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Abstract

Memory is a dynamic process that is continuously regulated by both synaptic and intrinsic neural 

mechanisms. While numerous studies have shown that synaptic plasticity is important in various 

types and phases of learning and memory, neuronal intrinsic excitability has received relatively 

less attention, especially regarding the dynamic nature of memory. In this review, we present 

evidence demonstrating the importance of intrinsic excitability in memory allocation, 

consolidation, and updating. We also consider the intricate interaction between intrinsic 

excitability and synaptic plasticity in shaping memory, supporting both memory stability and 

flexibility.
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Introduction

The question of how memories are formed and stored has intrigued and inspired 

neuroscientists for more than a century. Diverse theories have been proposed to describe the 

fundamental mechanisms underlying learning and memory at the molecular, cellular, and 

network levels. Following the Hebbian hypothesis (Hebb, 1949), numerous studies over 
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several decades of research have shown that memory storage involves the induction of 

synaptic plasticity, defined as an activity-dependent modification of the strength of synaptic 

connections (Levy and Steward, 1979; Bliss and Collingridge, 1993, 2013; Citri and 

Malenka, 2008; Mayford et al., 2012; Takeuchi et al., 2014). Immediately after learning, 

newly formed memories are stabilized through the induction of synaptic plasticity, which 

typically takes the form of long-term potentiation or depression (LTP or LTD) (Bliss and 

Lømo, 1973; Ito and Kano, 1982). The mechanisms that govern synaptic plasticity have 

been the subject of extensive investigation. Here, we will focus on another critical, yet much 

less understood mechanism underlying learning and memory: the modulation of neuronal 

intrinsic excitability (Disterhoft et al., 1986; Coulter et al., 1989; Thompson et al., 1996; 

Daoudal and Debanne, 2003; Zhang and Linden, 2003; Disterhoft and Oh, 2006a, 2007; Kuo 

et al., 2008; Oh et al., 2010, 2016; Sehgal et al., 2013; Oh and Disterhoft, 2015). Neuronal 

intrinsic excitability is a neuron’s tendency to generate action potentials (APs) upon synaptic 

integration and is dictated primarily by the distribution and function of voltage-gated ion 

channels (see Box 1).

Specifically, we will highlight several ways in which intrinsic excitability plays a 

fundamental role in memory formation and memory updating. First, intrinsic excitability 

regulates the allocation of memory to a specific ensemble of neurons. Next, learning-

induced increases in intrinsic excitability likely promote memory consolidation by 

facilitating the induction of long-term synaptic plasticity. Finally, intrinsic excitability 

supports the dynamic processes of memory updating, contributing to memory flexibility. In 

this review, we will examine the current literature supporting a role for neuronal intrinsic 

excitability across these different phases in the evolution of memories and propose future 

studies that can advance our understanding of the role of intrinsic excitability in the dynamic 

processes underlying learning and memory.

Intrinsic excitability and memory allocation

In the early twentieth century, Richard Semon introduced the term “engram” to describe the 

physical manifestation of memory, defined as “the enduring though primarily latent 

modification in the irritable substance produced by a stimulus” (Semon, 1921). The 

biological basis for the engram was elusive, however, as Karl Lashley was unable to find a 

specific engram within the cortex (Lashley, 1933, 1935). In recent years, new technologies 

for identifying and controlling cellular activity have enabled us to deepen our understanding 

of the possible physical “trace” of memory (Josselyn, 2010; Sakaguchi and Hayashi, 2012; 

Josselyn et al., 2015, 2017; Tonegawa et al., 2015b, 2015a; Eichenbaum, 2016; Poo et al., 

2016). Several studies have shown that memories are initially encoded in a sparse population 

of neurons, or a neural “ensemble” (Guzowski et al., 1999; Reijmers et al., 2007; Han et al., 

2009; Zhou et al., 2009; Liu et al., 2012; Josselyn et al., 2015; Tonegawa et al., 2015a, 

2015b). Artificially reactivating the neural ensemble originally activated during memory 

encoding leads to memory retrieval (Garner et al., 2012; Liu et al., 2012; Ramirez et al., 

2013; Cowansage et al., 2014; Yiu et al., 2014; Ryan et al., 2015; Rogerson et al., 2016; 

Frankland et al., 2019). Furthermore, memory allocation, the process of recruiting neurons 

to form an ensemble representation of the memory, is not random. Rather, neurons with 

elevated excitability have a higher probability of being recruited into a memory ensemble 
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(Silva et al., 2009; Lisman et al., 2018). Here, we review the literature highlighting the role 

of intrinsic excitability in regulating memory allocation.

Initial insights into how neuronal excitability modulated memory allocation were derived 

from a series of studies on the cAMP responsive element-binding protein (CREB), a 

molecule that plays a key role in the induction of long-term potentiation (LTP) and the 

consolidation of long-term memory (Yin and Tully, 1996; Alberini, 1999, 2009) (see Box 2). 

Recent studies found that CREB function regulates memory allocation. Overexpressing 

wild-type CREB in the amygdala significantly increased the probability of a neuron to be 

activated during memory encoding and recruited into the memory ensemble, and the 

expression of dominant negative CREB decreased this probability (Han et al., 2007). 

CREB’s regulatory role in memory allocation has since been repeatedly found in the 

amygdala (Han et al., 2009; Zhou et al., 2009; Yiu et al., 2014; Rogerson et al., 2016), the 

insular cortex (Sano et al., 2014), and the hippocampus (Park et al., 2016). It was postulated 

that CREB increased memory allocation through increasing neuronal excitability. Neurons 

with enhanced CREB gene expression exhibited increased excitability while those with 

suppressed CREB expression had decreased excitability (Dong et al., 2006; Viosca et al., 

2009; Zhou et al., 2009).

A critical study tested the direct link between intrinsic excitability and memory allocation by 

manipulating two AHP-related K+ channels to directly increase and decrease excitability 

(Yiu et al., 2014). Memory allocation was biased toward neurons with increased intrinsic 

excitability and away from neurons with decreased intrinsic excitability. Another study used 

a step function opsin to induce a prolonged depolarization in a subset of amygdala neurons, 

mimicking a more depolarized resting membrane potential of the hyperexcitable neurons 

(Rogerson et al., 2016). Fear memory ensembles were biased into the opsin-expressing, 

depolarized neurons. Beyond experimental findings, theoretical modeling has also supported 

the potential for excitability to dictate memory allocation. Biophysical modeling of 1000 

lateral amygdala cells predicted that principal neurons with higher intrinsic excitability prior 

to network training on an auditory fear conditioning task were more likely to become 

“plastic” cells after training (increased response to the conditioned stimulus) compared to 

cells with lower excitability (Kim et al., 2013). The results of these various studies point to a 

direct role for neuronal excitability in guiding memory allocation.

