ACMG criteria (p.Tyr2418Phe in ATRX, 

p.Gly1465Arg in CREBBP, c.870+1G>A in DEAF1, p.Val821Leu in GRIN2B, and 

p.Pro576Gln in SHANK2) and thus with segregation analysis we would be able to assign 

their causative role on the proband’s phenotype. For two other cases, MR1769.01 and 

MR2053.01, either the digenic or autosomal recessive transmission is possible, only with 

functional assays supporting the pathogenic effect of the identified variants. In addition to a 

novel missense mutation in FOXP1 gene, MR1769.01 carries a rare variant in CNTNAP2, 
which is transcriptionally regulated by FOXP1. As previously proposed by O’Roak and 

collaborators, we hypothesize a two-hit model for the disease risk in this patient, where a 

mutant FOXP1 protein leads to an amplification of the deleterious effects of p.Asp417Tyr in 

CNTNAP2 (O’Roak et al., 2011). In MR2053.01, we detected two variants in GAD1 gene, 

which in associated with an autosomal recessive phenotype. The girl presents with clinical 

features consistent with the few reported GAD1 cases, e.g. severe developmental delay and 

non-progressive ataxia. The paternally inherited missense p.Leu284Phe maps on the 

pyridoxal 5’-phosphate (PLP) transferase domain and is predicted as pathogenic by several 

computational methods, while the maternally inherited c.83–3T>C is predicted to alter 

splicing mechanisms. However, we were not able to demonstrate its pathogenicity by 

qualitative analysis of the transcript extracted from the mother.

After segregation analysis, we were able to classify about one hundred of the selected 

variants as likely benign. The majority of these variants were found in genes associated with 

highly penetrant disorders inherited from apparently healthy parents (n=85) or found in 

individuals with a causative mutation in another gene consistent with the proband phenotype 

(n=7). Five variants in X-linked genes were inherited from a healthy father or the X-

inactivation pattern did not supported their pathogenic role (Supp. Table S5).

Finally, some rare or novel inherited variants with strong pathogenicity predictions were 

classified as possible contributing factors. These variants occur on genes known to confer 
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autism susceptibility (e.g. SHANK2, RELN, CNTNAP2) or that have been reported in the 

literature in individuals with very mild phenotype (e.g. TRIO and SLC6A1) (Supp. Table 

S5).

Disease causing variants

We identified likely causative variants in 26 patients (17%) and 18 different genes (Table 2). 

More than one mutation was found in seven genes (ANKRD11, CASK, EHMT1, GRIN2B, 
MECP2, SHANK3, and TRIO); SHANK3 resulted to be the most mutated gene. Among the 

identified variants, six were in X-linked genes and 12 in genes associated with autosomal 

dominant conditions. Twenty variants were absent from the gnomAD database, while five 

were known pathogenic mutations of the MECP2, SATB2, SHANK3, and GRIN2B genes.

Most of the mutations were de novo; one patient carried two of them. In 20 cases, paternity 

and maternity were established, while for two others, the parent DNA samples were not 

available. We can assume that the two truncating variants in ANKRD11 and MECP2 should 

be de novo, since they involve genes that are associated with highly penetrant disorders. 

Furthermore, the p.Arg168X variant in the MECP2 gene is a recurrent pathogenic variant 

associated with Rett syndrome. We also identified four inherited causative variants, one 

maternally inherited variant in the TRIO gene, which is associated with an autosomal 

dominant disorder, and three maternally inherited variants in X-linked genes (ATRX, 
GRIA3, and RAB39B). X-inactivation analysis was consistent with the phenotype 

expression. The RAB39B variant is thought to be also responsible for the mild phenotype 

reported in the mother, clinically re-evaluated after the molecular finding.

