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Accuracy of Nonexercise Prediction
Equations for Assessing Longitudinal
Changes to Cardiorespiratory Fitness in
Apparently Healthy Adults: BALL ST Cohort
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Bradley S. Fleenor, PhD; Jonathan Myers, PhD; Ross Arena, PhD; W. Holmes Finch, PhD; Leonard A. Kaminsky
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BACKGROUND: Repeated assessment of cardiorespiratory fitness (CRF) improves mortality risk predictions in apparently healthy
adults. Accordingly, the American Heart Association suggests routine clinical assessment of CRF using, at a minimum, nonex-
ercise prediction equations. However, the accuracy of nonexercise prediction equations over time is unknown. Therefore, we
compared the ability of nonexercise prediction equations to detect changes in directly measured CRF.

METHODS AND RESULTS: The sample included 987 apparently healthy adults from the BALL ST (Ball State Adult Fitness Longitudinal
Lifestyle Study) cohort (33% women; average age, 43.1+10.4 years) who completed 2 cardiopulmonary exercise tests >3 months
apart (3.2+5.4 years of follow-up). The change in estimated CRF (eCRF) from 27 distinct nonexercise prediction equations was
compared with the change in directly measured CRF. Analysis included Pearson product moment correlations, SEE values, in-
traclass correlation coefficient values, Cohen’s k coefficients, y coefficients, and the Benjamini-Hochberg procedure to compare
eCRF with directly measured CRF. The change in eCRF from 26 of 27 equations was significantly associated to the change
in directly measured CRF (P<0.001), with intraclass correlation coefficient values ranging from 0.06 to 0.63. For 16 of the 27
equations, the change in eCRF was significantly different from the change in directly measured CRF. The median percentage of
participants correctly classified as having increased, decreased, or no change in CRF was 56% (range, 39%—61%).

CONCLUSIONS: Variability was observed in the accuracy between nonexercise prediction equations and the ability of equations
to detect changes in CRF. Considering the appreciable error that prediction equations had with detecting even directional
changes in CRF, these results suggest eCRF may have limited clinical utility.
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ithin apparently healthy adults, a single baseline
Wmeasure of cardiorespiratory fitness (CRF) is in-

versely associated with mortality risk and inci-
dence of many chronic diseases."* In addition, CRF is
a stronger predictor of mortality compared with many
other traditional risk factors.® Accordingly, a Scientific
Statement from the American Heart Association sug-
gests CRF be considered a clinical vital sign that is
regularly assessed alongside other established risk fac-
tors.* Although the gold standard for measuring CRF is

the cardiopulmonary exercise test, a vast majority of ap-
parently healthy adults have never performed this test,
making CRF the only major risk factor that is not regu-
larly assessed in the primary care setting. To encourage
the practice of CRF assessment in apparently healthy
adults, it is recommended that all routine clinical visits
should minimally include the determination of estimated
CRF (eCRF) using a nonexercise prediction equation.*
Nonexercise prediction equations are based
on the relationship between CRF and various
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CLINICAL PERSPECTIVE

What Is New?

e We examined the accuracy of cardiorespira-
tory fitness (CRF) derived from 27 previously
published nonexercise prediction equations for
measuring longitudinal changes of CRF in a co-
hort of apparently healthy adults.

e Although there was general agreement be-
tween CRF from the prediction equations and
the gold standard cardiopulmonary exercise
test, the prediction equations had a low degree
of accuracy even when identifying the direc-
tional changes to CRF.

What Are the Clinical Implications?

e As the importance of assessing CRF in routine
clinical practice continues to be further estab-
lished, it is important to note there is significant
error associated with using nonexercise predic-
tion equations to estimate CRF acutely or when
assessing longitudinal changes to CRF.

e These data suggest a limited prognostic utility
of estimating CRF within a clinical setting.

Nonstandard Abbreviations and Acronyms

BALL ST Ball State Adult Fitness Longitudinal
Lifestyle Study

CRF cardiorespiratory fitness
eCRF estimated cardiorespiratory fitness
ICC intraclass correlation coefficient

VO,,..x Maximal oxygen consumption

characteristics, such as age and sex. In the research
setting, epidemiologists have often used predic-
tion equations to examine the relationship between
CRF and health outcomes. This research has shown
eCRF is inversely associated with all-cause mortal-
ity8-19 and provided much of the impetus behind the
recommendations for clinicians to minimally deter-
mine a patient’s eCRF. Nonexercise prediction equa-
tions, however, have several inherent limitations. For
example, prediction equations do not account for the
well-known genetic influence on CRF' and social de-
sirability biases can influence the self-report aspects
of some equations (eg, physical activity levels'?). The
resulting prediction error associated with equations
is a significant limitation as a recent research study
from our cohort found prediction equations were
unable to accurately classify an individual’'s CRF
level, thus reducing their potential clinical utility."®
Nonetheless, determining eCRF is recommended
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because of the ease of calculation and its previously
demonstrated relationship with mortality.*

Although a single measure of CRF has merit,
identifying changes over time allows for improved
mortality risk determination. A convincing body
of evidence indicates individuals who improve or
maintain CRF long-term have a reduced risk for
early mortality."*'® Therefore, monitoring longitudi-
nal changes to CRF is clinically relevant and is an
important element within the recommendations
to minimally include eCRF as a clinical vital sign.
However, most nonexercise prediction equations
were developed using cross-sectional data, which
could influence their ability to accurately assess
longitudinal changes to CRF. One set of equations
was developed using longitudinal data,?® although
the accuracy of these equations over time has yet
to be tested on a different cohort. Considering there
is no universally accepted equation for assessing
eCREF, the aim of the present study was to evaluate
the ability of 27 different nonexercise CRF prediction
equations to accurately detect changes in directly
measured CRF using data from a single cohort of
apparently healthy adults. We hypothesized that
changes to eCRF would be correlated to directly
measured CRF changes, yet misclassification would
occur at the individual level.

METHODS

Data from the BALL ST (Ball State Adult Fitness
Longitudinal Lifestyle Study) cohort were used for
this study. The sample included data from apparently
healthy adults, aged 18 to 80 years old, who per-
formed 2 comprehensive health and fitness assess-
ments at least 3 months apart between April 1, 1968,
and July 31, 2019. BALL ST participants were either
self-referred to a community-based exercise program
or were research participants in studies who provided
written informed consent for their data to be used
for research. Participants were defined as apparently
healthy if they were free from known cardiovascular
disease (eg, history of cardiac arrest, coronary artery
disease, heart failure, myocardial infarction, stroke,
and peripheral artery disease) and lung disease (eg,
chronic obstructive pulmonary disease and emphy-
sema). Participants were excluded if they were tak-
ing a B-blocker medication or missing data for height
or weight (a flowchart of inclusion/exclusion criteria
is provided in Figure 1). The protocol for this study
was reviewed by the Ball State University Institutional
Review Board and determined to be exempt as only
deidentified data were used. The data that support
the findings of this study are available from the cor-
responding author upon reasonable request.
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Individuals who performed a
cardiopulmonary exercise test

on a treadmill
(age at test: 18-80 years)
4,583
Missing height or weight. Not missing height or weight.
60 4,523
A\ 4 A 4

Taking beta blocker or history of Apparently healthy and not

cardiac arrest, coronary artery taking beta blocker.
disease, heart failure, myocardial 4,250

infarction, stroke, peripheral artery
disease, chronic obstructive
pulmonary disease, or emphysema.