Studies describing how place cells emerge have provided converging evidence for the role of 

intrinsic excitability in memory allocation. A landmark study found that in the hippocampus 

a specific subset of cells, now known as place cells, fired when the animal was in a particular 

location (O’Keefe and Dostrovsky, 1971), contrary to “silent cells”, which rarely fired 

during awake, active behavior (Thompson and Best, 1989). With the advantage of 

intracellular recording techniques in freely-behaving animals (Lee et al., 2006, 2009), more 

recent studies started to answer the question of how excitability plays a role in shaping place 

or silent cells. Place cells exhibited increased excitability compared to silent cells, with 

lower spiking thresholds and higher burst rates, even before an animal was first introduced to 

an environment (Epsztein et al., 2011). Furthermore, altering the excitability of CA1 

pyramidal cells induced place field formation. Increasing the excitability of previously silent 

CA1 pyramidal neurons by uniformly depolarizing the somatic membrane potential during 
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spatial exploration led to the emergence of spatially-tuned place fields (Lee et al., 2012), and 

current injections at specific spatial locations appeared to drive the formation of spatial 

fields (Bittner et al., 2015; Diamantaki et al., 2018). In vivo intracellular recordings have 

also shown that exploration of novel environments caused increases in measures of intrinsic 

excitability, such as reduced action potential (AP) threshold and increased subthreshold 

membrane voltage “hills” that underlie AP bursts and place fields (Cohen et al., 2017). 

Together, these findings suggest that the formation of place fields not only requires that cells 

receive specific spatial input, but that those cells must also have increased intrinsic 

excitability relative to other cells.

In conclusion, converging evidence has demonstrated that memory allocation is not a 

random process, but is regulated, at least in part, by neuronal intrinsic excitability. Neurons 

with higher excitability are preferentially recruited into an ensemble, and direct 

manipulations of excitability are sufficient to drive the ensemble formation (Lee et al., 2012; 

Yiu et al., 2014; Bittner et al., 2015; Rogerson et al., 2016; Diamantaki et al., 2018).

Intrinsic excitability and memory consolidation

After memory allocation, a series of processes follows to stabilize the newly acquired 

information and transform it into long-term memory. These processes are commonly 

referred to as memory consolidation, which occurs at the synaptic and systems levels on 

different time scales (Dudai, 1996, 2004; McGaugh, 2000; Kandel et al., 2014; Dudai et al., 

2015). Synaptic consolidation is assumed to last minutes to hours after encoding within the 

local circuit and synapses. Systems consolidation, on the other hand, is considered to take 

days to months or even longer and involves the distribution of the memory representations 

across different brain regions. The two levels of consolidation are closely related, since 

systems consolidation is assumed to involve waves of synaptic consolidation in interacting 

brain areas (Dudai, 2012). The mechanisms of memory consolidation are generally thought 

to rely on synaptic plasticity—the strengthening or weakening of synaptic connections—

through activation of signaling cascades leading to modulations in gene expression, post-

translational modifications, and protein synthesis (Abel and Lattal, 2001; Kandel, 2001; 

Dudai, 2004; Alberini, 2008; Kandel et al., 2014; Dudai et al., 2015). Synaptic plasticity has 

been seen in different forms, with the most extensively studied have been long-term 

potentiation (LTP) and long-term depression (LTD) in the hippocampus (Citri and Malenka, 

2008).

While the synaptic mechanisms of memory consolidation have been the subject of 

considerable investigation, the role of intrinsic excitability in memory consolidation has 

received much less attention. There is increasing evidence, nonetheless, that intrinsic 

excitability may have a significant role in memory consolidation. First, learning induces a 

transient increase in neuronal intrinsic excitability, with a time window coinciding with that 

of memory consolidation, suggesting a potential role for intrinsic excitability during 

consolidation. Second, post-learning excitability increase is required for successful learning 

and may also serve as a general mechanism promoting learning and memory. Last, intrinsic 

excitability may promote memory consolidation by interacting with LTP, a major form of 

synaptic plasticity supporting memory consolidation.
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After learning, neuronal intrinsic excitability transiently increases, persisting from hours to 

days. This phenomenon was initially discovered in rabbits after a trace eyeblink conditioning 

task (Moyer et al., 1996, 2000; Thompson et al., 1996). Once rabbits successfully learned 

the task, postburst afterhyperpolarization (AHP) (see Box 1 and Fig. 1) was reduced in 

hippocampal pyramidal neurons in CA1 (Moyer et al., 1996, 2000) and CA3 (Thompson et 

al., 1996), indicating increased excitability. Enhanced excitability was observed as early as 1 

hour after learning, maximizing at 1 day, and returning to baseline within 7 days (Moyer et 

al., 1996; Thompson et al., 1996). Enhanced excitability has been observed in rodent 

hippocampal CA1 after learning various tasks, including trace eyeblink conditioning (Kuo et 

al., 2008; Matthews et al., 2009; Oh et al., 2009), trace and contextual fear conditioning 

(Kaczorowski and Disterhoft, 2009; Mckay et al., 2009; Song et al., 2012), Morris water 

maze (Oh et al., 2003), and an olfactory discrimination task (Zelcer et al., 2006). An 

important feature of this increase in learning-induced excitability is its transient nature. With 

induction as early as an hour after learning (perhaps sooner, although this has not been 

measured), the enhancement of intrinsic excitability temporally overlaps with the critical 

period of synaptic consolidation (Dudai, 2004). Further, this increase in excitability persists 

for days after learning (Moyer et al., 1996; Thompson et al., 1996), which may facilitate 

systems consolidation by supporting synaptic plasticity between interacting brain regions.

Since neuronal hyperexcitability and consolidation processes occur within the same time 

window after learning, excitability may play a role during the first hours to days to stabilize 

the memory. Indeed, a number of behavioral observations support this hypothesis. First, the 

transient increase in excitability correlates with successful learning. Neuronal intrinsic 

excitability in animals that failed to learn the trace eyeblink conditioning task (non-learners) 

was comparable to that of control animals and lower than that of successful learners (Moyer 

et al., 1996, 2000; Thompson et al., 1996; Oh et al., 2003; Kaczorowski and Disterhoft, 

2009; Matthews et al., 2009; Song et al., 2012). Further studies of excitability changes with 

aging supported learning-induced excitability as important for memory consolidation. While 

middle-aged and aged animals had either similar or lower baseline excitability compared to 

young animals, it was post-learning excitability that predicted whether aged animals were 

able to consolidate memories properly (Moyer et al., 2000; Tombaugh et al., 2005; 

Kaczorowski and Disterhoft, 2009; Matthews et al., 2009). Animals that recalled the 

memory had higher learning-induced excitability, regardless of whether the subjects were 

young or aged. Second, excitability increases in the hippocampus lasted for a shorter period 

of time than the retention of the memory. While excitability generally returned to baseline 

within 7 days, the retention of the memory for the trace eyeblink conditioning task lasted for 

months (Moyer et al., 1996; Thompson et al., 1996). Therefore, it would appear that 

enhanced excitability is not required to retrieve the memory but is instead involved in the 

initial stabilizing processes after encoding. It is also possible that hyperexcitability in CA1 

facilitates not only synaptic consolidation within the hippocampus, but also systems 

consolidation in associated cortical areas, rendering the memory hippocampus-independent 

at a later time point (Kim et al., 1995). Whether waves of excitability alterations persist in 

interacting brain regions after learning, ranging from hours to days and months, remains 

unclear and will be an exciting area to explore. Taken together, these studies demonstrate 

that excitability increases after learning may be critical in memory consolidation.
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Although a number of studies have shown that the level of intrinsic excitability correlates 

closely with the quality of learning and memory, there has so far been a dearth of research 

investigating how intrinsic excitability directly affects consolidation.

