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Abstract

Ab initio protein docking represents a major challenge for optimizing a noisy and costly “black 

box”-like function in a high-dimensional space. Despite progress in this field, there is a lack of 

rigorous uncertainty quantification (UQ). To fill the gap, we introduce a novel algorithm, Bayesian 

Active Learning (BAL), for optimization and UQ of such black-box functions with applications to 

flexible protein docking. BAL directly models the posterior distribution of the global optimum (i.e. 

native structures) with active sampling and posterior estimation iteratively feeding each other. 

Furthermore, it uses complex normal modes to span a homogeneous, Euclidean conformation 

space suitable for high-dimensional optimization and constructs funnel-like energy models for 

quality estimation of encounter complexes.

Over a protein-docking benchmark set and a CAPRI set including homology docking, we establish 

that BAL significantly improves against starting points from rigid docking and refinements by 

particle swarm optimization, providing a top-3 near-native prediction for one third targets. Quality 

assessment empowered with UQ leads to tight quality intervals with half range around 25% of 

actual interface RMSD and confidence level at 85%. BAL’s estimated probability of a prediction 

being near-native achieves binary classification AUROC at 0.93 and AUPRC over 0.60 (compared 

to 0.50 and 0.14, respectively, by chance), which also improves ranking predictions. This study 

represents the first UQ solution for protein docking, with rigorous theoretical frameworks and 

comprehensive empirical assessments.
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1 Introduction

Protein-protein interactions underlie many cellular processes, which has been increasingly 

revealed by the quickly advancing high-throughput experimental methods. However, 

compared to the binary information about which protein pairs interact, the structural 

knowledge about how proteins interact remains relatively scarce1. Protein docking helps 

close such a gap by computationally predicting the 3D structures of protein-protein 

complexes given individual proteins’ 1D sequences or 3D structures2.

Ab initio protein docking is often recast as an energy (or other objective functions) 

optimization problem. For the type of objective functions relevant to protein docking, neither 

the analytical form nor the gradient information would help global optimization as the 

functions are non-convex and extremely rugged thus their gradients are too local to inform 

the global landscapes. So the objective functions are often treated as de facto “black-box” 

functions for global optimization. Meanwhile, these functions are very expensive to 

evaluate. Various protein-docking methods, especially refinement-stage methods, have 

progressed to effectively sample the high-dimensional conformational space against the 

expensive functional evaluations3–9.

While solving such optimization problems still remains a great challenge, quantifying the 

uncertainty of numerically-computed optima (docking solutions) is even more challenging 

and has not been addressed by any protein-docking method. Even though the uncertainty 

information is much needed by the end users, current protein-docking methods often 

generate a rank-ordered list of results without giving quality estimation with uncertainty to 

individual results and without providing the confidence in whether the entire list contains a 

quality result (for instance, a near-native protein-complex model with iRMSD ≤ 4 Å).

Uncertainty quantification (UQ), if addressed, would lead to two benefits. First, for 

individual optimization trajectories, uncertainty awareness would improve the robustness of 

their optimization outcomes. Second, uncertainty of the solutions can be easily fed to any 

quality assessment tools for distributions rather than point estimates of some quality of 

interest (very often iRMSD); and comparing these distributions would provide more robust 

model ranking across trajectories.
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Sources of uncertainty in protein docking methods include the objective function as well as 

the sampling scheme, which can be classified as epistemic uncertainty10. For instance, 

energy models as objective functions provide noisy and approximate observations of the 

assumed ground truth — the Gibbs free energy; and iterative sampling techniques suffer 

from both the approximation of the search space (e.g. rotamerized side chains) and 

insufficient data in the approximated space (e.g. small numbers of samples considering the 

high dimensionality of the search space). In addition, uncertainty in protein structure data 

(e.g. X-ray crystal structures of proteins being “averaged” versions of their native 

conformations and derived from fitting observed diffraction patterns), which can be 

classified as aleatoric uncertainty, also enters protein docking methods when crystal 

structures are used as ground-truth native structures for training objective functions or tuning 

parameters in protein-docking methods.

Whereas the forward propagation of aleatoric uncertainty in protein structure data to 

structure-determined quantities has been studied empirically11 and theoretically12, the much 

more difficult, inverse quantification of uncertainty in predicted protein or protein-complex 

structures originating from epistemic uncertainty in computational methods, is still lacking a 

mathematically rigorous solution. A unique challenge for uncertainty quantification (UQ) in 

protein docking is that the desired quality of interest here is directly determined by the 

optimum itself rather than the optimal value. In other words, closeness to native structures 

(for instance, measured by iRMSD) is an indicator for the usefulness of the docking results, 

but closeness to native structures’ energy values is not necessarily the case. Therefore, UQ in 

protein docking has to be jointly solved with function optimization when finding the inverse 

mapping from a docking objective function to its global optimum is neither analytically 

plausible nor empirically cheap.

In this study, we introduce a rigorous Bayesian framework to simultaneously perform 

function optimization and uncertainty quantification for expensive-to-evaluate black-box 

objective functions. To that end, our Bayesian active learning (BAL) iteratively and 

adaptively generates samples and updates posterior distributions of the global optimum. 

Specifically, we propose a posterior in the form of the Boltzmann distribution building upon 

a non-parametric kriging regressor and a novel adaptive-annealing schedule. The iteratively 

updated posterior carries the belief (and uncertainty as well) on where the global optimum is 

given historic samples and guides next-iteration sampling, which presents an efficient data-

collection scheme for both optimization and UQ. Compared to typical Bayesian 

optimization methods13 that first model the posterior of the objective function and then 

optimize the resulting functional, our BAL framework directly models the posterior of the 

global optimum and overcomes the intensive computations in both steps of typical Bayesian 

optimization methods. Compared to another work14 that also models the posterior of the 

global optimum, Nonparametric Conjugate Prior Distribution (or NCPD in short), we 

provide both theoretical and empirical results that our BAL has a consistent and unbiased 

estimator as well as a global uncertainty-aware and dimension-dependent annealing 

schedule.

We also make innovative contributions in the application domain of protein docking. 

Specifically, we design a machine learning-based objective function that estimates binding 
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affinities for docked encounter complexes as well as assesses the quality of interest, iRMSD, 

for docking results. And we re-parameterize the search space for both external rigid-body 

motions15 and internal flexibility5, into a low-dimensional homogeneous and isotropic space 

suitable for high-dimensional optimization, using our (protein) complex normal modes 

(cNMA)16. Considering that protein docking refinement often starts with initial predictions 

representing separate conformational clusters/regions, we use estimated local posteriors over 

individual regions to construct local and global partition functions; and then calculate the 

probability that the prediction for each conformation, each conformational cluster, or the 

entire list of conformational clusters is near-native.