273

A 4

A 4

RER <1.10 RER >1.10
766 3,484
Performed only 1 Y
cardiopulmonary exercise test or Performed 2
tests were <3months apart cardiopulmonary exercise
2,497 tests >3 months apart
987

Figure 1. Flowchart of inclusion/exclusion criteria for the study sample.

RER indicates respiratory exchange ratio.

Nonexercise Prediction Equations

A literature search was conducted using the PubMed
electronic database and the following terms: “pre-
dicted VO,,.,,," “predicted VO, “estimated VO,,,,"
“estimated VO,..," “non-exercise testing,” and “non-
exercise prediction” (to June 14, 2019). Additional equa-
tions were identified from within previous reviews,*?'-23
and citations of these previous reviews were searched
using Google Scholar. A total of 27 nonexercise pre-
diction equations were included on the basis of the
following criteria: (1) the equation predicted maximal
oxygen consumption (VO,,,,,) in both men and women;
(2) walking or running was the exercise mode used to
create the equation; (3) the equation was created from
an apparently healthy adult cohort; (4) variables within
the equation were available from the data collected on
the BALL ST cohort (eg, excluded equations requiring
variables such as thigh mass and perceived functional
ability); and (5) a sample size of 100 could be produced
from data within the BALL ST cohort.
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The equations are provided in Table 1,2024-87
Although most equations estimated relative VO,
(mLkg~"-min~"), 7 equations estimated maximal met-
abolic equivalents.?%3* Estimated metabolic equiva-
lents derived from these equations were multiplied
by 3.5 to determine relative VO, * Variables within
the equations included: sex, age, height, weight,
body mass index, waist circumference, percentage
body fat, smoking, resting heart rate, physical activ-
ity, dyslipidemia, hypertension, and diabetes mellitus
(Table 2).2924-37 Trained technicians measured an-
thropometrics (height, weight, body mass index, and
waist circumference) and determined percentage
body fat using skin folds.3® Participants completed
a health history questionnaire, which provided self-
reported smoking status, physical activity status,
medication use, and medical history. Smoking status
was recorded both on a 2-level scale (“yes”/’no”) and
an 8-level scale that captured smoking habits.%? Self-
reported physical activity data were collected using
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Table 1. Summary of Nonexercise CRF Prediction Equations for Estimating Relative VO,,,,, (mL-kg~'-min-')
Authors Equation Reported R? Reported SEE
No PA measure
Riddle et al 1980% ft Men: (60-0.55 (age))-((4.13 (height [cm])/(2.54-135))/2.2
Women: (48-0.37 (age)):((3.55 (height [cm])/(2.54-1086))/2.2
Wasserman et al 1994?° Men: PW=0.79 (height [cm])-60.7If PW=measured weight: [(50.72-0.372
(age))-(weight [kg])]-1.11If PW>measured weight: [([PW+(weight [kg])/2)
(50.72-0.372 (age))]-1.111f PW<measured weight: [(50.72-0.372 (age))
(weight [kg])+6 ((weight [kg])-PW)] 1.11
Women: PW=0.65 (height [cm])-42.8If PW=measured weight:
[(weight [kg])+43)(22.78-0.17 (age)] 1.11If PW>measured weight:
[(PW+(weight[kg])+86)/2)(22.78 —0.17 (age)] 1.11If PW<measured weight:
[(PW+43)(22.78-0.17 (age))+6 (weight [kg])-PW)] 1.11
Jang et al 2012 (model 1)® 50.543-0.069 (age)+13.525 (sex; men=1, women=0)-0.403 (BMI)-1.530 0.67 4.21
(CSS™)
Baynard et al 2016 (BMI)*” 77.96-10.35 (sex; men=0, women=1)-0.92 (BMI)-0.32 (age) 0.57 6.89
Baynard et al 2016 (WC)?” 88.35-14.79 (sex; men=0, women=1)-0.40 (WC)-0.27 (age) 0.60 6.70
Myers et al 201728 79.9-0.39 (age)-13.7 (sex; men=0, women=1)-0.127 (weight [lbs]) 0.62 7.20
de Souza et al 2018%° 45.2-0.35 (age)-10.9 (sex; men=1, women=2)-0.15 (weight [Ibs])+0.68 0.62 6.60
(height [in]))-0.46
Includes measure of PA
Jackson et al 1990 (BMI)*° 56.363+1.921 (PA")-0.381 (age)-0.754 (BMI)+10.987 (sex; men=1, 0.61 5.70
women=0)
Jackson et al 1990 (%fat)*° 50.513+1.589 (PA")-0.289 (age)-0.552 (%fat)+5.863 (sex; men=1, 0.66 5.35
women=0)
Heil et al 1995° 36.580-0.541 (%fat)+1.921 (PA")+0.558 (age)-7.81E-3 (age?)+3.706 (sex; 0.74 4.90
men=1, women=0)
Whaley et al 1995 (BMI)3? 64.62-0.339 (age)+9.006 (sex; men=1, women=0)+2.069 (PA"-0.601 0.70 5.60
(BMI)-0.143 (RHR)-0.409 (CSS*)
Whaley et al 1995 (%fat)®? 61.66-0.328 (age)+5.45 (sex; men=1, women=0)+1.832 (PA)-0.436 (% 0.73 5.38
fat)-0.143 (RHR)-0.446 (CSS*)
Matthews et al 19992 34.142+0.133 (age)—-0.005 (age?)+11.403 (sex; men=1, women=0)+1.463 0.74 5.64
(PA"+9.170 (height [m])—0.254 (weight [kg])
Jurca et al 2005 (ACLS)** # | 18.81+2.49 (sex; men=1, women=0)-0.08 (age)-0.17 (BMI)-0.05 0.60 5.25
(RHR)+0.81 (PA1H+1.17 (PA2%)+2.16 (PA3#)+3.05 (PA4H
Jurca et al 2005 (ADNFS)** # | 21.41+2.78 (sex; men=1, women=0)-0.11 (age)-0.17 (BMI)-0.05 0.58 6.90
(RHR)+0.35 (PA1%)+0.29 (PA24)+0.64 (PA3*)+1.21 (PA4Y)
Jurca et al 2005 (NASA)* # | 18.07+2.77 (sex; men=1, women=0)-0.10 (age)-0.1 BMI)-0.03 0.65 5.08
(RHR)+0.32 (PA1%)+1.06 (PA2H)+1.76 (PA3H)+3.03 (PA4Y)
Wier et al 2006 (BMI)®® 57.402-0.372 (age)+8.596 (sex; men=1, women=0)+1.396 (PA%)-0.683 0.62 4.95
(BMI)
Wier et al 2006 (%fat)*® 51.936-0.308 (age)+4.065 (sex; men=1, women=0)+1.217 (PA%)-0.483 0.65 4.91
(%fat)
Wier et al 2006 (WC)%* 59.416-0.327 (age)+11.488 (sex; men=1, women=0)+1.297 (PA%)-0.266 0.64 4.90
(WC)
Nes et al 2011% Men: 100.27-0.296 (age)+0.226 (PAT-0.369 (WC)-0.155 (RHR) 0.61 5.70
Women: 74.736-0.247 (age)+0.198 (PAT)-0.259 (WC)-0.114 (RHR) 0.56 5.14
Céceres et al 2012 Men: 47.189+0.394 (age)-0.282 (weight [kg])-4.289 (PA%)+0.231 (height 0.53 715
(9 levels)®” [cm])-0.090 (RHR)-2.092 (dyslipidemia)-1.925 (hypertension) —2.901
(CSS*)-2.295 (diabetes mellitus)
Women: 37.844+0.250 (age)-0.208 (weight [kg])-3.428 0.44 5.74
(PA%)+0.139 (height [cm])-0.053 (RHR)-1.327 (dyslipidemia)-1.009
(hypertension)-1.508 (CSS**)
Céceres et al 2012 Men: 39.390+0.409 (age)-0.307 (weight [kg])—4.437 (PA%)+0.254 (height 0.51 7.31
(5 levels)®” [cm])-3.081 (CSS*™)
Women: 31.733+0.244 (age)-0.219 (weight [kg])—3.598 (PA%)+0.151 0.43 5.74
(height [cm])—1.486 (CSS**)
(Continued)
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Table 1. Continued
Authors Equation Reported R? Reported SEE
Jackson et al 2012 (BMI, 5 Men: 20.8013+0.1610 (age)—0.0022 (age?)—0.2240 (BMI)-0.0334 5.81
levels)?oH (WC)-0.0375 (RHR)+0.2163 (PA1%+0.3447 (PA2%)+0.7877 (PA3%)+1.1961
(PA4)-0.4306 (CSS**)
Women: 14.5493+0.1136 (age)-0.0016 (age?)-0.1500 (BMI)-0.0088 5.29
(WC)-0.0359 (RHR)+0.2091 (PA14+0.2275 (PA24+0.7021 (PA3%)+1.0070
(PA4H-0.3005 (CSS*)
Jackson et al 2012 (%fat, 5 Men: 17.7357+0.1620 (age)-0.0021 (age?)-0.1057 (%fat)-0.0422 5.39
levels)?oH (WC)-0.0363 (RHR)+0.2153 (PA1H)+0.3655 (PA24)+0.8092 (PA3H)+1.1989
(PA4%-0.4378 (CSS™)
Women: 13.4967+0.1200 (age)-0.0017 (age?d-0.0817 (%fat)—0.0140 4.94
(WC)-0.0342 (RHR)+0.2402 (PA%H+0.2735 (PA2%)+0.7432 (PA3H)+1.0346
(PA4%-0.3207 (CSS™)
Jackson et al 2012 (BMI, 2 Men: 21.2870+0.1654 (age)-0.0023 (age?)-0.2318 (BMI)-0.0337 5.92
levels)?0+ (WC)-0.0390 (RHR)+0.6351 (PA%)-0.4263 (CSS*)
Women: (14.7873+0.1159 (age)-0.0017 (age?)—0.1534 (BMI)-0.0088 5.36
(WC)-0.0364 (RHR)+0.5987 (PAS)-0.2994 (CSS*)
Jackson et al 2012 (%fat, 2 Men: 18.1395+0.1662 (age)—0.0022 (age?)—0.1077 (%fat)—0.0431 5.46
levels)?oH (WC)-0.0380 (RHR)+0.6429 (PA%)-0.4339 (CSS™)
Women: 13.7415+0.1223 (age)—0.0018 (age?)—0.0819 (%fat)-0.0141 5.01
(WC)-0.0349 (RHR)+0.6061 (PA%)-0.3188 (CSS**)
Jang et al 2012 (model 2)%¢ 48.392-0.088 (age)+12.335 (sex; men=1, women=0)-0.386 (BMI)-0.621 0.73 3.82
(CSS*)+0.693 (PAS)