Several studies do, nonetheless, describe how excitability regulates LTP. As discussed, LTP 

is a major form of synaptic plasticity contributing to memory consolidation (Abel and Lattal, 

2001; Kandel, 2001; Dudai, 2004; Citri and Malenka, 2008; Kandel et al., 2014; Dudai et 

al., 2015). These studies suggest a mutual relationship between intrinsic excitability and the 

induction of LTP, which could provide a mechanistic link between learning-induced 

excitability increases and memory consolidation. Intrinsic excitability is determined by the 

distribution and function of voltage-gated ion channels (see Box 1). A sub-class of Ca2+-

activated K+ channels, known as the apamin-sensitive SK channels, are a major determinant 

of intrinsic excitability through regulation of the postburst AHP (Stocker et al., 1999; Sah 

and Faber, 2002; Bond et al., 2004; Stocker, 2004; Disterhoft and Oh, 2006a; Oh et al., 

2010). Inhibiting SK channels reduced the size of postburst AHP (Stocker et al., 1999; 

Kramár et al., 2004), leading to a higher intrinsic excitability, while activation of SK 

channels led to an enlarged AHP and reduced excitability (Pedarzani et al., 2001; McKay et 

al., 2012). Besides mediating intrinsic excitability, SK channels also modulated LTP 

induction. These channels appear to be highly enriched in the postsynaptic density of 

dendritic spines in pyramidal neurons (Faber et al., 2005; Ngo-Anh et al., 2005; Bloodgood 

and Sabatini, 2007; Faber, 2010; Mulholland et al., 2011), where they form a negative 

feedback loop that limits NMDA receptor activation in response to dendritic Ca2+ influx. 

Further, activating SK channels in the hippocampus impaired associative learning (McKay et 

al., 2012), while blocking SK channels in the hippocampus (Behnisch and Reymann, 1998; 

Norris et al., 1998; Stackman et al., 2002; Kramár et al., 2004), amygdala (Faber et al., 

2005, 2008), and cortex (Faber, 2010; Bock and Stuart, 2016; Bock et al., 2019) facilitated 

LTP induction, increased postsynaptic neuronal excitability, and enhanced spatial and non-

spatial memories (Stackman et al., 2002). Therefore, the inhibition of SK channels could 

conceivably serve as a common mechanism both enhancing intrinsic excitability and 

facilitating LTP induction after learning. Learning-induced alterations in ion channels 

directly alter intrinsic excitability and can act as an additional mechanism (besides the 

classical LTP induction cascade) to further promote the strengthening of synapses. 

Moreover, maintaining enhanced excitability for a period of time after learning requires 

protein synthesis and the activation of intracellular signaling pathways, many of which also 

contribute to the induction and maintenance of LTP (see Box 2). Taken together, these 

studies suggest a close relationship between the induction and maintenance of intrinsic and 

synaptic plasticity.

In summary, a transient increase in intrinsic excitability is correlated with successful 

learning and may serve as a neuronal mechanism to promote memory consolidation. 

Moreover, the time course of learning-induced excitability increases occurs within the same 

time as synaptic and early systems consolidation. Given the highly interconnected 

relationship between intrinsic excitability and LTP, a well-established proxy of memory 

consolidation, it is very likely that intrinsic excitability contributes to consolidation 

processes. Within the hippocampal circuits, a transient increase in excitability may facilitate 

LTP induction and the initial synaptic consolidation. Brain wide, waves of excitability 
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alterations in interacting brain regions may enhance the strengthening of cross-regional 

synaptic connections, thus contributing to systems consolidation on a longer time scale as 

well.

Intrinsic excitability and memory updating

In the last few decades, there have been significant advances in our understanding of the 

mechanisms underlying the formation of single memories (Bliss and Collingridge, 1993; 

McGaugh, 2000; Kandel, 2001; Kandel et al., 2014). Memory processing, however, involves 

the integration of multiple memories across time, with single memories affecting how others 

are processed and stored over time (Schlichting et al., 2015, 2017; Cai et al., 2016; Rashid et 

al., 2016; Morton et al., 2017; Richards and Frankland, 2017; Yokose et al., 2017). The 

brain’s ability to organize and integrate different experiences so that it can efficiently ‘file’ 

and ‘cross reference’ information is critical for daily life. Memories need to maintain 

stability and fidelity, yet new information must be flexibly integrated into past memories to 

inform future decision making (Schacter et al., 1998; Routtenberg and Rekart, 2005; Kroes 

and Fernández, 2012; Nadel et al., 2012; Rule et al., 2019). The dynamic nature of memory 

makes it possible to integrate new information during memory updating while reducing the 

influence of outdated knowledge, which is crucial for memory-guided decision making 

(Richards and Frankland, 2017). Although different forms of memory integration and 

updating has been observed in animal and human studies, the exact mechanisms driving 

these phenomena remain largely unclear. Here, we review the literature on neuronal intrinsic 

excitability regulating the dynamic memory updating processes. Specifically, we will focus 

on temporal memory-linking, memory integration during retrieval, and rule and schema 

learning.

Temporal memory-linking—We have reviewed several studies showing that the initial 

allocation of memory, the process of recruiting neurons to form an ensemble representation 

of a memory, is not random. Neurons with higher excitability have an increased probability 

of being recruited into the memory ensemble than neighboring neurons (Han et al., 2007, 

2009; Zhou et al., 2009; Sano et al., 2014; Yiu et al., 2014; Park et al., 2016; Rogerson et al., 

2016). An important evidence for the memory allocation hypothesis is that learning-induced 

excitability increases may be a mechanism to temporally link memories encoded close in 

time (i.e., temporal memory-linking). It has been shown repeatedly in different behavior 

tasks that after learning, neuronal intrinsic excitability increases transiently within hours and 

returns to baseline within days (Moyer et al., 1996; Thompson et al., 1996; Zelcer et al., 

2006). A contextual memory is encoded into a sparse neural ensemble in the hippocampus 

(Guzowski et al., 1999; Garner et al., 2012; Liu et al., 2012; Deng et al., 2013; Mckenzie et 

al., 2014). When a second new environment is introduced a few hours later and the 

excitability of the ensemble neurons from the first memory is still high, the allocation of the 

second memory should be biased into many of the same neurons as the first one (Zhou et al., 

2009; Dragoi and Tonegawa, 2011; Epsztein et al., 2011; Lee et al., 2012; Yiu et al., 2014). 