The rest of the paper is organized as following. In Materials and Methods, we first give a 

mathematical formulation for the optimization and the UQ, then introduce our Bayesian 

active learning (BAL) that iteratively updates sampling and posterior estimation. We next 

introduce the parameterization of the search space that allows concurrent and homogeneous 

sampling of external rigid-body and internal flexible-body motions as well as newly-

developed machine learning models as the noisy energy function that estimates the binding 

free energy for encounter complexes. And we end the Materials and Methods with 

uncertainty quantification for protein docking.

In Results and Discussion, using a comprehensive protein docking benchmark set involving 

unbound docking and a CAPRI set involving homology docking, we assess optimization 

results for BAL with comparison to starting structures from ZDOCK and refined structures 

by particle swarm optimization (PSO). We further assess the uncertainty quantification 

results: accuracy of the confidence levels and tightness of the confidence region, as well as 

the confidence scores for the near-nativeness of predictions. Case studies further reveal the 

causes of success and failure. Lastly, before reaching conclusions, we visualize the estimated 

energy landscape and confirm that the funnel-like energy landscapes do exist near native 

structures in the homogeneous conformational space blending external rigid-body and 

internal flexible-body motions.

2 Materials and Methods

2.1 Mathematical Formulation

We consider a black-box function f(x) (e.g. ΔG, the change in the Gibbs free energy upon 

protein-protein interaction) that can only be evaluated at any sample with an expensive yet 

noisy observation y(x) (e.g. modeled energy difference or scoring function for conformation 

x). Our goal in optimization is

x* = arg min
x ∈ X

f(x)

(e.g. x* denotes the native structure of a protein complex and X denotes the domain of 

sample space for conformations). And our goal in uncertainty quantification is the 

probability distribution of x* around its prediction x, rather than the single point estimation 

x itself (in which the distributions is equivalent to an impulse function at x).
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Once the uncertainty of the solution is quantified, the uncertainty of the solution quality can 

be subsequently derived. A summary of the latter is simply the probability that the 

prediction x falls in an interval [lb,ub] of quality relative to x*:

P (lb ⩽ Q(x, x*) ⩽ ub) = 1 − σ,

where 1-σ is the confidence level; [lb,ub] is the confidence interval in the solution quality; 

and Q(·,·), the quality of interest measuring some distance or dissimilarity, can be an 

Euclidean norm (as in our assessment for test functions), another distance metric, or other 

choices dependent on the user (for instance, iRMSD as in our assessment for protein 

docking with ub = 4 Å). Note that Q(·,·) can be any quality assessment (QA) tool that does 

not assume the knowledge of x* as well.

2.2 Bayesian active learning with a posterior of x*

We address the problem above in a Bayesian perspective: instead of treating x* as a fixed 

point, we model x* as a random variable and construct its probability distribution, p(x*|D), 

given samples D = {(x,y)}. This probability distribution, carrying the belief and the 

uncertainty on the location of x*, is a prior when D = Ø (no sample) and a posterior 

otherwise. Considering the cost of function evaluation, we iteratively collect new samples in 

iteration t (where all samples collected by the end of the t-th iteration are denoted D(t)) 

based on the latest estimated posterior, p(x* |D(t − 1)); and we update the posterior p(x* |D(t))
based on D(t). An illustration of the iterative approach is given in Fig. 1.

For optimization, we set x to be the best sample with the lowest y value given a 

computational budget (reflected in the number of samples or iterations). For UQ, given the 

posterior p(x* |D(t)) in the final iteration, one can propagate the inferred uncertainty in x* 

forwardly to that in the quality of interest, Q(x, x*), for the found x, using techniques such as 

Markov chain Monte Carlo.

2.2.1 Non-parametric posterior of x*—We propose to use the Boltzmann distribution 

to describe the posterior

p(x* |D(t)) ∝ exp( − ρ ⋅ f(x))

where f(x) is an estimator for f(x), and ρ is a parameter (sometimes 1
RT  where R is the gas 

constant and T the temperature of the molecular system).

To iteratively guide the expensive sampling and balance between exploration and 

exploitation in a data efficient way, we choose ρ to follow an adaptive annealing schedule 

over iteration t:

ρt = ρ0 ⋅ exp((ℎp(t − 1))−1nt

1
d )

Cao and Shen Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ρ0, the initial ρ, is a parameter; ℎp
(t − 1) is the (continuous) entropy of the last-iteration 

posterior, a shorthand notation for ℎ(p(x* |D(t − 1))); nt = |D(t)| is the number of samples 

collected so far; and d is the dimensionality of the search space X.

This annealing schedule is inspired by the adaptive simulated annealing (ASA)17, especially 

the exponential form and the nt

1
d  term. However, we use the (ℎp

(t − 1))−1 term rather than a 

constant as in ASA so that we exploit all historic samples D(t). In this way, as the 

uncertainty of x* decreases, ρt increases and shifts the search toward exploitation.

The function estimator f(x) also updates iteratively according to the incrementally 

increasing nt samples D(t) = (xi, yi) i = 1
nt . We Use a consistent and unbiased kriging 

regressor18 which is known to be the best unbiased linear estimator(BLUE):

f(x) = f0(x)+(κ(t)(x))T (K(t)+ε2I)−1(y(t) − f0
(t))

where f0(x) is the prior for E[f(x)]; κ(t)(x) ∈ Rnt is the kernel vector with the ith element 

being the kernel, a measure of similarity, between x and xi ∈ D(t); K(t) ∈ Rnt × nt is the 

kernel matrix with the(i,j) element being the kernel between xi ∈ D(t) and xj ∈ D(t); y(t) and 

f0
(t) are the vector of y1, …, ynt and f0(x1), ..., f0(xnt), respectively; and ϵ reflects the noise in 

the observation and is estimated to be 2.1 as the prediction error for the training

We derive the kriging regressor in the Supporting Information (S1) Sec. 1.2.2. And we will 

use the regressor to evaluate binding energy and estimate iRMSD for UQ over multiple 

regions in Sec. 2.5.

2.2.2 Adaptive sampling based on the latest posterior—For a sequential 

sampling policy that balances exploration and exploitation during the search for the 

optimum, we choose Thompson sampling19 which samples a batch of points in the t-th 

iteration based on the latest posterior p(x* |D(t − 1)). This seemingly simple policy has been 

found to be theoretically20 and empirically21 competitive compared to other updating 

policies such as Upper Confidence Bound13. In our case, it is actually straightforward to 

implement given the posterior on x*.

There are multiple reasons to collect in each iteration a batch of samples rather than a single 

one. First, given the high dimension of the search space, it is desired to collect adequate data 

before updating the posterior. Second, the batch sampling weakens the correlation among 

samples and make them more independent, which benefits the convergence rate of the 

kriging regressor. Last, parallel computing could be trivially applied for batch sampling, 

which would significantly improve the algorithm throughput.