%Fat indicates percentage body fat; ACLS, equation based on data from the Aerobics Center Longitudinal Study; ADNFS, equation based on data from the
Allied Dunbar National Fitness Survey; BMI, body mass index; CRF, cardiorespiratory fitness; CSS, current smoking status; NASA, equation based on data from
National Aeronautics and Space Administration/Johnson Space Center; PA, physical activity; PW, predicted weight; RHR, respiratory exchange ratio; VO,

maximal oxygen consumption; WC, waist circumference (cm).

PA with *NASA Physical Activity Scale, TBALL ST (Ball State Adult Fitness Longitudinal Lifestyle Study) PA scale, *Physical Activity Index (5 levels), SNASA
Physical Activity Status Scale, INord-Trendelag Health Study (HUNT) questionnaire, or ®binary (no=0, yes=1); CSS with #8-level code or **binary (no=0, yes=1).

Dyslipidemia, hypertension, and diabetes mellitus were all coded no=0, yes=1.
but was converted to relative VO, for the present study.
#Prediction equation calculates metabolic equivalents but was converted to relative VO

TtPrediction equation calculates absolute VO.

2max

publication has been multiplied by 3.5 to convert to relative VO,

2max*

the BALL ST scale, which captures both lifestyle and
occupational physical activity.3> For the prediction
equations that included measures of self-reported
physical activity, various questionnaires and scales
were used (Table 1). For the equations that did not
use the BALL ST scale, physical activity measures
were converted from the BALL ST scale to the other
scales (Table 3).29324041 \When a participant was
missing data needed within a prediction equation,
no eCRF was calculated for that participant for that
equation.

Direct Assessment of CRF

CRF was measured as VO,,,, determined from a
cardiopulmonary exercise test on a treadmill using
a standardized protocol (ie, Bruce,®® Ball State
University Bruce Ramp,* modified Balke-Ware,3®
and individualized protocols). The treadmill protocol
was selected on the basis of self-reported physical
activity level with the goal of participants achieving
maximal effort within 8 to 12 minutes. Ventilatory
expired gas measurements were collected using
commercially available computerized indirect calo-
rimetry systems, as described previously.®? The

J Am Heart Assoc. 2020;9:e015117. DOI: 10.1161/JAHA.119.015117

for the present study. In addition, the reported SEE from

2max

indirect calorimetry systems were calibrated before
exercise testing, according to the manufacturer’s
instructions. Respiratory data were averaged every
20 or 30 seconds, and VO,,, was determined by
averaging the highest 2 to 3 consecutively meas-
ured oxygen consumption values occurring in the
last 2 minutes of the test. Participants were encour-
aged to exercise to volitional fatigue, and only tests in
which participants achieved a respiratory exchange
ratio of >1.10 were included in the analysis.