Indeed, with in vivo calcium imaging, a study showed that the ensemble overlap between 

two memories encoded 5 hours apart was significantly higher than that between two 

memories encoded 7 days apart (Cai et al., 2016). Sharing a neural ensemble between two 

memories had important behavioral consequences; recall of one memory triggered recall of 
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the temporally linked memory (encoded 5 hours apart) (Cai et al., 2016). Similar findings 

have been observed in the lateral amygdala (LA), where two cued fear conditioning sessions 

administered 6 hours apart were more likely to be encoded by an overlapping population of 

neurons than those encoded a day apart (Rashid et al., 2016). These memories were also 

behaviorally linked so that extinguishing one memory also extinguished the other when 

learned hours apart.

In addition to endogenously changing excitability through learning, other studies artificially 

manipulated neuronal excitability to examine how excitability may regulate temporal 

memory-linking. Increasing excitability by virally overexpressing CREB in a sparse 

population of neurons biased the CREB positive neurons to increase their probability of 

allocating two memories encoded 24 hours apart, artificially linking two memories typically 

encoded separately (Rashid et al., 2016). Studies have also used neural activity as a proxy 

for intrinsic excitability and investigated its potential role in temporal memory-linking. 

Optogenetic activation of a sparse neural ensemble in the lateral amygdala during the 

encoding of two temporally separate memories was sufficient to drive the linking of the two 

memories (Rashid et al., 2016). Separate studies with middle-aged mice with decreased 

hippocampal CA1 excitability (Murphy et al., 2006; Disterhoft and Oh, 2007; Kaczorowski 

and Disterhoft, 2009; Oh et al., 2010) showed decreased ensemble overlap for temporally 

close memories leading to a deficit in temporal memory-linking (Cai et al., 2016). 

Chemogenetically boosting CA1 neural activity restored normal temporal memory-linking 

in middle-aged mice by driving temporally close memories into a shared ensemble (Cai et 

al., 2016). These studies suggest that a group of highly active neurons is sufficient to drive 

the linking processes. While all of these manipulations affect neuronal excitability or 

activity, off target effects may contribute to linking. Although CREB increases excitability, it 

also triggers a molecular cascade of events that could mediate linking. Both optogenetic and 

chemogenetic manipulations serve only as a proxy for intrinsic excitability. Therefore, future 

studies directly manipulating excitability-related voltage-gated ion channels are critical to 

dissect how intrinsic excitability links and separates memories across time.

As we have discussed, an important finding in temporal memory-linking studies is that when 

memories were encoded close in time and shared an overlapping neuronal ensemble, the first 

memory enhanced the strength of the second (Cai et al., 2016; Rashid et al., 2016). This 

enhancement effect was also observed in studies artificially driving excitability during 

encoding (Yiu et al., 2014; Yu et al., 2017). A possible explanation for this enhancing effect 

is that the state of transient hyperexcitability of the first memory ensemble drives allocation 

of the second memory into a shared ensemble, and, subsequently, increased excitability of 

the shared neurons further facilitates consolidation of the second memory. The phenomenon 

of temporal memory-linking serves as a demonstration that memories are not formed in 

isolation, but rather that the formation of a memory may be influenced by prior experiences, 

possibly through the modulation of intrinsic excitability.

Memory integration during retrieval—The studies reviewed thus far demonstrate that 

intrinsic excitability appears to play a key role in guiding memory allocation and facilitating 

memory consolidation, leading to the temporal linking of memories. Intrinsic excitability is 

not only transiently increased after the initial encoding of a memory, but also after memory 
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retrieval providing a mechanism by which memories can be updated through the integration 

of new information. A recent study investigated changes in the intrinsic excitability of 

dentate gyrus granule cells after mice recalled a contextual fear memory (Pignatelli et al., 

2019). On Day 1, mice were exposed to a contextual fear conditioning task. On Day 2, mice 

were re-exposed to the conditioned context to elicit memory retrieval. Researchers prepared 

acute brain slices from mice that underwent retrieval and observed that eYFP-tagged cells 

(ensemble cells) exhibited enhanced excitability compared to neighboring non-tagged cells 

(non-ensemble cells), demonstrated by increased input resistance and decreased rheobase. 

Interestingly, optogenetic activation of the ensemble cells while animals were in a novel 

context did not alter their intrinsic excitability, suggesting that the observed heightened 

excitability was specific to retrieval-induced re-activation but not to artificial activation. 

Heightened excitability lasted approximately 1 hour during which the animals’ ability to 

discriminate between the conditioned context and a similar unconditioned context (i.e. 

pattern separation) was enhanced. Also, the retrieval of a neutral contextual memory enabled 

the animals to more rapidly associate the neutral context with a foot shock during an 

immediate shock protocol. To demonstrate that these enhancements were caused by elevated 

excitability, researchers then overexpressed endogenous Kir2.1, which suppresses intrinsic 

excitability. Suppressing the excitability of ensemble cells abolished the enhancement in 

pattern separation and memory integration after retrieval (Pignatelli et al., 2019). Another 

study also showed the effect of memory retrieval on encoding of a subsequent memory, 

without, however, measuring excitability. Recalling a fear memory 6 hours but not 1 day 

before encoding a new memory enhanced the new memory (Rashid et al., 2016). Together, 

these studies show that recalling a memory can both alter the quality of a memory and 

facilitate the integration of new information with the recalled memory. Furthermore, similar 

to learning-induced excitability increases, retrieval-induced excitability increases may also 

enhance the encoding and consolidation of a memory formed following the recall.

When two memories are encoded close in time, they can be behaviorally linked (Cai et al., 

2016; Rashid et al., 2016). Similarly, memories that were initially encoded as separate 

memories can also be linked during memory retrieval. When mice were trained 

independently on two different conditioning tasks with distinct unconditioned stimuli (US 1: 

LiCl injection; US 2: foot shock) and distinct conditioned stimuli (CS1: saccharin solution; 

CS2: tone), repeated co-retrieval with the presence of the conditioned stimuli caused the two 

conditioned responses to be co-represented by a shared neural ensemble which also linked 

them behaviorally: the saccharin solution (CS1) triggered freezing (response to CS2) 

(Yokose et al., 2017). We see here that memories can be linked not only during initial 

memory encoding (Cai et al., 2016; Rashid et al., 2016) but also during retrieval. Transiently 

increased excitability may increase the overlap between two originally independent 

ensembles during repeated co-reactivation.

In conclusion, studies suggest that recall of an existing memory transiently triggers an 

increase in the excitability of ensemble neurons, which then opens up a temporal window 

both for memory enhancement and integration of new information into the existing memory. 