Fig. 1 gives an illustration of the algorithm behavior. The initial samples drawn from a 

uniform distribution leads to a relatively flat posterior whose maximum is off the function 
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optimum (Fig. 1F). As the iteration progresses, the uncertainty about the optimum gradually 

reduces(Fig. 1E) and newer samples are increasingly focused (Fig. 1C,D) as the posteriors 

are becoming narrower with peaks shifting toward the function optimum (Fig. 1G,H).

In our docking study, d = 12 for a homogeneous space spanned by complex normal modes 

(see Sec. 2.3). We construct a prior and collect 30 samples in the first iteration and 20 in 

each of the subsequent iterations. We limit the number of iterations (samples) to be 31 (630) 

for optimization and posteriors as a way to impose a computational budget (6–13 CPU hours 

for protein complexes of typical sizes). The reason is that it costs minutes to locally 

minimize each conformational sample using CHARMM22 and remove bond distortions in 

flexible perturbations, before energies can be evaluated. More samples, albeit more 

expensive, would improve the quality of energy minimization and posterior estimation. At 

the end of all iterations, an additional set of 1,000,000 samples will be generated according 

to the final posterior, for quality estimation and uncertain quantification of the final 

prediction. Note that these 1,000,000 samples do not drive the optimization process and do 

not need to be locally minimized anymore; and this stage of post-optimization UQ costs 

about a CPU hour.

2.2.3 Kernel with customized distance metric

κ(xi, xj) = exp( −
‖xi − xj‖2

2l2
),

The kernel in the kriging regressor for the posterior is a measure of similarity. For test 

functions defined in an Euclidean space, we use the radial basis function (RBF) kernel: 

where ||xi - xj||, a measure of dissimilarity, is the Euclidean distance and l, the bandwidth of 

the kernel, is set as l = l0 ⋅ nt

1
d  following Györfi et al.23. l0,dependent on search space,is set at 

2.0 for docking without particular optimization.

For protein docking we replace the Euclidean distance in the RBF kernel with the interface 

RMSD (iRMSD) between two sample structures. iRMSD captures sample dissimlarity 

relevant to function-value dissimilarity and is independent of search-space parameterization. 

For this purpose, we also have to address two technical issues. First, protein interface 

information is determined by x* and thus unknown. We instead use the putative interface 

seen in the samples. Each iRMSD is calculated using the same set of Cα atoms, the union of 

interface Cα atoms derived from 50 random perturbations of the starting structure (see more 

details in the SI Sec. 2.4). Second, kernel calculation with iRMSD is time consuming. The 

time complexity of iRMSD calculation is O(N) and that of regressor update is O(Nn2), 

where N, the number of interfacial atoms, can easily reach hundreds or thousands, and n, the 

number of samples, can also be large. To save computing time, we develop a fast RMSD 

calculation method that reduces its time complexity from O(N) down to O(1) (see details in 

SI Sec. 2.1).
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2.2.4 Related methods—Current Bayesian optimization methods typically model the 

posterior distribution of f(x) rather than that of x* = arg minx ∈ X f(x) directly. After 

modeling the posterior distribution over the functional space (a common non-parametric way 

is through Gaussian processes), they would subsequently sample the functional space and 

optimize sample functions. For instance, Villemonteix et al. 24 used Monte Carlo sampling; 

and Hernández-Lobato et al. 25 discretized the functional space to approximate the sample 

paths of Gaussian processes using a finite number of basis functions then optimized each 

sample path to get one sample of x*. The two-step approach of current Bayesian 

optimization methods involve intensive sampling and (non-convex) optimization that is 

computationally intensive and not pragmatically useful for protein docking.

To our knowledge, Ortega et al. presented the only other study that directly models the 

posterior distribution over the optimum14. Both their method NCPD and our BAL fall in the 

general category of Bayesian optimization and use consistent non-parametric regressors. 

However, we prove in Sec. 1.2 of the SI that their regressor is biased whereas our kriging 

regressor is unbiased. We explain in Sec. 1.1 of the SI that their annealing schedule 

(temperature control) only considers the pairwise distance between samples without location 

awareness and is independent of dimensionality d; whereas ours has a term involving 

location-aware global uncertainty and generalizes well to various dimensions. Beyond those 

theoretical comparisons, we also included empirical results to show the superior 

optimization and UQ performances of BAL.

The rest of the Materials and Methods section involve methods specific to the protein 

docking problem: parameterization, dimensionality reduction, and range reduction of the 

search space X; machine learning model as y(x), i.e., an energy model for encounter 

complexes; quality assessment with uncertainty quantification for a predicted structure or a 

list of predictions; and the use of such assessment metrics for scoring purposes: ranking 

predictions or classifying their nativeness.

2.3 Conformational Sampling in X

In protein docking the full search space X captures the degrees of freedom for all atoms 

involved. Let one protein be receptor whose position is fixed and the other be ligand (the 

larger one is often chosen as the receptor, as done in a protein-docking benchmark set26). 

And let NR, NL, and N be the number of atoms for the receptor, the ligand, and the complex 

respectively. Then X = ℝ3N − 6 is a Euclidean space whose dimension easily reaches 104 for 

a small protein complex without surrounding solvent molecules. If accuracy is sacrificed for 

speed, proteins can be (unrealistically) considered rigid and X = SE(3) = ℝ3 × SO(3) is a 

Riemannian manifold27 of ligand translations and rotations. Docking methods fall in the 

spectrum between these two ends that are represented by all-atom molecular dynamics and 

FFT rigid docking, respectively. For instance, one can consider locally rigid pieces of a 

protein rather than a globally rigid protein, then X becomes the product of many SE(3) for 

local rigidity28; or one can model individual proteins’ internal flexible-body motions using 

normal modes on top of the ligand rigid-body motions, thus X becomes the product of ℝK

(where K << NR/L) and SE(3)4.
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From the perspective of optimization and UQ, both the high-dimensionality of ℝ3N − 6 and 

the geometry of the lower-dimensional manifold present challenges. Almost all 

dimensionality reduction efforts in protein docking impose conditions (such as 

aforementioned local or global rigidity) in the full Euclidean space and lead to embedded 

manifolds difficult to (globally) optimize over. The challenge from the manifold has been 

either disregarded in protein docking or addressed by the local tangent space15,27,28.

Could and how could the dimensionality of the conformational space be reduced while its 

geometry maintains homogeneity and isotropy of a Euclidean space and its basis vectors 

span conformational changes of proteins upon interactions? In this subsection we give a 

novel approach to answer this question for the first time. In contrast to common 

conformational sampling that separates internal flexible-body motions (often Euclidean) and 

external rigid-body motions (a manifold)7, we re-parameterize the space into a Euclidean 

space spanned by complex normal modes16 blending both flexible- and rigid-body motions. 

The mapping preserves distance metric in the original full space. We further reduce the 

dimensionality and the range in the resulting space29.