Statistical Analysis

Analyses were performed in R version 3.6.1 (R Core
Team, Vienna, Austria). To assess the agreement be-
tween each prediction equation and directly meas-
ured CRF, intraclass correlation coefficient (ICC)
estimates and their 95% Cls were calculated using
the “irr” package in R based on a single-score 1-way
model. Bland-Altman plots were created to visual-
ize the relationship between changes in the differ-
ent prediction equations and directly measured
CRF. The Benjamini-Hochberg procedure was used
to compare changes in eCRF with the changes in
directly measured CRF and was used to compare
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differences between tests for continuous variables.
Briefly, the Benjamini-Hochberg procedure ranks and
compares P values from t-tests comparing directly
measured CRF and eCRF with a critical value with a
false discovery rate of 5%. This procedure accounts
for multiple comparisons and reduces the risk of
false positives.*®> McNemar tests were used to com-
pare the binary risk factors between tests. To allow
for comparisons with previous research, Pearson
product moment correlations and SEE values were
calculated for the relationships between each predic-
tion equation and directly measured CRF.

A change of >5% from the first test was used to
classify participants as having increased (>5%), de-
creased (>5%), or no change (0%-4.9% change in
either direction) in CRF.** To compare the agreement
in classifying directional changes when using eCRF
versus directly measured CRF, concordant and dis-
cordant pairs were determined and used to calculate
y coefficients.*® In addition, Cohen’s k coefficients
and their 95% Cls were determined. To examine the
influence of follow-up time on classifications, partici-
pants with a follow-up test within 3 to 8 months were
classified as having a “short” follow-up, whereas those
with >2 years were classified as having a “long” fol-
low-up. x? Tests were then performed for each predic-
tion equation to examine the impact of follow-up time
on the percentage of participants correctly identified
as having increased, decreased, or no change in CRF.
Statistical significance was set at P<0.05, 2 tailed. Data
are presented throughout the article as mean+SD, un-
less otherwise indicated.

RESULTS

Descriptive characteristics of the sample at both tests
are provided in Table 4.4 The sample included 987 par-
ticipants (33% women; baseline age, 43.1+10.4 years)
with an average follow-up of 3.2+5.4 years (range,
3.0 months-38.0 years). Directly measured CRF (ie,
VO,,,..,) increased from test 1 (34.9+9.3 mL:kg~"min~")
to test 2 (36.8+9.7 mL:kg~"-min~") (P<0.05). Table 52024~
8" summarizes eCRF from the different equations for
each test. At the baseline test, the ICC estimates were
significant for 26 of 27 equations, with a range of 0.01
to 0.80 (“poor” to “good” associations based on the
ICC interpretation proposed by Koo and Li#), the R?
values had a range of 0.34 to 0.67, and the SEE values
ranged from 4.1 to 6.1 mLkg~"-min~'. For the second
test, the ICC estimates were significant for all equa-
tions, with a range of 0.11 to 0.81 (“poor” to “good”),
the R? values had a range of 0.31 to 0.71, and the SEE
values ranged from 4.1 to 6.0 mL:kg~"-min~'. eCRF was
statistically different from directly measured CRF for 23
of 27 equations at the baseline test and 26 of the equa-
tions for the second test.
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Table 4. Descriptive Characteristics of the Cohort

Characteristic Test 1 Test 2

Age,y 43.1+10.4 46.3+11.0*
Height, m 1.74+0.09 1.74+£0.09
Weight, kg 80.2+17.4 79.8+16.9
BMI, kg-m? 26.3+4.8 26.2+4.8
Waist circumference, cm 89.0+14.0 88.9+13.6
Body fat, % 28.8+8.3 27.7+8.1*
Obesity, % 24 23
Hypertension, % 22 21
Dyslipidemia, % 46 42*
Diabetes mellitus, % 3 3
Smoker, % 12 9*
Inactive, % 66 36"
Ethnicity, %

Asian or Pacific Islander 0.2 0.2

Black, not of Hispanic origin 0.2 0.2

Hispanic 0 0

White, not of Hispanic origin 99.6 99.6
Resting heart rate, beat-min~' 67.5+11.0 64.4+£10.4*
VO, MLkg™min~! 34.9+9.3 36.8+9.7*
FRIEND CRF percentile 49+26 60+25*
Maximum heart rate, beat-min~' 179.8+13.5 175.7+13.5%
Maximum RER 1.2+0.1 1.2+0.1
Peak RPE 18.3+1.7 18.4+1.8*

Data are given as mean+SD. BMI indicates body mass index; FRIEND
CREF percentile, VO, ., percentile ranking from the Fitness Registry and the
Importance of Exercise National Database*®; RER, respiratory exchange
ratio; RPE, rating of perceived exertion (6-20 Borg scale); and VO
maximal oxygen consumption.

*Significantly different from test 1 (P<0.05).

2max’

Table 6°°2437 summarizes the change in directly
measured CRF and eCRF for each prediction equa-
tion for all follow-up times, whereas Table 7292457
summarizes the change in directly measured CRF and
eCRF for each prediction equation for follow-up times
<8 months and >2 years. For all follow-up times, the
ICC estimates were significant for 26 of 27 equations,
with a range of 0.06 to 0.63 (“poor” to “moderate”), the
R? values ranged from 0.06 to 0.43, and the SEE val-
ues had a range from 0.9 to 5.9 mL:kg~"-min~". For 16 of
the 27 equations, the change in eCRF was significantly
different from the change in directly measured CRF.
Bland-Altman plots for the change in eCRF and change
in directly measured CRF from each equation are pro-
vided in Figure 2,20:24-87

Table 8202437 presents the percentage of
participants correctly and incorrectly identified as
having increased, decreased, or no change to CRF
when using the prediction equations. The median
correctly categorized as having increased CRF was
59% (range, 2%-75%), having decreased CRF was
60% (range, 15%-71%), and having no change in

J Am Heart Assoc. 2020;9:e015117. DOI: 10.1161/JAHA.119.015117
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CRF was 57% (range, 28%-99%). The Cohen’s K
coefficients were all significant, with a range 0.05 to
0.40 ("“none” to “weak” levels of agreement based
on the interpretations proposed by McHugh?®).
A significant interaction was observed between
follow-up time and the percentage of participants
correctly classified by change in CRF (P<0.001). The
percentage of participants correctly classified when
the follow-up time was <8 months is presented in
Table 9.2924-87 The median correctly categorized as
having increased CRF was 68% (range, 1%—-86%),
having decreased CRF was 7% (range, 0%—-40%),
and having no change in CRF was 65% (range, 26%-—
100%). Table 10%°24-37 presents the percentage of
participants correctly classified when the follow-up
time was >2 years. The median correctly categorized
as having increased CRF was 34% (range, 3%-50%),
having decreased CRF was 74% (range, 22%-92%),
and having no change in CRF was 39% (range, 27%-—
95%). The y coefficients for most of the prediction
equations were significant for the different follow-up
times and are summarized in Table 11.2924-37 When
examining all follow-up times, the median y coefficient
was 0.702, indicating a “strong” association,*® with a
range of 0.005 to 0.801 (none to “strong” association).