In silico structural analysis may help predict mutation effects

Fifteen causative variants (1 splicing, 6 frameshift, and 8 stop codon variants) are predicted 

to result in truncated proteins, if escaping the nonsense mediated mRNA decay. The 

SHANK3 splicing variant has been shown to functionally impair mRNA splicing, producing 

an aberrant transcript containing an additional 77 bp intronic sequence (Li et al., 2018). Nine 

out of the 12 missense mutations were predicted pathogenic by the majority of 

computational methods, while pathogenicity predictions were discordant for three variants 

(Table 2). Among the nine variants with strong prediction of pathogenicity, p.Arg696His in 

GRIN2B has previously reported as pathogenic and has been shown to alter the Agonist 

Binding Domain (ABD) reducing channel activity (Swanger et al., 2016). In silico analysis 

of two other missense mutations, DYRK1A p.Lys174Asn and EHMT1 p.Gly1193Arg 

allowed us to classify them as loss of function mutations. Lysine 174 maps to the catalytic 

pocket of the DYRK1A kinase domain and alters the electrostatic surface of the domain, 

which is important for nucleotide binding (Figure 2). Glycine 1193 maps on the EHMT1 

SET domain, which is necessary for methylation of lysine-9 in the histone H3 N-terminus, 

and is buried in the rigid structure of the domain. A substitution of Glycine 1193 with an 

arginine residue should result in unfolding of the domain core (Figure 3).

We also hypothesized a predictive impact on the protein function of two variants with 

discordant pathogenicity: p.Phe193Leu in RAB39B (Supp. Figure S2) and p.Tyr387His in 

CASK (Figure 4). Phenylalanine 193 maps in the RAB39B hypervariable C-terminal tail, 
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which mediates interactions with effector proteins for proper intracellular targeting 

(Chavrier et al., 1991). This non-conservative substitution may disrupt a functional motif 

involved in protein interaction and cause a mislocalization of RAB39B, as shown for the 

protein mutated at position p.Gly192Arg close by (Mata et al., 2015).

The Tyr387 residue maps on the N-terminal L27 domain, which mediates hetero- and homo-

dimerization of the CASK protein. Comparing L27 domain sequence from different 

proteins, the 387 position is one of the most conserved and connected in the structure, 

denoting its important structural role (Figure 4A and 4B). However, at that position histidine 

is more frequent than tyrosine, thus the p.Tyr387His should not have dramatically effect on 

the L27 domain structure (Supp. Figure S3). However, when considering more related 

homologs of human CASK, the tyrosine 387 is highly conserved, presenting mostly tyrosine 

or, in few cases, phenylalanine compared to other L27 domains; this might indicate that 

tyrosine is important for the protein function and that a change to histidine might be 

deleterious, particularly in human and nearest species. We hypothesize that this substitution 

may result in a hypomorphic mutant protein with a reduced ability to form dimers (Figure 

4), which is consistent with the phenotype of the boy, hemizygous for the CASK mutation. 

Indeed, individuals carrying hypomorphic mutations have been reported with an X-linked 

intellectual disability with or without nystagmus and additional clinical features (Hackett et 

al., 2010).

Genotype – phenotype correlation

One of the major criteria to assign the pathogenicity of the variants is the patient phenotype 

correlation with the classical syndrome associated to the corresponding gene. Most of the 

identified causative mutations (n=22) correlate with the previously reported phenotype of the 

corresponding gene (Table 2). For instance, the two known MECP2 mutations were found in 

two girls with a suspected Rett syndrome. The p.Arg168* variant found in MR414.01 

patient was missed in previous single gene testing since it was in a mosaic state. The 

p.Arg294* variant found in MR2145.01 patient was identified by Sanger sequencing of the 

MECP2 region not covered by the 74 gene panel. A previous panel for Rett-Angelman 

spectrum disorders also missed the variant. In addition, for the two cases carrying a de novo 
mutation in EHMT1 gene, the patient phenotypes were consistent with a Kleefstra 

Syndrome (KS). Both patients presented with core symptoms of the disease, including a 

moderate to severe intellectual disability with absent speech, and hypotonia. However, a 

Kleefstra syndrome was suspected for the characteristic carp-shaped mouth, only in 

MR2243.01 carrying the frameshift mutation, while MR2166.01 was originally suspected to 

have Smith Magenis Syndrome (SMS) probably due to brachycephaly, which is also a 

common characteristic of KS.