2.3.1 Complex normal modes blend flexible- and rigid-body motions—We 

previously introduced complex normal mode analysis, cNMA16, to model conformational 

changes of proteins during interactions. Using encounter complexes from rigid docking, 

cNMA extends anisotropic network model (ANM) to capture both conformational selection 

and induced fit effects. After the Hessian matrix is projected to remove the rigid-body 

motion of the receptor, its non-trivial eigenvectors μj (j = 1,..., 3N - 6) form orthonormal 

basis vectors. We showed that μjR, the components of the complex normal modes, better 

capture the direction of individual proteins’ conformational changes than conventional NMA 

did16. We also showed that the re-scaled eigenvalues for these components, λj
R =

λj
| |μjR| |2

, can 

be used to construct features for machine learning and predict the extent of the 

conformational changes.

2.3.2 Dimensionality reduction—In this study we focus on the motions of a whole 

complex rather than individual proteins and develop sampling techniques for protein 

docking. Each complex normal mode16 simultaneously captures concerted flexible-body 

motions of individual proteins (receptor and ligand) and rigid-body motion of the protein 

whose position is not fixed (ligand). Such modes together span a homogeneous and isotropic 

Euclidean space where the distance between two points is exactly the RMSD between 

corresponding complex structures. The Euclidean space is friendly to high-dimensional 

optimization. In this study, complex normal modes are precomputed using the starting 

structure of each conformational cluster and not updated while sampling the cluster to save 

computational costs.

For dimensionality reduction in the resulting space, we choose the first K1 non-trivial 

eigenvectors μj ranked by increasing eigenvalues λj; and we additionally include K2 μj (not 

in the first K1) ranked by increasing λj
R (λj rescaled using the receptor’s contribution to this 

complex normal mode μj
16 ). In other words, we sample in a(K1 + K2)-dimensional 
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Euclidean space spanned by complex normal modes and denote the set of basis vectors as 

B. K1 of these complex normal modes are the slowest for the whole complex (judging by 

λj) and the rest K2 different ones are the slowest for the receptor portion of the complex 

(judging by λj
R). In this study K1 and K2 are set at 9 and 3, respectively, leading to the 

dimension of the reduced space to d =12. Empirically, we find that the first 9 non-trivial 

complex normal modes often contain six with dominant rigid-body motions of the ligand 

and three with dominant ligand flexibility; and the other 3 in the basis set are, by definition, 

with dominant receptor flexibility. Supplemental videos illustrate the motions of the two 

types of complex normal modes and are available along with our codes.

Our framework of Bayesian active learning, using kernels in its unbiased kriging regressor, 

is applicable to any choice of the basis set B. Naturally, it faces more challenge in 

optimization, let alone uncertainty quantification, as the dimensionality of B increases (see 

empirical results for test functions in Sec. 3.1). Although current basis vectors are low-

frequency backbone flexibility derived from normal mode analysis, more vectors can be 

considered for the set B, such as higher-frequency normal modes, local conformational 

rearrangements including loop and helix motions, and large conformational changes such as 

hinge motions. In this work, side-chain flexibility is considered by locally minimizing every 

conformational sample x.

2.3.3 Range reduction—For range reduction in the dimension-reduced space, we 

perturb a starting complex structure C 0 along aforementioned basis vectors to generate 

sample C ∈ ℝ3N − 6 while enforcing a prior on the scaling factor s in the first iteration. 

Specifically

C = C 0+ ∑
j ∈ B

rj
s
λj

⋅ μj

where rj, the coefficient of the jth normal mode μj, is uniformly sampled on Sd, the surface 

of a d-dimensional standard sphere with a unit radius. The scaling factor s is given by

s =
τR

1
NR

∑j ∈ B
rj
λj

⋅ μjR
,

where τR is the estimated conformational change (measured by RMSD in all Cα atoms) 

between the unbound and the bound receptor. Note that vectors μjR (the receptor portion of 

the jth complex normal mode) are not orthonormal to each other.

We previously predicted τR by a machine learning model giving RMSDR, a single value for 

each receptor29. Here we replace RMSDR with a predicted distribution by multiplying it to a 

truncated normal distribution N(μ= 0.99, σ2=0.312) within[0,2.5].Thelatter distribution is 

derived by fitting the ratios between the actual and the predicted values, RMSDR/RMSDR, 

for 50 training protein complexes (see more details about dataset in Sec. 2.7 and these about 
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distribution fitting in Sec. 2.2 of the SI). Therefore, our parameterization produces 

x = s ⋅ r ∈ ℝd whose prior is derived as above.

Since the ligand component of complex normal modes include simultaneous flexible-and 

rigid-body motions, conformational sampling could lead to severely distorted ligand 

geometry. We thus further restrict the ligand perturbation δL (flexible- and rigid-body 

together) to be within ΔL

ΔL = 1
NL ∑

j ∈ B
rj

s
λj

⋅ μjL ⩽ ΔL,

where μjL denotes the ligand portion of the jth complex normal mode.

We set ΔL at 6Å according to the average size of binding energy at traction basins seen in 

conformational clusters30. For samples generated from the aforementioned prior or the 

updated posterior, we reject those violating the ligand perturbation limit. We discuss about 

the feasibility of the search region in SI Sec.2.3.

Every conformational sample, generated through sampling the prior or the iteratively-

updated posteriors of x*, is locally minimized through CHARMM22 to remove possible 

bond distortions before energy evaluation. This setting could be changed in future, along 

with energy models, to reduce the cost of energy evaluation for each sample, allow for more 

samples, and improve energy minimization and posterior estimation.

2.4 Energy Model y(x)

We have so far introduced search strategies for functions defined in a Euclidean space or 

specifically for protein docking. Energy models y(x) are at least as important as search 

strategies for protein docking. In fact, an improved search strategy might expose more 

deficiencies of energy models, such as false-positive energy wells. We therefore have 

developed a “funnel-like” energy model to not only mitigate the issue but also to estimate 

model quality (iRMSD) of encounter complexes.

2.4.1 Binding affinity prediction for sampled encounter complexes—We 

introduce a new energy model based on binding affities Kd′ (x) of structure samples x that are 

often encounter complexes. The model assumes that Kd′  correlates with Kd, the binding 

affinity of the native complex, and deteriorates with the increase of the sample’s iRMSD (the 

encounter complex being less native-like):

Kd′ (x) = Kd ⋅ exp(α ⋅ (iRMSD(x))q),

where α and q are hyper-parameters optimized through cross-validation. In other words, we 

assume that the fraction of binding affinity loss is exponential in a polynomial of iRMSD. 

Therefore, the binding energy, a machine learning model y(x;w) of parameters w can be 

represented as
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y(x; w) = RT ln(Kd′ (x))
= RT ln(Kd)+RTα ⋅ (iRMSD(x))q

2.4.2 iRMSD prediction for sampled encounter complexes—Given an observed 

or regressed y(x) value for an encounter complex sample, one can estimate iRMSD(x) with 

given Kd using the equation above inversely, which provides quality assessment (QA) 

without native structures.