DISCUSSION

Comparable to other established vital signs, rou-
tine assessment of CRF can improve mortality risk
predictions.”* ¥ As a result, an American Heart
Association Scientific Statement suggests that clini-
cians regularly assess CRF alongside other risk fac-
tors by minimally determining a patient’s eCRF using
nonexercise prediction equations.* To explore the
value of routinely measuring eCRF within the same
individual, the present study compared the ability
of 27 different nonexercise prediction equations to
accurately assess CRF over time. Similar to previ-
ous research that compared prediction equations
with a single direct measure of CRF'® the R? and
SEE values at both testing time points are compa-
rable to those reported in the original publications
(Table 1). In the analysis, the median ICC value for
test 1 was 0.70 (range, 0.01-0.80) and for test 2 was
0.73 (range, 0.11-0.81), indicating many of the equa-
tions had at least “moderate” accuracy for assessing
CRF. When examining changes over time, however,
the ICC values were generally lower (median, 0.54;
range, 0.06-0.63). When assessing changes to CRF,
although the median was still within the range of
“moderate” accuracy,*” no equation had “good” ac-
curacy (ICC >0.75). Furthermore, of the 27 equations
examined, 16 determined changes in eCRF values
that were significantly different from the change in
directly measured CRF.
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Table 6. Changes in Directly Measured CRF and eCRF Between the First and Second Cardiopulmonary Exercise Tests for

All Follow-Up Times

Variable n Mean+SD R? SEE ICC (95% CI)

Directly measured CRF 1.8+6.4

No PA measure
Riddle et al 1980%* 987 -1.3+3.8* 0.35" 3.0 0.40 (0.35-0.45)t
Wasserman et al 1994% 987 -1.1+3.1* 0.37t 2.5 0.36 (0.31-0.42)"
Jang et al 2012 (model 1)%8 676 -0.2+1.1% 0.27" 0.9 0.13 (0.06-0.21)f
Baynard et al 2016 (BMI)*” 987 -1.0£3.1* 0.341 2.6 0.35 (0.30-0.41)t
Baynard et al 2016 (WC)2’ 770 ~0.7+3.5* 0.36 2.8 0.43 (0.37-0.48)"
Myers et al 20178 987 —1.1+3.1* 0.38" 2.4 0.37 (0.31-0.42)"
de Souza et al 2018%° 987 -1.1+3.3* 0.36" 2.7 0.38 (0.33-0.43)"

Includes measure of PA
Jackson et al 1990 (BMI)*® 723 2.0x7.2 0.381 5.9 0.57 (0.52-0.61)
Jackson et al 1990 (%fat)*° 390 2.3+6.9" 0.33" 5.7 0.56 (0.49-0.63)"
Heil et al 1995° 390 2.2+6.0* 0.33" 4.9 0.56 (0.49-0.63)"
Whaley et al 1995 (BMI)% 801 1.4+6.1 0.301 5.1 0.54 (0.49-0.59)
Whaley et al 1995 (%fat)*? 436 1.6+6.1 0.30" 51 0.55 (0.48-0.61)"
Matthews et al 19993 723 1.4+5.8 0.37" 4.6 0.60 (0.55-0.65)"
Jurca et al 2005 (ACLS)* 715 1.745.7 0.37t 45 0.61 (0.56-0.65)"
Jurca et al 2005 (ADNFS)%* 715 -0.1+4.2* 0.41 3.2 0.54 (0.49-0.59)t
Jurca et al 2005 (NASA)** 715 1.1+5.27 0.40" 4.0 0.62 (0.57-0.66)"
Wier et al 2006 (BMI)®® 723 1.6+6.4 0.35" 5.2 0.59 (0.54-0.63)"
Wier et al 2006 (%fat)®® 390 1.9+6.3 0.341 5.2 0.58 (0.51-0.64)
Wier et al 2006 (WC)%® 586 1.8+6.0 0.35" 4.8 0.59 (0.54-0.64)
Nes et al 20116 585 1.0+4.8* 0.43" 3.6 0.63 (0.58-0.68)"
Céceres et al 2012 (9 levels)®” 524 -1.8+3.7* 0.09" 3.6 0.14 (0.06-0.23)"
Céceres et al 2012 (5 levels)®” 525 -2.243.2* 0.061 3.1 0.06 (-0.03 to 0.14)
Jackson et al 2012 (BMI, 5-level PA)?° 459 0.6+3.6* 0.43" 2.7 0.56 (0.50-0.62)"
Jackson et al 2012 (%fat, 5-level PA)?° 297 0.7+3.6 0.371 2.8 0.54 (0.45-0.62)"
Jackson et al 2012 (BMI, 2-level PA)*® 459 0.5+3.6* 0.42f 2.8 0.56 (0.49-0.62)"
Jackson et al 2012 (%fat, 2-level PA)?® 297 0.6+3.6 0.37t 2.9 0.54 (0.45-0.62)"
Jang et al 2012 (model 2)% 547 11£2.9 0.32 2.4 0.43 (0.36-0.50)"

%Fat indicates percentage body fat; ACLS, equation based on data from the Aerobics Center Longitudinal Study; ADNFS, equation based on data from
the Allied Dunbar National Fitness Survey; BMI, body mass index; CRF, cardiorespiratory fitness; eCRF, estimated CRF; ICC, intraclass correlation coefficient;
NASA, equation based on data from National Aeronautics and Space Administration/Johnson Space Center; PA, physical activity; and WC, waist circumference.

*Significantly different from directly measured CRF.
fSignificant correlation/association with directly measured CRF.

The difference in the mean change values be-
tween eCRF and directly measured CRF for many
of the equations was <1.0 mLkg~"-min~', suggesting
they can reasonably identify changes to group means.
However, the principle reason for designating CRF
as a clinical vital sign is that it can improve risk strat-
ification for individual patients, particularly those with
low CRF.4 As such, the main determinant of whether
eCRF has clinical utility should be the ability to ac-
curately assess changes to an individual’s CRF, not
the ability to accurately determine group means. To
better understand the ability of prediction equations
to detect longitudinal changes within individuals, the
analysis included classifying participants on the basis

J Am Heart Assoc. 2020;9:e015117. DOI: 10.1161/JAHA.119.015117

of directional changes to CRF. The Cohen’s Kk coeffi-
cients between directly measured CRF and eCRF for
classifying directional changes ranged from “none” to
“weak,™® and the median percentage of participants
correctly classified when using eCRF was only 56%
(range, 39%-61%). Differences between equations
existed on their ability to correctly identify directional
changes, although no equation correctly classified
>61% of participants. Furthermore, the time between
tests significantly influenced the correct classification
of participants. The median percentage of individuals
correctly classified as having a directional increase in
CRF was greater when the time between tests was
<8 months (68%) compared with >2 years (34%). In
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Longitudinal Accuracy of Prediction Equations
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Figure 2. Bland-Altman plots for the changes in cardiorespiratory fitness between the first and second cardiopulmonary

exercise tests for each equation.