Memory integration during retrieval is a further demonstration of the dynamic nature of 

memory, and retrieval-induced intrinsic excitability increases may play an important role in 

mediating this process.
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Rule and schema learning—We have thus far described how memory encoding and 

retrieval influence the formation of a temporally close memory and the integration of new 

associations into an existing memory. We can think of this process as the use of past 

information or experience to guide the formation of new memories and the update of old 

memories, which is critical for survival. There are, at the same time, other types of learning 

that appear to associate past and new information. In “rule learning” and “schema learning”, 

two separately discovered but closely related behavioral phenomena in rats, a rule or schema 

is created through repeated training. When similar information is subsequently encountered, 

the brain can utilize the established rule or schema to achieve more efficient learning. Here, 

we review studies of rule and schema learning and consider how neuronal intrinsic 

excitability in interacting brain regions may play a role in establishing and maintaining a 

rule or schema after a sufficient amount of training.

Rule learning describes the phenomenon of an abrupt increase in the learning rate of new 

cue-reward associations after animals acquire the first one or two associations in the same 

training paradigm. The behavioral evidence for rule learning came from a series of studies 

on an odor discrimination task during which water-deprived rats learned to distinguish 

between pairs of odors in order to obtain a water reward (Staubli et al., 1987; Saar et al., 

1998, 1999, 2001, 2002; Saar and Barkai, 2003; Quinlan et al., 2004; Zelcer et al., 2006; 

Chandra and Barkai, 2018). In general, rats were presented a multi-arm radial maze in which 

odors were released into two arms, one with a positive odor and a water reward, the other 

with a negative odor and no reward. Rats needed to learn that water reward was associated 

with the positive odor. Twenty trials were conducted per session per day, and the criterion 

for completion of learning on an odor pair was at least 80% positive-cue choices in the last 

10 trials of a training session. Researchers found that learning occurred in two distinct 

phases: a first phase of 7–8 sessions for the animals to learn to discriminate the first pair of 

odors and get the water reward, and a second phase during which animals could learn to 

associate a new odor with water reward within one session after being well trained on the 

first odor pair (Saar et al., 1998, 1999; Saar and Barkai, 2003; Chandra and Barkai, 2018). It 

was proposed that the animals learned the general rule during the first phase (“rule 

learning”), which enhanced their capability for learning new cue-reward associations. 

Notably, the enhancement in learning capability was significant and abrupt immediately 

after the rule learning phase.

Evidence for how excitability may modulate rule learning comes from studies of the 

piriform cortex. It has been shown that in the piriform cortex, which receives direct input 

from the olfactory bulb (Haberly, 1990; Schoenbaum and Eichenbaum, 1995), neuronal 

intrinsic excitability is strongly correlated with rule learning. Electrophysiology studies 

revealed that neuronal intrinsic excitability of piriform cortex pyramidal neurons was 

increased after rule learning, demonstrated by a reduction in both postburst AHP and spike 

accommodation (Saar et al., 1998; Saar and Barkai, 2003, 2009). This state of 

hyperexcitability was sustained as long as training continued, and lasted another 1–3 days 

after training was stopped (Saar et al., 1998). During this time of enhanced excitability, there 

was enhancement in the learning rate in discriminating new odor pairs. If the training was 

suspended for 4 or more days (when excitability had returned to baseline levels), there was 
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no benefit from rule learning and animals behaved as if they had not been trained (Saar et 

al., 1998). This finding suggests that excitability increases in the piriform cortex may be 

important in maintaining the rule and essential for enhancing the animals’ ability to learn 

new associations in the same training paradigm.

A similar yet more complex behavior phenomenon was observed in rats, defined as schema 

learning (Tse et al., 2007). Briefly, rats were trained to dig for flavored food pellets hidden 

in sand wells placed at specific locations in a familiar arena. Before the start of each trial, 

rats were cued with a flavor to orient to and dig into a specific sand well for pellets of the 

same flavor. The rats’ performance was evaluated by the number of incorrect digs before 

going to the correct well during training sessions, and by the time spent digging at the 

correct well during probe tests (rats cued but no reward in the sand well). Performance was 

enhanced incrementally during training across the first 13 sessions. Remarkably, only a 

single training was required for rats to remember a new paired-associate (new food flavor 

and new sand well location) after they mastered the task. Moreover, a hippocampal lesion 

only 24 hours after learning the new pair associations did not disrupt the newly formed 

memory. This was a surprising finding as this type of paired-associate learning is likely to be 

initially mediated in the hippocampus (Bunsey and Elchenbaum, 1996; Wirth et al., 2003; 

Kesner et al., 2005) and later consolidated in the neocortex (Sakai and Miyashita, 1991; 

Miyashita, 2004), and systems consolidation generally requires more than 48 hours to be 

completed (Zola-Morgan and Squire, 1990; Kim and Fanselow, 1992; Anagnostaras et al., 

1999; Bayley et al., 2005). Together, these results indicate that prior learning of an 

associative schema may facilitate faster encoding and systems consolidation when learning 

new associations (Tse et al., 2007).

No studies have directly characterized intrinsic excitability profiles during schema learning 

and how excitability may facilitate systems consolidation and faster learning. However, 

excitability changes in hippocampal CA1 during rule learning may have implications for the 

potential role of excitability in schema learning. The excitability of hippocampal CA1 

pyramidal neurons remained unchanged until it increased 1 day before rats acquired the rule, 

and returned to baseline only 1 day after rule learning, regardless of whether training 

continued (Zelcer et al., 2006). Compared to learning-induced hyperexcitability in the 

piriform cortex, which was sustained as long as training continued and could last another 1–

3 days if training was stopped (Saar et al., 1998; Saar and Barkai, 2003, 2009), the 

hippocampus and piriform cortex may have different roles in rule learning. Hippocampal 

CA1 excitability may drive the local circuit processes essential for learning the initial pairs 

of associations while sending signals to interacting neocortical regions to enhance 

excitability and facilitate the establishment of a rule or schema representation in the cortex. 

Subsequently, the excitability of cortical neurons may increase and further help to stabilize 

ensembles in cortical structures.

It remains largely unknown whether and how excitability fluctuations in different brain 

regions mediate rule or schema learning. We speculate that similar to learning-induced and 

retrieval-induced hyperexcitability promoting memory strength and integration, rule learning 

through repeated trainings may lead to the formation of a stable ensemble representation 

with sustained higher excitability that lasts several days. During this temporal window, 
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additional learning may be facilitated by recruiting overlapping neurons from the 

hyperexcitable ensemble with already established synaptic connectivity. Further, enhanced 

excitability may promote information flow between interacting brain regions and facilitate 

systems consolidation and the establishment of schema representations in the neocortex.

Conclusion and future directions

In this review, we have summarized studies that examine how neuronal intrinsic excitability 

may regulate three fundamental phases of memory: allocation, consolidation, and updating 

(Fig. 2). First, neurons with higher intrinsic excitability are more likely to be recruited into a 

neural ensemble during learning. Second, learning induces an increase in the excitability in 

the ensemble neurons, and this higher excitability might work synergistically with synaptic 

plasticity to facilitate memory consolidation. Third, intrinsic excitability may also contribute 

to multiple memory updating processes, such as temporal memory-linking, memory 

integration during retrieval, and rule and schema learning.