Nonetheless, in other cases the probands lacked some peculiar clinical features of the 

associated syndromes that prevented the geneticists to formulate hypothesis about a 

suspected syndrome. As an example, the two patients carrying a truncating mutation in the 

ANKRD11 gene, both lacked, macrodontia of the upper central incisors, craniofacial 

features, and skeletal anomalies typical of the KBG syndrome, but both have mild ID, 

behavioral issues, and hearing loss (Sirmaci et al., 2011).
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On the other hand, in some cases the detected mutations were found in genes never 

associated with particular phenotypic traits. In particular, we observed macrocephaly in three 

individuals carrying pathogenic mutations in three different genes (ATRX, GRIN2B, and 

TRIO) previously associated to microcephaly (Table 4). Interestingly, the de novo 
p.Arg696His in GRIN2B had been previously reported in a girl with a significant phenotypic 

overlap with our patient (MR 2019.01), including developmental delay, poor speech, 

intellectual disability, ASD with stereotypic behavior (Swanger et al., 2016). However, our 

patient present macrosomia and marked macrocephaly. There is only one report in literature 

associating GRIN2B with macrocephaly, in a case with an ~2 Mb interstitial deletion in 

12p13 involving the entire GRIN2B gene, in addition to other genes (Morisada et al., 2016). 

Furthermore, we observed that the other two cases presenting with macrocephaly (MR 

2276.01 and MR 984.01), carrying the maternally inherited ATRX and the de novo TRIO 
mutations, also carried other rare inherited CNVs or sequence variants (Supp. Tables S4 and 

S5). Since inherited from healthy parents these alterations were classified as benign or of 

uncertain significance.

Discussion

An accurate clinical and molecular diagnosis can greatly improve the treatment of 

individuals with neurodevelopmental disorders. However, differentiating between 

pathophysiological conditions that are clinically and genetically heterogeneous is a big 

challenge particularly when they arise with common comorbid disorders. The recent advent 

of Next Generation Sequencing (NGS) technologies allowed discovering many genes 

involved in these conditions. The study of undiagnosed cases with similar clinical 

manifestations through whole exome or genome sequencing highlighted the wide spectrum 

of phenotypic expression of some well-known genetic conditions, such as Rett syndrome, 

that can be caused by different genes involved in common biological pathways (Ehrhart et 

al., 2018). We are moving from a phenotypic-based to a gene-centered view of the diseases 

and we are incorporating the concept of disease network in the classification of the genetic 

conditions (Barabási et al., 2011). Due to the cost, ethical problems, and storage resources 

limitations, the use of genome and exome sequencing in the clinical practice is still a 

challenge. However, the availability of bench top systems, such as Ion Torrent platform, 

allowed spreading the use of gene panel sequencing in diagnostic laboratory for testing 

different genes involved in heterogeneous conditions, such as neurodevelopmental disorders.

In this study, we show the application of targeted sequencing of 74 genes in a cohort of 150 

individuals with ID and/or ASD designed for diagnostic purpose. A certain causative 

variants have been found in 17.3% of the tested individuals, the diagnostic yield is the same 

in the 93 individuals presenting ID and ASD comorbidity. In contrast to other studies, the 

majority of the diagnosed cases have a more severe ID (Redin et al., 2014) (Table 1). 

Considering patients presenting other comorbidities, such as epilepsy, microcephaly or 

macrocephaly, the diagnostic yield further increases to 20%, 31.6%, and 36.4%, 

respectively. Thus, the ability to find a molecular cause with this selection of genes is more 

effective in severe cases than those with a mild phenotype are. The use of network 

parameters to filter panel genes allowed selection of core genes, which are often hub genes 
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implicated in multiple biological processes. Thus, an alteration of these genes may have 

consequences in diverse neurological systems leading to a more severe phenotype.