%Fat indicates percentage body fat; ACLS, equation based on data from the Aerobics Center Longitudinal Study; ADNFS, equation
based on data from the Allied Dunbar National Fitness Survey; BMI, body mass index; CRF, cardiorespiratory fitness; eCRF, estimated
CRF; NASA, equation based on data from National Aeronautics and Space Administration/Johnson Space Center; PA, physical

activity; and WC, waist circumference.

contrast, the percentage correctly classified as hav-
ing a directional decrease in CRF was lower with tests
<8 months apart (7%) compared with >2 years (74%).
These errors associated with classifying directional
changes, along with recent research that found in-
accuracies when using eCRF to classify individuals
into fitness tertiles,'® show that nonexercise prediction
equations are unable to accurately stratify patients ac-
cording to risk and therefore eCRF may not be appro-
priate to include as a clinical vital sign.

Several factors influence the ability to detect direc-
tional changes in CRF. For example, the percentage of
participants correctly classified as having an increase
in CRF was higher for equations that included physical
activity as a variable (median of 62% correct) compared
with equations that did not include physical activity
(median of 15% correct). This finding is not surprising
given that physical activity is the major modifiable con-
tributor to changes in CRF.* Of note, the equations that
included physical activity also had a greater percent-
age of individuals misclassified as having a directional
increase in CRF. Many of the individuals in the cohort
were initially tested before starting a physical fitness
program, meaning physical activity levels were typically
higher at the time of the subsequent test. Nonetheless,
directly measured CRF did not increase for all partici-
pants. The misclassification of these participants when
using eCRF is concerning given that individuals who
do not have an increase in CRF, despite increasing
physical activity, are still at a greater risk for early mor-
tality.’® Thus, the limited ability of prediction equations
to correctly identify these individuals who did not expe-
rience an increase in CRF suggests a reduced clinical
utility for nonexercise prediction equations.

J Am Heart Assoc. 2020;9:e015117. DOI: 10.1161/JAHA.119.015117

The limitations associated with current prediction
equations are unlikely to be overcome with future itera-
tions. A source of error in many of the current prediction
equations is the use of self-report scales as opposed
to objective measures to determine variables such as
physical activity. Including objective measures within a
prediction equation may still result in significant error,
however, as the relationship between variables such
as physical activity and CRF is not universal and in-
dividuals can respond differently to the same training
stimulus.®° This inability to account for individual vari-
ability also impacts other common equation variables.
Current prediction equations assume a lower CRF for
older individuals on the basis of the well-known inverse
relationship between CRF and age.® However, par-
ticipation in a physical fithess program can improve
CRF despite increasing age. Although many prediction
equations include other variables to account for this
error, the individual variability surrounding each vari-
able will still lead to inaccuracies and limit the clinical
utility of nonexercise prediction equations.

The strengths of the present study are that 27 dis-
tinct prediction equations were compared over time
within a single cohort, which included a diverse range of
ages, fitness levels, and time between tests. However,
there were limitations. Many of the individuals in the
cohort were initially tested before starting a physical
fitness program. Accordingly, physical activity levels
were generally increased for the second test but may
not reflect typical free-living changes. The study also
compared only prediction equations developed from
treadmill testing, yet cycling is another common mode
of exercise that often results in a different CRF value.®®
Future research should compare prediction equations
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Table 11. y Coefficients From the Analysis Comparing
CRF Directional Change Classifications When Using eCRF
Versus Directly Measured CRF at <8 Months, >2 Years, and
All Follow-Up Time Points

All
Follow-Up
Variable <8 mo 22y Times
No PA measure
Riddle et al 1980% 0.476* 0.641* 0.726*
Wasserman et al 19942 0.505* 0.611* 0.755*
Jang et al 2012 (model 1)?6 -0.200 | 0.802* 0.801*
Baynard et al 2016 (BMI)?’ 0.479* 0.658* 0.745*
Baynard et al 2016 (WC)*" 0.479* 0.623* 0.710*
Myers et al 201728 0.611* 0.626* 0.770*
de Souza et al 2018%° 0.493 * 0.630 * 0.731*
Includes measure of PA
Jackson et al 1990 (BMI)*° 0.659* 0.530* 0.656*
Jackson et al 1990 (%fat)*° 0.720* 0.560" 0.695*
Heil et al 1995°%' 0.750* 0.562* 0.696*
Whaley et al 1995 (BMI)?? 0.505* 0.571* 0.622*
Whaley et al 1995 (%fat)®? 0.470* 0.515* 0.636*
Matthews et al 1999%% 0.728* 0.629* 0.713*
Jurca et al 2005 (ACLS)** 0.611* 0.591* 0.668*
Jurca et al 2005 (ADNFS)3* 0.612* 0.666" 0.727*
Jurca et al 2005 (NASA)** 0.675* 0.617* 0.693*
Wier et al 2006 (BMI)*® 0.704* 0.567* 0.685*
Wier et al 2006 (%fat)® 0.741* 0.516* 0.688*
Wier et al 2006 (WC)*® 0.614* 0.570* 0.662*
Nes et al 2011%¢ 0.616" 0.608* 0.702*
Caceres et al 2012 (9 levels)®” | -0.237 0.391* 0176
Caceres et al 2012 (5 levels)®” | -0.532* 0.352 0.005
Jackson et al 2012 (BMI, 0.670* 0.649* 0.745*
5-level PA)%
Jackson et al 2012 (%fat, 0.673* 0.631* 0.725*
5-level PA)2°
Jackson et al 2012 (BMI, 0.617* 0.665* 0.723*
2-level PA)?°
Jackson et al 2012 (%fat, 0.564* 0.630* 0.701*
2-level PA)2°
Jang et al 2012 (model 2)° 0.791* 0.606* 0.731*

%Fat indicates percentage body fat; ACLS, equation based on data from
the Aerobics Center Longitudinal Study; ADNFS, equation based on data
from the Allied Dunbar National Fitness Survey; BMI, body mass index; CRF,
cardiorespiratory fitness; eCRF, estimated CRF; NASA, equation based on
data from National Aeronautics and Space Administration/Johnson Space
Center; PA, physical activity; and WC, waist circumference.

*Significant association between eCRF and directly measured CRF.

using cycling. Also, data from some of the participants
in the present cohort were part of the data sets used to
create 6 of the prediction equations.?’ %32 In addition,
the conversion of physical activity scales and conver-
sion from metabolic equivalents during analysis may
have increased the error associated with certain equa-
tions. However, in the present study, the correlations
to directly measured CRF at each test time point were
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similar to many of those reported in the original publica-
tions. Furthermore, different results were not observed
with the Whaley et al equations,®* which used the orig-
inal physical activity coding (54% of participants cor-
rectly categorized by directional change in CRF).