A particularly intriguing characteristic of learning-induced increase in excitability is its 

transient, or dynamic, nature. The time course of excitability after learning can vary across 

distinct behavioral tasks, different brain regions and cell types, and the diverse experimental 

methods used to measure it. In a trace eye-blink conditioning task, the highest excitability in 

rabbit hippocampal CA1 and CA3 pyramidal neurons occurred at 24 hours and persisted for 

up to 5 days, as shown by a reduction in the size of postburst AHP in slice preparations, 

while the reduction in spike accommodation (also indicating higher excitability) lasted as 

long as 3 days after conditioning (Moyer et al., 1996; Thompson et al., 1996; Disterhoft and 

Oh, 2007). In rodent studies using a contextual fear conditioning paradigm, hippocampal 

CA1 neurons had higher excitability in brain slices prepared as long as 2 days after the last 

training session (Mckay et al., 2009; Crestani et al., 2018), while a recall of fear memory 

induced hyperexcitability in dentate granule cells persisted for only 1 hour (Pignatelli et al., 

2019). In vivo electrophysiology recordings and population activity analyses have revealed 

that different hippocampal subregions varied in terms of how quickly neural ensemble 

activity turned over across time (Mankin et al., 2012, 2015; Rangel et al., 2014). Studies 

have shown that CA1 and CA2 population activity patterns changed dramatically with 

increasing temporal distances of encoding, while CA3 representations stayed relatively 

stable across time (Mankin et al., 2012, 2015). Interestingly, the dentate gyrus might recruit 

populations of hyperexcitable new-born granule cells to organize memories across weeks 

(Aimone et al., 2006, 2009; Rangel et al., 2014). Nevertheless, we still lack a comprehensive 

analysis of the time course of excitability change in brain regions involved in learning a 

particular task (e.g. the amygdala-hippocampus-prefrontal cortex circuit in a contextual fear 

conditioning paradigm), which will be critical to further understand the dynamic integration 

and updating of memories, such as temporal memory-linking, and how the brain organizes 

and stores memories over time. A caveat in systematically studying excitability alteration 

patterns is that the tools used to measure excitability may influence the results. Therefore, it 

is important to consider the methods used to examine intrinsic excitability when interpreting 

results.
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Besides serving as a regulator for local ensembles in various brain regions, intrinsic 

excitability potentially also serves as a link between ensembles across brain regions. 

Intracellular and extracellular oscillations may bind information processing across brain 

regions by synchronizing windows of memory allocation and plasticity. For instance, short 

bursts of excitability, such as those driven by intracellular theta oscillations, may mediate 

learning in a similar way to the longer-term fluctuations in excitability discussed above. 

Indeed, the coherence between local oscillations in interactive brain regions enhanced the 

information flow between them (Von Stein and Sarnthein, 2000; Fries, 2005; Akam and 

Kullmann, 2010, 2014; Bosman et al., 2012) and this process might be mediated by 

fluctuations in excitability. Interestingly, in CA1 place cells, intracellular theta increased in 

frequency and power as the animal entered the cell’s place field (Harvey et al., 2009), which 

might amplify the effect of oscillations on memory processes. In addition, cells with a higher 

excitability had stronger intracellular theta both inside and outside of their place fields (Lee 

et al., 2012) indicating that hyperexcitable cells might be more sensitive to global 

oscillations, further enhancing their impact on learning. Finally, beyond place cells, the 

hyperexcitable cells recruited into ensembles across brain regions may engage coherent 

oscillations from interacting regions and facilitate the synchronization of dispersed 

ensembles into systems.

Additional insights into excitability and oscillations come from theoretical studies. 

Computational models have suggested a relationship between intrinsic excitability and 

gamma oscillations (40–100 Hz), where gamma-paced excitation and inhibition selected the 

most highly excited cells in a given network to fire during gamma cycles (De Almeida et al., 

2009a, 2009b). An explicit parameter in this computational model was the AHP, which 

varied across brain regions and even across cells within a region. The magnitude of this AHP 

could influence the oscillatory pattern of spiking of a single cell, and the computational 

implications of this activity might be different patterns of excitation to downstream regions, 

leading to activation of different memory ensembles. Thus, the heterogeneous intrinsic 

excitability of neuronal populations may dictate the identity of neurons active in an 

ensemble during oscillatory network states.

As we have reiterated throughout this review, there is much research yet to be done to 

achieve a deeper, more comprehensive understanding of intrinsic excitability across the 

distinct phases of memory. Currently existing experimental tools have separately provided us 

with an understanding of the dynamics of single-neuron excitability (whole-cell patch 

clamp), synaptic integration within a neuron (dendritic patch clamp, dendritic calcium 

imaging, neurotransmitter release imaging), and population-level activity (IEG expression, 

TetTag, neuronal calcium imaging, in vivo electrophysiology recordings). Although these 

techniques can directly or indirectly measure excitability, they all have limitations. Patch-

clamp recording can provide direct and accurate quantification of intrinsic excitability but is 

relatively low throughput. Techniques based on IEG expression, such as TetTag and 

catFISH, enable visualization of populations of cells, but are done in vitro and can only 

report cell activation that may or may not be a direct result of changes in excitability. 

Calcium imaging can indirectly indicate excitability in a large group of neurons but lacks 

temporal resolution. The advent of large-scale recording techniques that allow simultaneous 

recording of neuronal and dendritic excitability in a population of neurons in vivo would 
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allow scientists to broadly probe intrinsic excitability changes and structural reorganization 

dynamically, and provide us with better insight into the neural mechanisms underlying the 

dynamic processes of memory formation and integration.

While no tool exists that covers the entire breadth of these investigations, promising new 

technologies have already been developed to advance research in intrinsic excitability. 

Genetically encoded voltage indicator (GEVI) imaging offers the unique ability to optically 

record changes in voltage within individual neurons across populations, with a time-scale 

significantly more sensitive than the current standard of optical imaging (e.g. calcium-based 

imaging) (Cao et al., 2013; St-Pierre et al., 2014; Yang et al., 2016; Chamberland et al., 

2017; Adam et al., 2019; Piatkevich et al., 2019; Villette et al., 2019). Moreover, GEVIs 

have the ability to capture both subthreshold and suprathreshold activities and have 

fluorescence modulation across the physiological range of membrane potentials, including 

hyperpolarization. GEVIs are ideal candidates to monitor changes in intrinsic excitability 

parameters, such as postburst AHP and single AP properties, in a large population of 

neurons in awake behaving animals (Adam et al., 2019; Villette et al., 2019), which is 

difficult to achieve with traditional electrophysiological methods. The recent development of 

new generations of GEVIs and corresponding ultra-fast two-photon imaging methods have 

made it possible to further examine alterations in the excitability of subcellular 

compartments in vivo such as dendritic backpropagating APs (Adam et al., 2019; Villette et 

al., 2019). Combined with synaptic level tools, including the tagging and manipulation of 

highly active individual synapses during specified time windows (Hayashi-Takagi et al., 

2015; Gobbo et al., 2017), these novel technologies will enable investigation of how 

synaptic and intrinsic plasticity integrate and interact at a population level and how they 

correlate with animal behavior.