2.4.3 Machine learning—We train machine learning models, including ridge regression 

with linear or RBF kernel and random forest, for y(x;w). The 8 features include changes 

upon protein interaction in energy terms such as internal energies in bond, angle, dihedral 

and Urey-Bradley terms, van der Waals, non-polar contribution of the solvation energy based 

on solvent-accessible surface area (SASA), and electrostatics modeled by Generalized Born 

with a simple SWitching (GBSW), all of which are calculated in a CHARMM27 force field.

We use the same training set of 50 protein pairs (see details in SI Sec. 2.5) as in predicting 

the extent of conformational change. From rigid docking and conformational sampling we 

generate 13,004 complex samples for 50 protein pairs, including 6,464 near-native and 6,540 

worse examples in the training set. We balance the near-native and non-near native samples 

in order to make the binding-energy model, as well as the resulting posterior estimation and 

uncertainty quantification, focus on near-native or slightly worse encounter complexes as 

opposed to those with very high iRMSD (say, above 10 Å). Hyper-parameters of ridge 

regression with RBF kernel as well as random forest are optimized by cross-validation. And 

model parameters w are trained again over the entire training set with the best hyper-

parameters. More details can be found in Sec. 2.6 of the SI. For the assessment, we use the 

test set a of 26 protein pairs (again in SI Sec. 2.5) and generate 20 samples similarly for each 

of the 10 initial docking results for each pair, leading to 5,200 cases.

2.5 Quality Assessment with Uncertainty Quantification for Protein Docking

A unique challenge to protein docking refinement is that, instead of optimization and UQ in 

a single region X, we may do so in K separate ones Xi (i = 1,...,K) where each Xi is a 

promising conformational region/cluster represented by a initial docking result. This is often 

necessitated by the fact that the extremely rugged energy landscape is populated with low-

energy basins separated by frequent high-energy peaks in a high-dimensional space, thus 

preferably searched over multiple stages31.

One benefit of UQ for protein docking results is to determine, for each xi – the prediction in 

Xi (the ith structure model),its quality bounds [lb, ub] such that

P (lb ⩽ Q(xi, x*) ⩽ ub) = 1 − σ

where the quality of interest Q(x, x*) here is iRMSD between a predicted and the native 

structure and 1-σ is a desired confidence level. Again, Q(·,·) can be any quality assessment 
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(QA) function that does not necessarily need information about the native structure x*. We 

used our iRMSD predictor in this study.

To that end, we forwardly propagate the uncertainty from x* (native structure) to iRMSD, 

given the final posterior p(x* |D(t)) in individual regions (local posteriors). Specifically, we 

generate 1,000,000 samples following the local posterior using Markov chain Monte Carlo, 

evaluate their binding energies using the kriging regressor, and estimate their iRMSD using 

our binding affinity prediction formula inversely (as described in Sec. 2.4.2). We then use 

these sample iRMSD values to determine confidence intervals [lb, ub] for various 

confidence score 1 - σ so that P(iRMSD < lb) = P(iRMSD > ub) = σ/2.

2.6 Confidence scores for near-nativeness

We next calculate the probability that a prediction xi is near-native, i.e., P (Q(xi, x*) ⩽ 4 Å)32. 

Calculating this quantity would demand the probability that the native structure lies in the ith 

conformational region / cluster, P (x* ∈ Xi) (P (Xi) in short) as well as that the probability 

that it lies in all the K regions, P (x* ∈ ∪i = 1
K Xi) (P(UK) in short). By following the chain 

rule we easily reach

P (iRMSD(xi, x*) ⩽ 4)
= P (iRMSD(xi, x*) ⩽ 4 |Xi)P (Xi |UK)P (UK)

Here we use the fact that x* ∈ Xi ⊂ x* ∈ ∪i = 1
K Xi  and assume that 

{iRMSD(xi, x*) ⩽ 4} ⊆ {x* ∈ Xi  (the range of conformational clusters in iRMSD is usually 

wider than 4 Å).

We discuss how to calculate each of the three terms for the product.

2.6.1 P (iRMSD(xi, x*) ⩽ 4 |Xi)—If the native structure x* (unknown) is contained in the 

ith region/cluster Xi, what is the chance that the predicted structure xi (known)is within 4 Å 

We again use forward uncertainty propagation starting with the local posterior p(x* |Dt) in 

Xi. We sample 100,000 structures following the posterior with Markov chain Monte Carlo, 

calculate their iRMSD to the prediction xi, and empirically determine the portion within 4 Å 

for the probability of interest here. Notice that the native interface is unknown thus the 

putative interface is used instead.

2.6.2 P (Xi |UK)—If the native structure is contained in at least one of the K regions, what 

is the chance that it is in Xi? Following statistical mechanics, we reach

P (Xi |UK) =
Zi
Z

=
∫x ∈ Xiexp( − 1

RT fi(x))dx

∑j = 1
K ∫x ∈ Xj( − 1

RT fi(x))dx
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where Zi and Z are local and global partition functions, respectively; and fi(x) is the final 

kriging regressor. Different regions are assumed to be mutually exclusive. The integrals are 

calculated by Monte Carlo sampling.

Another approach is to replace 1
RT  above with ρi, the final ρ for temperature control in Xi. 

In practice we did not find significant performance difference between the two approaches, 

partly due to the fact that final ρi in various clusters / regions reached similar values for the 

same protein complex.

2.6.3 P(UK)—What is the chance that the native structure is within the union of the initial 

regions, i.e., at least one initial region or model is near-native? The way to calculate P(UK) is 

very similar to that in uncertainty quantification. Specifically, 100,000 structures are 

sampled following the posterior of each region Xi, evaluated for binding energy using the 

kriging regressor fi(x), and estimated with iRMSD using the binding affinity predictor 

formula inversely. We empirically calculate the portion qi in which sample iRMSD values 

are above 4Å. Assuming the independence among regions with regards to near-nativeness, 

we reach P (UK) = 1 − ∏i = 1
K qi. However, if conformational regions Xi, presumed to be 

separate before search, are overlapping afterwards, 1 − ∏i = 1
K qi would underestimate P(UK). 

One possible approach to address the issue, which could sacrifice optimization, is to 

introduce constraints on Xi and keep them separate during search.

2.7 Data sets

We use a comprehensive protein docking benchmark set 4.026 of 176 protein pairs that 

diversely and representatively cover sequence and structure space, interaction types, and 

docking difficulty. We split them into a training set, test sets a and b with stratified sampling 

to preserve the composition of difficulty levels in each set. The “training” set is not used for 

tuning BAL parameters (Sec. 2.2). Rather, it is just for training energy model (y(x;w) in Sec. 

2.4) and conformational-change extent prediction (τR in Sec. 2.3.3). The training and test a 

sets contain 50 and 26 pairs with known Kd values33, respectively. And the test set b contain 

100 pairs with Kd values predicted from sequence alone34.