Interestingly, in three patients presenting macrocephaly as one of the clinical manifestations, 

we found a causative variant in three different genes (ATRX, GRIN2B, and TRIO) that have 

not been associated before to this feature. We decided to classify these variants as potentially 

causative even if the proband’s phenotypes were only partially consistent with the phenotype 

reported for each gene. In these cases, to support the pathogenic role of the variants we 

considered the complex genetic architecture underlying the pathogenic mechanisms involved 

in NDDs (Woodbury-Smith and Scherer, 2018). The p.Arg696His in GRIN2B gene has been 

previously reported in an individual with ID but no macrocephaly, and experimentally tested 

for its ability to impair the protein function (Swanger et al., 2016). The other two cases 

carrying a de novo TRIO and a maternally inherited ATRX mutation were found to carry 

other rare inherited SNVs or CNVs. We can speculate that these rare inherited alterations 

may contribute to the disease as modifier variants interacting with causative ones to 

determine a specific phenotype. Diverse rare CNV, such as 15q11.2 and 16p12.1 deletions, 

have been implicated in multiple neurodevelopmental disorders, and a multi-hit model have 

been suggested (Girirajan et al., 2010; Abdelmoity et al., 2012). Furthermore, a 

multifactorial model has been proposed to explain the heritability of ASD, where rare de 
novo and inherited variations act within the context of a common-variant genetic load 

(Chaste et al., 2017; Guo et al., 2018). This might also explain the variable clinical outcomes 

associated with the same causal variant, such as in the case of p.Arg696His in GRIN2B.

Another consideration to take into account is that for some NDD candidate genes a clear 

description of the related disorder will become possible only with the accumulation of 

reported cases. The TRIO gene has been recently associated with mild to borderline 

intellectual disability, delay in acquisition of motor and language skills, and neurobehavioral 

problems. Other findings can include microcephaly, variable digital and dental 

abnormalities, and suggestive facial features (Ba et al., 2016; Pengelly et al., 2016). Only 

few individuals carrying pathogenic mutations in this gene have been reported to date, thus 

the clinical manifestations of the TRIO-related disorder is still evolving. Here, we report two 

novel individuals carrying pathogenic TRIO mutations, expanding the phenotypic spectrum 

associated with this novel NDDs gene.

Furthermore, different mutations in the same gene can have different effects on the gene 

product, and therefore different pathological consequences (Barabási et al., 2011). These 

variants may perturbe specific subset of links in the interactome. For instance, different 

mutations in ARX gene, a paradigm of a pleiotropic gene, have been associated with diverse 

defects involving GABAergic neurons and associated with a wide spectrum of disorders 

(Friocourt and Parnavelas, 2010). This may also be the case for the p.His1371Tyr mutation 

in the GEF1 domain of TRIO. Recently, it has been show that variants affecting different 

protein interaction interfaces of this domain can produce bidirectional alterations of 

glutamatergic synapse function. The p.His1371Tyr maps far away from the Rac1 binding 

interface, near another variant, the p.Asp1368Val, that has been previously reported in a boy 

with severe ID (de Ligt et al., 2012). In contrast to other GEF1 domain variants involved in 

ASD, the p.Asp1368Val has been demonstrated to results in TRIO hyperfunction 
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(Sadybekov et al., 2017). This finding may explain the more severe phenotype associated to 

the p.Asp1368Val, and those of the proband we report, carrying the p.His1371Tyr, 

presenting with severe ID, epilepsy, absent speech, and macrocephaly.

With the targeted approach, a proportion of patients remains without molecular diagnosis 

due to the limited number of sequenced genes. However, the higher coverage obtained by the 

gene panel sequencing, compared to a whole genome or exome sequencing approach, allows 

detecting a high number of variants in the target regions. Furthermore, due to the relatively 

small number of variants to be further investigate, this approach allows focusing on rare 

variants that would be filtered out for discordant pathogenicity predictions, as the novel 

hypomorphic de novo CASK mutation found in hemizygous state in a male with intellectual 

disability. For these variants, an in depth in silico analysis of the protein structure and 

function allowed to pinpoint possible mutation effects to support their pathogenic role. 