Finally, while numerous models and theories have been proposed to describe the formation 

and transformation of memory in animal research, it will be important to test and validate 

these ideas in the human brain. Recent studies using functional magnetic resonance imaging 

(fMRI) have provided evidence that memory dynamics observed in rodent studies across 

time also existed in the human brain (Schlichting and Frankland, 2017). Hippocampal 

activation patterns evoked by specific encoding events have been shown to be more similar 

for those encoded close in time than those encoded at distant times in human subjects 

(Schapiro et al., 2012), and neural pattern similarity predicted a person’s later subjective 

judgment of the temporal proximity of memories (Ezzyat and Davachi, 2014). Moreover, 

temporal proximity of memory encoding could both increase the efficiency and accuracy of 

inferential judgements and enhance the integration of memories in the human brain 

(Zeithamova and Preston, 2017). Another recent study in humans demonstrated that 

temporally close memories (encoded 3 hours but not 7 days apart) were linked using a fear 

conditioning paradigm (Yetton et al., 2019) comparable to the behavioral paradigm used in 

rodent studies (Cai et al., 2016; Rashid et al., 2016). Another form of memory integration 

observed in animals, memory schemas (a process of incorporating new information into pre-

existing knowledge) (Tse et al., 2007), has also been observed in humans through 

longitudinal studies using fMRI to track the brain regions and activity involved in their 

development (Sommer, 2017).
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While these studies provide evidence of similar processes in humans to those observed in 

animals, recording methods with higher spatial and temporal resolution are needed to 

address a number of important questions, such as how single neuron activity and excitability 

may be involved in memory formation and updating. The invasive nature of currently 

available techniques has restricted the recording of single neuron activity in awake behaving 

humans to a very limited number of circumstances, such as in drug-resistant epileptic 

patients or with the implantation of a deep brain stimulation device for the treatment of 

psychiatric or movement disorders (Rutishauser, 2019). Novel minimally invasive 

techniques that will enable investigations at a higher resolution are needed to achieve a fuller 

understanding of the dynamic processes of memory in the human brain.

Intrinsic excitability is more than simply a byproduct of neural activity. Intrinsic excitability 

involves plasticity from alterations in gene expression, as well as changes in the distribution 

and function of somatic and dendritic ion channels and may consequently exert lasting 

effects on memory from the initial encoding to consolidation. Moreover, its transient nature 

makes intrinsic excitability an ideal cellular property governing the dynamic process of 

integration during memory updating. Intrinsic excitability promotes both the stability and 

flexibility of memories, helping to shape, update, and organize memories accumulated 

across a lifetime.
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Box 1:

Experimental quantification of intrinsic excitability

Experience-dependent alterations in neuronal intrinsic excitability are primarily measured 

using in vitro whole-cell patch-clamp recordings in brain slices, where changes are 

reflected in several electrophysiological parameters outlined in Table 1. Overall, 

excitability is defined as the neuron’s capability to generate APs in response to stimuli 

(such as somatic current injections or synaptic stimulation). While a simple measurement 

of the resting membrane potential could reflect excitability, even neurons with the same 

resting potential could have different excitability. Therefore, studies usually measure 

other key parameters that may affect AP generation while holding the membrane 

potential at a certain level (such as −60 mV or −70 mV).

One important parameter to determine intrinsic excitability is the afterhyperpolarization 

(AHP), which is a hyperpolarized phase after a single or a train of APs where the 

membrane potential is below the neuron’s resting membrane potential. There are three 

types of AHPs (Table 1; Fig. 1): the fast AHP (fAHP) that occurs after each AP and lasts 

2–5 ms, and the medium (mAHP) and slow (sAHP) AHP, which are evoked after a burst 

of APs and last 50–300 ms and 1–2 seconds, respectively. Since postburst AHP is 

generated independent of synaptic transmission, it is considered to be an intrinsic 

neuronal property (Coulter et al., 1989; Power et al., 2002). Both mAHP and sAHP are 

mediated largely by calcium-dependent outward K+ currents. The channels that underlie 

mAHP are generally considered to be a sub-family of Ca2+-dependent K+ channels called 

apamin-sensitive SK channels (Stocker et al., 1999; Bond et al., 2004; Stocker, 2004), 

while those that underlie sAHP are not clearly known (Sah and Faber, 2002; Disterhoft 

and Oh, 2006a; Oh et al., 2010). A reduction in the size of the postburst AHP is 

considered to indicate an increase in intrinsic excitability, and vice versa. Interestingly, 

changes in mAHP and sAHP have been observed after learning and in age-related 

cognitive deficits (Disterhoft and Oh, 2006b, 2006a, 2007; Ohno et al., 2006; Oh et al., 

2016).

In addition to postburst AHP, spike frequency accommodation (referred to as 

accommodation from here forward) is an additional phenotype of AP reflecting intrinsic 

excitability (Table 1). Accommodation is defined as a reduction in AP firing frequency in 

response to a sustained depolarization step or a train of depolarizing stimuli. It results 

from the adaptation of various ionic currents that affect the generation of APs, including 

the AHP current mediated by Ca2+-dependent K+ channels (Madison and Nicoll, 1984), 

and is usually considered to be an intrinsic property of a neuron. A reduction in 

accommodation (i.e. more APs induced by a sustained stimulus) reflects an increase in 

excitability, and vice versa. Researchers have also used other parameters associated with 

APs as indicators of neuronal intrinsic excitability (see Table 1). Alterations in these 

properties reflect changes in the overall expression, distribution, and function of voltage-

gated ion channels and are used to quantify changes in intrinsic excitability (Aizenman 

and Linden, 2000; Armano et al., 2000; Egorov et al., 2002; Crestani et al., 2018).
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Box 2:

Molecular factors regulating intrinsic excitability

In addition to direct modulation by the expression, distribution, and function of various 

ion channels, the intrinsic excitability is also dependent on protein synthesis and second 

messenger systems (Daoudal and Debanne, 2003; Saar and Barkai, 2003; Zhang and 

Linden, 2003; Cohen-Matsliah et al., 2010), many of which are shared with the induction 

and maintenance of long-term potentiation (LTP), which is a major form of long-term 

synaptic plasticity believed to be essential for memory consolidation (Abel and Lattal, 

2001; Kandel, 2001; Dudai, 2004; Citri and Malenka, 2008; Kandel et al., 2014; Dudai et 

al., 2015).