We also use a smaller yet more challenging CAPRI set of 15 recent CAPRI targets29. Unlike 

the benchmark set for unbound docking, the CAPRI set contains 11 cases of homology 

docking, 8 of which start with just sequences for both proteins and demand homology 

models of structures before protein docking. Compared to the benchmark test set of 86 

(68%), 22 (18%) and 18 (14%) cases classified rigid, medium, and flexible, respectively; the 

corresponding statistics for the CAPRI set are 4 (27%), 5 (33%) and 6 (40%), respectively. 

Their Kd values are also predicted from sequence alone.

The complete lists of the benchmark sets and the CAPRI set, with difficulty classification, 

are provided in Sec. 2.5 of the SI.

For each protein pair, we use 10 distinct encounter complexes as starting structures (K = 10). 

As reported previously29, those for the benchmark sets are top-10 cluster representatives by 
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ZDOCK, kindly provided by the Weng group; and those for the CAPRI set are top-10 

models generated by the ZDOCK webserver.

3 Results and Discussion

We briefly summarize our contributions in the Methods section and connect them to 

individual experiments in the Results section:

• The generic framework of Bayesian active learning for function optimization, 

posterior estimation, and uncertainty quantification was introduced in Sec. 2.2 

and will be assessed over test functions in Sec. 3.1;

• The complex normal modes-based conformational sampling, introduced in Sec. 

2.3, was based on our previous study16 and will be used in both PSO and BAL 

for fair comparison; thus will not be assessed separately;

• The funnel-like energy models for both affinity and quality estimation of 

encounter complexes was introduced in Sec. 2.4 and their accuracy will be 

assessed in Sec. 3.2;

• All the contributions in Sec. 2.2–2.4 proposed for optimization in protein 

docking will be assessed together, using a protein-docking benchmark set and 

recent CAPRI targets, in Sec. 3.3;

• Quality assessment with uncertainty quantification was introduced for protein 

docking in Sec. 2.5 and will be assessed in Sec. 3.4;

• Confidence scores for the near-nativeness of each prediction, as well as 

conditional probabilities of each prediction and each conformational cluster, 

were introduced in Sec. 2.6 and they will be used for ranking predictions and 

assessed in Sec. 3.5;

• With all the contributions elaborated in Methods, we will report the overall 

docking performance (after optimization and UQ-empowered ranking) in Sec. 

3.6, examine the causes of success or failures using case studies in Sec. 3.7, and 

report energy landscapes revealed by BAL in Sec. 3.8.

3.1 Optimization and UQ Performance over Test Functions

We first tested our BAL algorithm on four non-convex test functions of various dimensions 

and compared it to particle swarm optimization (PSO)35,36, an advanced optimization 

algorithm behind a very successful protein-docking method SwarmDock4. Detailed settings 

are provided in Sec. 2.7 of the SI.

For optimization we assess x − x* , the distance between the predicted and actual global 

optima, a measure of direct relevance to the quality of interest in protein docking – iRMSD. 

Compared to PSO, BAL made predictions that are, on average, closer to the global optima 

with smaller standard deviations (except for 2D Griewank where BAL had larger standard 

deviation); and the improvement margins increased with the increasing dimensions (Fig. 2 

and Table S8).
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For quality assessment with UQ we assess r90, the distance upper bound of 90% confidence, 

i.e., P ( | |x − x* | | ⩽ r90) = 1 − σ = 90 % . The metrics to assess r90 include η, the relative error 

(η = |
r90

| |x − x* | | − 1|); and P , the portion of the confidence intervals from 100 runs that actually 

encompass the corresponding global optimum. We found in Table S9 that our confidence 

intervals are usually tight judging from η and they contain the global optima with portions P
close to 90%, the desired confidence level. The portions agreed less with the desired 

confidence level for some functions as the dimensionality increase, which suggests the 

challenge of optimization and UQ in higher dimensions.

The rest of the results are on protein docking, which presents more challenges in objective 

function, feasible set, and more, compared to the aforementioned test functions.

3.2 Evaluation of Models for Energy and Quality Estimation

We compare the performances of three machine learning models over the training and test 

sets for energy model (Sec. 2.4.2). As no actual binding affinities of encounter complexes 

are available, we estimated the iRMSD values based on the random forest model’s binding 

energy prediction (Sec. 2.4.1) and compared them to the actual iRMSD (of native interfaces) 

using RMSE for absolute error. Random forest gave the best performances thus used as the 

energy model y(x) hereinafter. Specifically, performances are split to encounter complexes 

of varying quality (iRMSD) in Fig. 3A and Fig. 3B. The random forest model (blue bars) led 

to RMSE of 0.70 Å (1.0 Å) for the near-native samples in the training (test) set. The RMSEs 

increased slowly as iRMSD ≤ 10 Å and did sharply beyond (a region too far from the native 

for refinement), which matches our design rationale to focus on energy model accuracy, and 

as a result uncertain quantification, in the lower iRMSD region.

We also assess how “funnel-like” the energy model is. We thus calculated for each protein 

pair the Spearman’s ranking coefficient ρ between the energy model and the actual iRMSD. 

The random forest of MM-GBSW features showed the highest ρ of 0.72 and 0.60 for the 

training and the test sets, respectively (Fig. 3C), albeit with large deviation across protein 

pairs.

We lastly assess the energy model’s ability to rank across protein pairs. Specifically, we 

estimated each native protein-complex’s binding energy by setting iRMSD to be zero in the 

energy model and compared the estimated and actual binding energy using RMSE and 

Pearson’s r in the supplemental Table S11. The random-forest energy model achieved 2.45 

(4.78) Kcal/mol in RMSE and Pearson’s r of 0.79 (0.75) in binding energy δG = −RTln(Kd) 
for the training (test) set.

3.3 Docking Performance: Optimization

We show the improvements in PSO and BAL solution quality (measured by the decrease of 

iRMSD) against the starting ZDOCK solutions in Fig. S4 of the Supplemental Material. 

Speaking of the amount of improvement, BAL improved iRMSD by 1.2 Å, 0.74 Å, and 0.76 

Å for the training, test, and CAPRI sets, respectively, outperforming PSO’s corresponding 

measures of 0.82 Å, 0.45 Å, and 0.49 Å. It also outperformed PSO for the more challenging 

near-native cases (note that BAL’s iRMSD improvement for the near-native test set or 
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CAPRI set was almost neutral). Speaking of the portion with improvement, BAL improved 

iRMSD in the near-native cases for 75%, 68%, and 73% of the training, test, and CAPRI 

sets, respectively; whereas the corresponding statistics for PSO were 59%, 50%, and 53%, 

respectively. More split statistics based on docking difficulty can be found in Fig. S5.