In conclusion, changes to eCRF, as determined
using nonexercise prediction equations, were signifi-
cantly associated with changes in directly measured
CRF. However, changes in eCRF values from most of
the prediction equations were significantly different from
the changes in directly measured CRF. Furthermore, all
of the prediction equations had a low degree of ac-
curacy when identifying even the directional change of
CREF. These findings highlight the errors associated with
nonexercise prediction equations, especially related to
monitoring longitudinal changes, and suggest limited
prognostic utility of eCRF within a clinical setting.

ARTICLE INFORMATION
Received October 31, 2019; accepted April 24, 2020.

Affiliations

From the Fisher Institute of Health and Well-Being (J.E.P., L.A.K)), Clinical
Exercise Physiology Laboratory (M.P.H., B.S.F.), College of Health (M.H.W.),
and Department of Educational Psychology (W.H.F.), Ball State University,
Muncie, IN; Health and Human Performance Department, George Fox
University, Newberg, OR (M.T.1); Division of Cardiology, Veterans Affairs Palo
Alto Healthcare System and Stanford University, Palo Alto, CA (J.M.); and
Department of Physical Therapy, College of Applied Science, University of
lllinois at Chicago, Chicago, IL (R.A.).

Acknowledgments

The authors would like to acknowledge the work of Dr Leroy “Bud”
Getchell, who established the Adult Physical Fitness Program at Ball
State University and began the data collection for the BALL ST (Ball State
Adult Fitness Longitudinal Lifestyle Study) cohort. In addition, the authors
thank Dr Lynn Witty for her assistance in providing clinical insights on data
interpretation.

Sources of Funding

Support for this project was provided, in part, from an American Heart
Association Award AIREA33930023 (Dr Harber, principal investigator).

Disclosures
None.

REFERENCES

1. Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DL, Kaminsky
LA. Cardiorespiratory fithess and mortality in healthy men and women.
J Am Coll Cardiol. 2018;72:2283-2292.

2. Blair SN, Kohl HW I, Paffenbarger RS Jr, Clark DG, Cooper KH,
Gibbons LW. Physical fitness and all-cause mortality: a prospective
study of healthy men and women. JAMA. 1989;262:2395-2401.

3. Laukkanen JA, Lakka TA, Rauramaa R, Kuhanen R, Venalainen JM,
Salonen R, Salonen JT. Cardiovascular fitness as a predictor of mortal-
ity in men. Arch Intern Med. 2001;161:825-831.

4. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, Haskell
WL, Kaminsky LA, Levine BD, Lavie CJ, et al Importance of assess-
ing cardiorespiratory fitness in clinical practice: a case for fithess as
a clinical vital sign: a scientific statement from the American Heart
Association. Circulation. 2016;134:e653-e699.

5. Blair SN. Physical inactivity: the biggest public health problem of the
21st century. BrJ Sports Med. 2009;43:1-2.

21



Peterman et al

20.

21

22,

23.

24,

25.

26.

27.

J Am Heart Assoc. 2020;9:e015117. DOI: 10.1161/JAHA.119.015117

Artero EG, Jackson AS, Sui X, Lee DC, O’Connor DP, Lavie CJ, Church
TS, Blair SN. Longitudinal algorithms to estimate cardiorespiratory fit-
ness: associations with nonfatal cardiovascular disease and disease-
specific mortality. J Am Coll Cardiol. 2014;63:2289-2296.

Nes BM, Vatten LJ, Nauman J, Janszky |, Wisloff U. A simple nonex-
ercise model of cardiorespiratory fitness predicts long-term mortality.
Med Sci Sports Exerc. 2014;46:1159-1165.

Shigdel R, Dalen H, Sui X, Lavie CJ, Wisloff U, Ernstsen L.
Cardiorespiratory fitness and the risk of first acute myocardial infarction:
the HUNT Study. J Am Heart Assoc. 2019;8:e010293. DOI: 10.1161/
JAHA.118.010293.

Wang, ChenS, Zhang J, Zhang Y, Ernstsen L, Lavie CJ, Hooker SP, Chen
Y, Sui X. Nonexercise estimated cardiorespiratory fitness and all-cancer
mortality: the NHANES Il Study. Mayo Clin Proc. 2018;93:848-856.
Wang Y, Chen S, Lavie CJ, Zhang J, Sui X. An overview of non-exercise
estimated cardiorespiratory fitness: estimation equations, cross-
validation and application. J Sci Sport Exerc. 2019;1:38-53.

Bouchard C, Daw EW, Rice T, Perusse L, Gagnon J, Province MA, Leon
AS, Rao DC, Skinner JS, Wilmore JH. Familial resemblance for VO,max
in the sedentary state: the HERITAGE family study. Med Sci Sports
Exerc. 1998;30:252-258.

Sallis JF, Saelens BE. Assessment of physical activity by self-report: status,
limitations, and future directions. Res Q Exerc Sport. 2000;71(suppl 2):1-14.
Peterman JE, Whaley MH, Harber MP, Fleenor BS, Imboden MT, Myers
J, Arena R, Kaminsky LA. Comparison of non-exercise cardiorespira-
tory fitness prediction equations in apparently healthy adults. Eur J Prev
Cardiol. 2019. DOI: 10.1177/2047487319881242. [Epub ahead of print].
Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DL, Fleenor
BS, Kaminsky LA. The association between the change in directly
measured cardiorespiratory fitness across time and mortality risk. Prog
Cardiovasc Dis. 2019;62:157-162.

Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DA, Fleenor BS,
Kaminsky LA. The influence of change in cardiorespiratory fitness with
short-term exercise training on mortality risk from the Ball State Adult
Fitness Longitudinal Lifestyle Study. Mayo Clin Proc. 2019;94:1406-1414.
Kokkinos P, Myers J, Faselis C, Panagiotakos DB, Doumas M, Pittaras
A, Manolis A, Kokkinos JP, Karasik P, Greenberg M, et al Exercise ca-
pacity and mortality in older men. Circulation. 2010;122:790-797.
Laukkanen JA, Zaccardi F, Khan H, Kurl S, Jae SY, Rauramaa R. Long-
term change in cardiorespiratory fithess and all-cause mortality: a
population-based follow-up study. Mayo Clin Proc. 2016;91:1183-1188.
Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, Stanford FC,
Kohl HW IIl, Blair SN. Long-term effects of changes in cardiorespiratory
fitness and body mass index on all-cause and cardiovascular disease
mortality in men: the Aerobics Center Longitudinal Study. Circulation.
2011;124:2483-2490.

Zhang P, Sui X, Hand GA, Hebert JR, Blair SN. Association of changes
in fitness and body composition with cancer mortality in men. Med Sci
Sports Exerc. 2014;46:1366-1374.