One important molecule indicated in both synaptic plasticity and intrinsic excitability is 

the cAMP responsive element-binding protein (CREB), a key regulator in the cAMP-

protein kinase A (PKA) signaling pathway. CREB is activated via posttranslational 

modifications such as phosphorylation, and its activation is synergistically triggered by 

an increase in intracellular Ca2+ and an increase in cAMP (Lonze and Ginty, 2002). 

CREB has important functions in the nervous system, including learning and memory, 

which has been demonstrated in various brain regions across different behavior tasks (Yin 

and Tully, 1996; Bernabeu et al., 1997; Impey et al., 1998; Alberini, 1999, 2009; 

Taubenfeld et al., 1999; Stanciu et al., 2001). As a well-studied form of long-term 

synaptic plasticity supporting memory consolidation, the induction of LTP is regulated by 

CREB. The CRE-mediated gene expression was markedly increased after the generation 

of long-lasting LTP (Impey et al., 1996), while CREB knockout mice showed memory 

deficits and impaired LTP (Bourtchuladze et al., 1994). The essential role of CREB 

activation in LTP induction is now confirmed in a number of studies (Bito et al., 1996; 

Deisseroth et al., 1996; Segal and Murphy, 1998; Alberini, 1999, 2009; Kandel, 2001; 

Barco et al., 2002; Josselyn and Nguyen, 2005; Kandel et al., 2014). Besides supporting 

synaptic plasticity, CREB also regulates neuronal intrinsic excitability. Virally 

overexpressing CREB increased neuronal intrinsic excitability in various brain regions, 

including the hippocampus, amygdala, locus coeruleus, and nucleus accumbens neurons 

(Dong et al., 2006; Han et al., 2007; Viosca et al., 2009; Zhou et al., 2009; Yiu et al., 

2014; Yu et al., 2017), possibly by decreasing voltage-gated K+ currents (Dong et al., 

2006) and then reducing the size of postburst AHP (Gu et al., 2005; Oh et al., 2010). 

Therefore, both synaptic and intrinsic plasticity (LTP and increased excitability, 

respectively) are induced after CREB activation. These mechanisms may then work 

synergistically in promoting memory consolidation.

A number of other molecular factors can also alter the expression of ion channels on the 

membrane, reduce the AHP, and increase intrinsic excitability. Protein kinase A (PKA), 

protein kinase C (PKC), and calmodulin-dependent protein kinase II (CaMKII), which 

are major protein kinases within the cAMP-dependent pathway and are involved in 

different phases of LTP induction (Huang et al., 1996; Abel et al., 1997; Impey et al., 

1998, 1999; Abel and Lattal, 2001; Kandel, 2001), have been found to be involved in the 

reduction of AHP (Melyan et al., 2002; Seroussi et al., 2002; Ohno et al., 2006; Armentia 

et al., 2007; Grabauskas et al., 2007; Oh et al., 2009; Cohen-Matsliah et al., 2010). The 
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activation of muscarinic receptors and metabotropic glutamate receptors has been shown 

to reduce AHP via PKC and CaMKII (Malenka et al., 1986; Pineda et al., 1995; 

Pedarzani and Storm, 1996; Grabauskas et al., 2007), while the activation of monoamine 

receptors reduced AHP via PKA (Pedarzani and Storm, 1993; Lancaster et al., 2006; 

Grabauskas et al., 2007; Oh et al., 2009).
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Highlights

• Neuronal intrinsic excitability contributes to different phases of a memory’s 

evolution.

• Intrinsic excitability promotes both the stability and flexibility of memories.

• Intrinsic excitability regulates the allocation of memory to specific neural 

ensembles.

• Learning-induced increases in intrinsic excitability may promote memory 

consolidation.

• Alterations in intrinsic excitability support the dynamic process of memory 

updating.
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Figure 1. Three types of afterhyperpolarization (AHP).
(A) Fast AHP (fAHP) after a single action potential, measured as the negative peak relative 

to the holding potential after a single action potential (AP). (B) Medium and slow AHP 

(mAHP and sAHP, respectively) after a burst of APs, measured as the negative peak relative 

to the holding potential between 50–300 ms (mAHP) or the remaining hyperpolarization at 1 

s (sAHP) after the AP train.
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Figure 2. The contribution of intrinsic excitability in memory allocation, consolidation, and 
updating.
Allocation: neurons with a higher excitability at the time of learning have a higher 

probability to be recruited into a memory ensemble. Consolidation: increases in neuronal 

intrinsic excitability lower the threshold for LTP induction, through common underlying 

voltage-gated ion channels (such as SK channels) and signaling pathways. Updating: 

excitability is important for memory integration during updating after allocation and 

consolidation. Here, we have highlighted the role of heightened excitability in three 

processes: temporal memory-linking, memory integration during retrieval, and rule and 

schema learning.
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Table 1.

Experimental quantification of neuronal intrinsic excitability.

Parameters Regulators Measurement Relationship to excitability

fAHP
BK channel; A-type K+ channel

↑ Channel activity
↑ fAHP size

Negative peak after a single AP relative to the 
holding potential (Fig. 1A)

↑ fAHP size
↑ Excitability

mAHP
SK channel

↓ SK channel activity
↓ mAHP size

Negative peak after a train of APs relative to 
the holding potential (Fig. 1B)

↓ mAHP size
↑ Excitability

sAHP To be identified
Remaining hyperpolarization relative to the 
holding potential 1 s after the AP train (Fig. 

1B)

↓ sAHP size
↑ Excitability

Spike frequency 
accommodation

M channel; fast Na+ channel; 
regulated by postburst AHP

↓ AHP size
↓ Accommodation

Number of APs elicited during a sustained 
stimulation

↓ Accommodation
↑ Excitability

AP half-width
AP frequency

Regulated by fAHP
↑ fAHP

↓ AP half-width
↑ AP frequency

Half-width: the width of an AP at its half-
maximal value

Frequency: number of APs per second

↓ AP half-width
↑ AP frequency
↑ Excitability

AP threshold 
Rheobase

Related to the density of Na+ 

channels, Na+ channel inactivation 
and K+ channels

Threshold: the membrane potential at which 
the rising speed of an AP peaks or exceeds a 

certain value during depolarization
Rheobase: the minimal current amplitude of an 

infinite duration to elicit a single AP

↓ AP threshold
↓ Rheobase
↑ Excitability

Input resistance Determined by the total number and 
conductance of open channels

Calculated from the I-V curve derived from a 
series of somatic current injections (R = V/I)

↑ Input resistance
↑ Excitability

Neurobiol Learn Mem. Author manuscript; available in PMC 2021 September 01.


	Abstract
	Introduction
	Intrinsic excitability and memory allocation
	Intrinsic excitability and memory consolidation
	Intrinsic excitability and memory updating
	Temporal memory-linking
	Memory integration during retrieval
	Rule and schema learning


	Conclusion and future directions
	References
	Figure 1.
	Figure 2.
	Table 1.