We also compared BAL and PSO solutions head-to-head over subsets of varying difficulty 

levels for protein docking (Fig. 4). Overall, BAL’s solutions are better (or significantly 

better by at least 0.5 Å) than those of PSO for 70%–80% (31%–45%) of the cases, which 

was relatively insensitive to the docking difficulty level.

Both PSO and BAL use a single trajectory of 31 iterations and 630 samples for each region/

cluster. Most time is on local structure minimization and energy evaluations using 

CHARMM22. The BAL running time for optimization of each cluster thus almost linearly 

grows with the size of the protein pair (Fig. S8), ranging from 7 hours for a 200-residue 

complex to 13 hours for a 1700-residue one.

3.4 Docking Performance: Quality Assessment with Uncertainty Quantification

We next assess the solution-quality UQ results for protein docking. Similar to that for test 

functions, we assess r1-σ, the half length of (1 - σ) confidence interval [lb, ub], i.e., 

P (lb ⩽ iRMSD(x, x*) ⩽ ub) = 1 − σ . The metrics to assess r1-σ include η, the relative error 

(η = |
r1 − σ

iRMSD(x, x*) − 1|); and P , the portion of the confidence intervals that actually contain the 

corresponding native structure across all docking runs (10 for 10 models of each protein pair 

in each set).

Table 1 shows that the portions matched well with the confidence levels over all four data 

sets. Test set b and the CAPRI set did not have actual Kd values available and were thus 

impacted further by the uncertainty of Kd prediction, although the impact did not appear 

significant. There was a trade off between the confidence level and the length of the 

confidence interval, as narrower confidence intervals (with less η) corresponded to lower 

confidence levels. A balance seems to be at the 85% confidence level where the relative 

iRMSD uncertainty is around 25%.

3.5 Scoring Performance Empowered by UQ

For scoring models or predictions, two metrics are used for assessing the performance. The 

first is Spearman’s ρ for ranking protein-docking predictions (structure models) for each 

pair. The second is the area under the Precision Recall Curve (AUPRC), for the binary 

classification of each prediction being near-native or not. Considering that the near-natives 

are minorities among all predictions, AUPRC is a more meaningful measure than the more 

common AUROC.

With these two metrics we assess four scoring functions on predictions xi: (1) ΔE(xi), the 

MM-GBSW binding energy, i.e., the sum of the 8 features; (2) our random-forest energy 

model y(xi); (3) P(Χi|UK), the conditional probability that the ith prediction’s region is near-

native give that there is at least such one in the top K predictions; and (4) 

P (iRMSD(xi, x*) ⩽ 4), the unconditional probability that the ith prediction is near-native.
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For ranking assessment, from Fig. 5 we find that, whereas the original MM-GBSW model 

achieved merely 0.2 for Spearman’s ρ, our energy model using the same 8 terms as features 

in random forest drastically improved the ranking performance with a Spearman’s ρ around 

0.6 for training, benchmark test, and CAPRI test sets. Furthermore, the confidence scores 

P (Xi |UK) and P (iRMSD(xi, x*) ⩽ 4) further improved ranking. In particular, the 

unconditional probability for a prediction to be near-native achieved around 0.70 in ρ even 

for the benchmark and the CAPRI test sets. Note that this probability, a confidence score on 

the prediction’s near-nativeness, was derived from the posterior distribution of x*; thus it 

uses both enthalpic and entropic contributions.

For binary assessment on classifying the nativeness of predictions, the test set is split into a, 

26 pairs with known Kd values and b, 100 with predicted ones. From Table 2 we conclude 

that the MM-GBSW energy model performed close to random (AUROC close to 0.5) and 

the random forest energy model using the same features drastically improved AUROC to 

around 0.8 and AUPRC 0.54 ~ 0.62 across sets. Since AUROC is uninformative for highly 

imbalanced data (for instance, near-native predictions are 14% over all data sets), we focus 

on AUPRC. The next three probabilities from our BAL’s confidence scores improved the 

AUPRC to nearly 0.80 for the training and above 0.60 for test sets. The additional 

uncertainty in Kd prediction from test sets b and CAPRI did not noticeably impact the 

performance compared to test set a.

3.6 Overall Docking Performance

We summarize our docking results (BAL predictions xi ranked by confidence scores on their 

nativeness P (iRMSD(xi, x*) ⩽ 4)) in Table 3; and compare them to the ZDOCK starting 

results (ranked by cluster size roughly reflecting entropy)and the PSO refinement results 

(using the same energy model as BAL and ranked by the energy model). We use NK to 

denote the number of targets with at least one near-native predictions in top K; and FK the 

fraction of such targets among all in a given set (training, benchmark test, or CAPRI test 

set). Compared to the ZDOCK starting results and PSO refinements, BAL has improved the 

portion of acceptable targets with top-3 predictions from 23% and 26%, respectively, to 32% 

for the benchmark test set. Similar improvements were found for the CAPRI set. The portion 

for top 10 from BAL reached 40% compared to ZDOCK’s 33% over the benchmark test set. 

Note that BAL only refined top-10 starting results from ZDOCK thus this improvement was 

purely from optimization (no ranking effect).

We further visualize the test-set performance along with iRMSD estimation and UQ-derived 

confidence scores P (iRMSD(xi, x*) ⩽ 4)). Fig. 6A shows the actual versus the estimated 

iRMSD of the top-1 prediction for each test target; and Fig. 6B shows the actual iRMSD 

versus the confidence score of each such prediction. These predictions are colored according 

to the quality (iRMSD)of the starting structure from ZDOCK. Predicted iRMSD values were 

positively correlated with actual values and rarely above 4 Å for near-native predictions. 

High confidence scores were almost exclusive to good predictions with low iRMSD values 

whereas low confidence scores corresponded to a mixture of qualities.
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3.7 Case Studies

To examine the contributions of method components, such as energy model, quality 

estimation (iRMSD), optimization, and uncertainty quantification, we chose one successful 

and two failed cases for detailed analysis.

In the case of success (PDB: 1FFW, ZDOCK model 6), BAL improved prediction quality 

(iRMSD) from 3.4 Å to 2.2 Å and predicted a very close iRMSD of 2.5 Å. The 90% 

confidence interval (C. I.) in iRMSD, being [1.51 Å, 3.15 Å], contains the actual iRMSD of 

2.2 Å. We project the 12D posterior p(x* |D(t)) at the end of iteration t onto a 1D distribution 

in iRMSD(x*, x(t)) where x(t) denotes the prediction at the end of iteration t. Fig. 7 shows that 

the predicted and the actual iRMSD values were both contained in the 90% confidence 

interval through iterations and both converged to the peak of the narrower posterior as 

iterations progressed.

In a failed case (PDB: 1QFW IM:AB; ZDOCK model 6), BAL did improve docking quality 

by reducing actual iRMSD by 0.23 Å compared to the starting ZDOCK model. The 

predicted and the actual iRMSD of iterative predictions wer e also close, as seen in Fig. 8. 