Finally, with this approach we provided a set of genotype-phenotype associations for a core 

set of genes involved in NDDs, which can be used to train or test computational methods for 

prioritization of potential disease-causing variants.

CAGI-competition

At the completion of our study and before submitting for publication, genetic data and 

corresponding phenotypes of the tested individuals have been provided for a challenge at the 

Critical Assessment of Genome Interpretation (CAGI). CAGI is a worldwide blind test to 

assess computational methods for predicting phenotypic impacts of genomic variations. The 

outcome of the predictive competition using the ID-ASD gene panel data set are presented 

elsewhere. However, here we provide the original data with few updates that can be used to 

train and/or to test their own computational tools/approach aiming to predict comorbid 

phenotypes from genetic variants in a subset of NDDs genes.

Conclusions

The heterogeneity of NDDs reflects perturbations of the complex intra- and intercellular 

networks. The emerging tools of genomic medicine allows to hold the promise of 

disentangling the complex genetic architecture of these particular disorders, leading to the 

identification of different etiologies in similar phenotypes as well as common pathways 

underlying apparently distinct conditions. Based on the finding that diseases that share genes 

or involve proteins interacting with each other show elevated comorbidity, we designed a 74-

gene panel to perform sequencing of individuals with ID and ASD comorbidities. With this 

approach, we identified disease causing variants or putative pathogenic variants in 27% of 

the tested individuals. This work demonstrates that knowledge about shared genes and 

common pathways can be used to develop innovative diagnostic tools needed to discriminate 

among overlapping phenotypes with high risk of developing comorbid features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow describing the important steps in the classification of selected variants.
Abbreviations: genotype quality (GQ); Allele Frequency (AF); Autosomal Dominant (AD); 

Autosomal Recessive (AR); X-linked, dominant (XLD).
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Figure 2. DYRK1A missense mutation affect catalytic pocket of kinase domain
A) Domain architecture of DYRK1A. Protein sequence presents regions biased toward polar 

(serine and threonine) and aromatic (histidine residues). NLS = nuclear localization signal. 

B) DYRK1A p.Lys175 and neighboring residues are conserved among orthologous 

sequences. Amino acids are colored by conservation, according to ClustalX color code. C) 
DYRK1A p. Lys175Asn variant and wild type residues are mapped to kinase domain 

structure (4yu2.pdb, chain A). Residues involved in nucleotide binding are represented in 

orange sticks, wild-type lysine (K) in red and asparagine (N) in green.
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Figure 3. EHMT1 missense mutation affects SET domain.
Causative variants identified in our patient cohort are mapped to the EHMT1. Protein 

sequence presents regions biased toward polar (glutamine and arginine) and a poly-alanine 

motif. The ankyrin domain (orange) is involved with the histone H3K9me binding. The Pre-

SET domain (green) contributes to SET domain stabilization B) EHMT1 p.Gly1193 and 

neighboring residues are conserved among orthologous sequences. Amino acids are colored 

by conservation, according ClustalX color code. C) EHMT1 p.Gly1193Arg variant (red) and 

wild type glycine (orange) are mapped to SET domain structure (2igq.pdb, chain A) 

Residues involved in H3K9 binding and the S-adenosyl-L-methionine molecule are 

represented in blue sticks.
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Figure 4. The novel likely hypomorphic mutation of CASK may alter L27 domain dimerization
A) Covariation network of L27 domain (PF02828). Nodes are the residues (L27 domain 

numbering) coloured by conservation from red to light blue (highest to lowest respectively). 