Jackson AS, Sui X, O’Connor DP, Church TS, Lee DC, Artero EG, Blair
SN. Longitudinal cardiorespiratory fitness algorithms for clinical set-
tings. Am J Prev Med. 2012;43:512-519.

Paap D, Takken T. Reference values for cardiopulmonary exercise test-
ing in healthy adults: a systematic review. Expert Rev Cardiovasc Ther.
2014;12:1439-14583.

Maranhdo Neto GdA, Lourenco PMC, Farinatti PdTV. Equacgdes de
predicdo da aptidao cardiorrespiratoria sem testes de exercicio e sua
aplicabilidade em estudos epidemiolégicos: uma revisdo sistematica.
Cad Saude Publica. 2004;20:48-56.

Maranhao Neto GA, Farinatti PTV. Non-exercise models for prediction of
aerobic fitness and applicability on epidemiological studies: descriptive re-
view and analysis of the studies. Rev Bras Med Esporte. 2003;9:304-314.
Riddle W, Younes M, Remmers J, deGroot W. Graphical analysis of
patient performance in the pulmonary function laboratory. Proc Annu
Symp Comput Appl Med Care. 1980;1:283-290.

Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. Principles of
Exercise Testing and Interpretation. 2nd ed. Malvern, PA: Lea & Febiger;
1994.

Jang T-W, Park S-G, Kim H-R, Kim J-M, Hong Y-S, Kim B-G. Estimation
of maximal oxygen uptake without exercise testing in Korean healthy
adult workers. Tohoku J Exp Med. 2012;227:313-319.

Baynard T, Arena RA, Myers J, Kaminsky LA. The role of body habitus
in predicting cardiorespiratory fitness: the FRIEND registry. Int J Sports
Med. 2016;37:863-869.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41,

42,

43.

44,

45.

46.

47.

48.

49.

50.

Longitudinal Accuracy of Prediction Equations

Myers J, Kaminsky LA, Lima R, Christle JW, Ashley E, Arena R. A ref-
erence equation for normal standards for VO, max: analysis from the
Fitness Registry and the Importance of Exercise National Database
(FRIEND Registry). Prog Cardiovasc Dis. 2017;60:21-29.

de Souza ESCG, Kaminsky LA, Arena R, Christle JW, Araujo CGS,
Lima RM, Ashley EA, Myers J. A reference equation for maximal aerobic
power for treadmill and cycle ergometer exercise testing: analysis from
the FRIEND registry. Eur J Prev Cardiol. 2018;25:742-750.

Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE.
Prediction of functional aerobic capacity without exercise testing. Med
Sci Sports Exerc. 1990;22:863-870.

Heil DP, Freedson PS, Ahlquist LE, Price J, Rippe JM. Nonexercise
regression models to estimate peak oxygen consumption. Med Sci
Sports Exerc. 1995;27:599-606.

Whaley MH, Kaminsky LA, Dwyer GB, Getchell LH. Failure of predicted
VO,peak to discriminate physical fitness in epidemiological studies.
Med Sci Sports Exerc. 1995;27:85-91.

Matthews CE, Heil DP, Freedson PS, Pastides H. Classification of car-
diorespiratory fitness without exercise testing. Med Sci Sports Exerc.
1999;31:486-493.

Jurca R, Jackson AS, LaMonte MJ, Morrow JR Jr, Blair SN, Wareham
NJ, Haskell WL, van Mechelen W, Church TS, Jakicic JM, et al Assessing
cardiorespiratory fitness without performing exercise testing. Am J Prev
Med. 2005;29:185-193.

Wier LT, Jackson AS, Ayers GW, Arenare B. Nonexercise models for
estimating VO,max with waist girth, percent fat, or BMI. Med Sci Sports
Exerc. 2006;38:555-561.

Nes BM, Janszky |, Vatten LJ, Nilsen Tl, Aspenes ST, Wisloff U.
Estimating V.O 2peak from a nonexercise prediction model: the HUNT
Study, Norway. Med Sci Sports Exerc. 2011;43:2024-2030.

Céceres JM, Ulbrich AZ, Panigas TF, Benetti M. Equacdes de predigao
da aptidao cardiorrespiratéria de adultos sem teste de exercicios fisi-
cos. Rev Bras Cineantropom Desempenho Hum. 2012;14:287-295.
Riebe D, Ehrman JK, Liguori G, Magal M. ACSM'’s Guidelines for
Exercise Testing and Prescription. 10th ed. Philadelphia, PA: Wolters
Kluwer; 2018.

Siri WE. Body Composition From Fluid Spaces and Density: Analysis
of Methods in Technologies for Measuring Body Composition.
Washington, DC: National Academy of Science, National Research
Council; 1961.

Ross RM, Jackson AS. Exercise Concepts, Calculations, and Computer
Applications. Carmel, IN: Benchmark Press; 1990.

Wier LT, Ayers GW, Jackson AS, Rossum AC, Poston WS, Foreyt
JP. Determining the amount of physical activity needed for long-term
weight control. Int J Obes Relat Metab Disord. 2001;25:613-621.
Kaminsky LA, Whaley MH. Evaluation of a new standardized ramp
protocol: the BSU/Bruce Ramp protocol. J Cardiopulm Rehabil.
1998;18:438-444.

Benjamini Y, Hochberg Y. Controlling the false discovery rate—a prac-
tical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological). 1995;57:289-300.
Pandey A, Swift DL, McGuire DK, Ayers CR, Neeland IJ, Blair SN,
Johannsen N, Earnest CP, Berry JD, Church TS. Metabolic effects of
exercise training among fitness-nonresponsive patients with type 2 dia-
betes: the HART-D Study. Diabetes Care. 2015;38:1494-1501.

Agresti A. Categorical Data Analysis. 3rd ed. Hoboken, NJ: John Wiley
& Sons Inc; 2013.

Kaminsky LA, Arena R, Myers J. Reference standards for cardiorespira-
tory fitness measured with cardiopulmonary exercise testing: data from
the Fitness Registry and the Importance of Exercise National Database.
Mayo Clin Proc. 2015;90:15615-1523.

Koo TK, Li MY. A guideline of selecting and reporting intraclass correla-
tion coefficients for reliability research. J Chiropr Med. 2016;15:155-163.
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med
(Zagreb). 2012;22:276-282.

Cohen J. Statistical Power Analysis for the Behavioral Sciences. New
York, NY: Routledge Academic; 1988.

Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ,
Lee IM, Nieman DC, Swain DP; American College of Sports Medicine.
American College of Sports Medicine position stand: quantity and
quality of exercise for developing and maintaining cardiorespira-
tory, musculoskeletal, and neuromotor fitness in apparently healthy
adults: guidance for prescribing exercise. Med Sci Sports Exerc.
2011;43:1334-1359.

22


https://doi.org/10.1161/JAHA.118.010293
https://doi.org/10.1161/JAHA.118.010293
https://doi.org/10.1177/2047487319881242