B) Nodes are coloured by cumulative Mutual information (cMI) from violet to yellow 

(highest to lowest respectively). Edges are the top 0.1% covariation scores (Mutual 

Information) calculated with Mistic2 (Colell et al., 2018). C) Ribbon representation of the 

L27- SAP97 complex. CASK domain L27 is coloured green (chain B 1RSO PDB) and 

SAP97 violet (chain A 1RSO PDB). In sticks are shown the residues that interact (their R) 

with Y387 in the complex. D) same coloring schema. Y387 was “in silico” mutated to H387. 

Mutation and figures were generated by UCSF Chimera (Pettersen et al., 2004).
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Table 1:

Description of the cohort of 150 individuals enrolled for the study of ID/ASD comorbidity.

Features Patients (n=150) Yield with causative mutations Yield with causative or putative mutations

Gender

Female 58 (39%) 10 (17.2%) 17 (29.3%)

Male 92 (61%) 16 (17.4%) 24 (26%)

Age (at diagnosis) 2– 42 y.o 4–27 y.o. 3–42 y.o.

Familial History

Sporadic 121 (81%) 23 (19%) 31(25.6%)

Familial 29 (19%) 3 (10.3%) 10 (34.5%)

Sib pair 5 (3.3%) 0 0

X-linked 3 (2%) 1 0

Intellectual Disability 146 (97.3%) 26 (17.8%) 41 (28%)

Mild 37 (24.6%) 5 (13.5%) 8 (21.6%)

Moderate 38 (25.3%) 8 (21%) 10 (26.3%)

Severe 33 (22%) 9 (27.3%) 12 (36.3%)

Not evaluated 38 (25.3%) 4 (10.5%) 11 (28.9%)

Comorbidity

ASD (autistic features) 93 (62%) 15 (16.1%) 25 (26.8%)

ASD not reported 16 (10.6%) 3 (18.7%) 5 (31.2%)

Epilepsy 55 (36.6%) 11 (20%) 17 (30.9%)

Hypotonia 28 (18.6%) 6 (21.4%) 6 (21.4%)

Ataxia 11 (7.3%) 2 (18%) 3 (27.2%)

Microcephaly 19 (12%) 6 (31.5%) 8 (42.1%)

Macrocephaly 11 (7.3%) 4 (36.4%) 4 (36.4%)

Previous investigation

aCGH 125 (83.3%) 22 (17.6%) 35 (28%)

X-Fragile 86 (57.3%) 10 (11.6%) 18 (20.9%)

EEG anomaly 56 (37.3%) 9 (16%) 17 (30.4%)

MRI anomaly 37 (24.6%) 9 (24.3%) 13 (35.1%)

Other tests 57 (38%) 13 (22.8%) 18 (31.6%)
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Table 4.

Mutated genes in the different phenotypic manifestations (ASD, epilepsy, Microcephaly, Macrocephaly, 

Hypotonia, and Ataxia). Some genes have been found mutated in individuals presenting phenotypic traits that 

have not been previously associated to these genes (highlighted in bold).

Clinical features N° individuals 
affected (Tot=150)

Genes carrying causative variants Genes carrying likely pathogenic 
variants

Intellectual disability

Autistic traits 73 ANKRD11, ARID1B, CASK, EHMT1, GRIA3, 
GRIN2B, MECP2, MED13L (ASH1L), 
SHANK3, SYNGAP1

ANKRD11, CHD8, FOXP1 
(CNTNAP2), DEAF1, GRIN2B, 
KATNAL2, PHF8, PTEN, SCN2A

Epilepsy 40 ANKRD11, EHMT1, GRIA3, MECP2, OPHN1, 
RAB39B, SETBP1, SYNGAP1, TRIO

ANKRD11, CASK, CHD8, CREBBP, 
GAD1, SCN2A, SHANK2

Microcephaly 19 ARID1B, CASK, DYRK1A, MECP2, TRIO CHD8, CREBBP, SHANK2

Macrocephaly 12 ATRX, GRIA3, GRIN2B, TRIO -

Hypotonia 28 CASK, DYRK1A, EHMT1, MECP2, TRIO -

Ataxia 11 MECP2 GAD1
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