However, uncertainty quantification failed as the 90% confide nce interval in iRMSD didn’t 

encompass the predicted or the actual iRMSD. This failure is attributed to the energy model, 

as the lowest-energy prediction x(t) was often far from the most-probable conformation 

(where the peak of the posterior is) and the search drifted toward a non-native funnel. We 

also note that predictions were of worse quality (larger iRMSD) over iterations.

In another failed case (PDB: 2UUY; ZDOCK model 8), BAL failed to improve docking 

quality compared to the starting structure (iRMSD increased from 3.74 Å to 3.85Å). A close 

look at Fig. 9 suggests that the predictions actually improved over iterations (judging from 

the real iRMSD in red lines). However, even though the posteriors became narrower over 

iterations and predicted iRMSD values were close to the peaks of the posteriors, the actual 

iRMSD values were way off the predicted; and even outside the 90% confidence interval 

([1.41 Å, 2.45 Å]). iRMSD prediction (quality estimation) is thus a major reason behind this 

failure.

3.8 Energy Landscapes and Association Pathways

We lastly investigate energy landscapes during BAL sampling. Our kriging regressor f(x) is 

an unbiased estimator and works even better than the noisy observations from the random-

forest energy model y(x). Energy landscapes are visualized for 37 near-native regi ons for 

the benchmark test set (Fig. S6 in the Supplementary Material) and for the CAPRI set (Fig. 

S7) (non-rigid cases only). Two examples are shown in Fig. 10, depicting a (multiple) 

funnel-like energy landscape with a clear association paths from the starting to the end or the 

native complex along gradient descents. Three more supplemental videos are provided to 

visualize the BAL sampling trajectories using protein structures.
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4 Conclusions

We present the first uncertainty quantification (UQ) study for protein docking. This is 

accomplished by a rigorous Bayesian framework that actively samples a noisy and expensive 

black-box function (i.e., collecting data D) while updating a posterior distribution p(x* |D)
directly over the unknown global optimum x*. The iterative feedback between Thompson 

sampling and posterior updating is linked by a Boltzmann distribution with adaptive 

annealing schedule and non-parametric kriging regressor. The inverse uncertainty 

quantification on the location of the global optimum can easily forward-propagate for the 

uncertainty quantification of any quality of interest as a function of the global optimum, 

including the interface RMSD that measures dissimilarity between protein-docking solutions 

and native structures.

We demonstrate the superb performances of Bayesian active learning (BAL) on a protein 

docking benchmark set as well as a CAPRI set full of homology docking. Compared to the 

starting points from initial rigid docking as well as the refinement from PSO, BAL shows 

significant improvement, accomplishing a top-3 near-native prediction for about one-third of 

the benchmark and CAPRI sets. Its UQ results achieve tight uncertainty intervals whose 

radius is 25% of iRMSD with a 85% confidence level attested by empirical results. 

Moreover, its estimated probability of a prediction being near-native achieves an AUROC 

over 0.93 and AUPRC over 0.60 (more than 4 times over random classification).

Besides the optimization and UQ algorithms, other contributions specific to protein docking 

build on and advance the state of the art, especially those studies addressing the challenges 

of modeling conformational changes,4,16,29,37 constructing energy models,3 investigating 

advanced sampling strategies,4,5,38 and studying these coupled factors altogether.3,7,39 We 

for the first time represent the conformational space for protein docking as a flat Euclidean 

space spanned by complex normal modes blending flexible- and rigid-body motions and 

anticipating protein conformational changes, a homogeneous and isotropic space friendly to 

high-dimension optimization. We also construct a funnel-like energy model using machine 

learning to associate binding energies of encounter complexes sampled in docking with their 

iRMSD. These innovations also contribute to the excellent performances of BAL; and lead 

to direct visualization of binding energy funnels and protein association pathways in 

conformational degrees of freedom. Looking ahead, there is still much room toward 

addressing aforementioned challenges for ab initio, flexible protein docking that can be both 

fast and accurate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the Bayesian active learning (BAL) algorithm. (A): A typical energy 

landscape projected onto the first principal component (PC1) just for visualization, using all 

samples collected. The dashed line indicates the location of the optimal solution. (B)-(D): 

The samples (dots) and the kriging regressors (light curves) in the 1st, 4th and 10th iteration, 

respectively. Samples are colored from cold to hot for increasing iteration indices and those 

in the same iteration have the same color. (E): The entropy (measuring uncertainty) of the 

posterior reduces as the number of samples increases. Its quick drop, as the number of 

samples increases from 30 to 100, corresponds to a drastic change of the kriging regressor, 

which suggests increasing exploitation in possible function basins. After 100 samples, the 

entropy goes down more slowly, echoing the smaller updates of the regressor. (F)-(H): The 

corresponding posterior distributions for (B)-(D), respectively.
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Figure 2: 
Optimization performances of PSO and BAL over four non-convex test functions in various 

dimensions. The performance metric is x − x* , the distance between the predicted and the 

actual global optima, and the box plot is generated using 100 optimization trajectories in 

each case.
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Figure 3: 
The root mean square error (RMSE) between the predicted and actual iRMSD for (A): 

Training set and (B): Test set. (C): The Spearman’s ρ between predicted y(x) and the real 

iRMSD for the training and test sets.
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Figure 4: 
The percentage of BAL predictions with iRMSD improvement against PSO for A. the 

training set, B. the benchmark test set, and C. the CAPRI set. The CAPRI set is not further 

split because it only contains 15 targets and is predominantly in the flexible category. The 

darker gray portions correspond to significant improvement (over 0.5 Å in iRMSD) 

compared to corresponding PSO predictions.
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Figure 5: 
Ranking performance shown in the bar plot (with error bar in black) of Spearman’s ρ for (A) 

Training set, (B) Test set and (C) CAPRI set, respectively. Scoring function a, b, c, and d in 

each figure correspond to the MM-GBSW model, our random-forest energy model, and 

confidence scores P (Xi |UK), and P (iRMSD(xi, x*) ⩽ 4), respectively.
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Figure 6: 
Actual iRMSD of the top-1 predictions versus predicted iRMSD or confidence scores in the 

benchmark test set. Each point representing the prediction for a target is colored according 

to the starting structure’s quality (iRMSD value).
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Figure 7: 
A successful case (PDB: 1FFW; ZDOCK model 6): The po sterior distributions of the native 

structure x* in its iRMSD to predictions x(t) over iterations t.
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Figure 8: 
A case with failure in UQ (PDB: 1QFW_IM:AB; ZDOCK model 6). The posterior 

distributions of the native structure in iRMSD did not encompass actual or predicted iRMSD 

in their 90% confidence intervals. The predictions, although better than the starting ZDOCK 

model, actually became worse over iterations, which is likely driven by a low-energy non-

native funnel in the energy model.
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Figure 9: 
A case with failure in optimization and UQ (PDB: 2UUY; ZDOCK model 8). The posterior 

distributions of the native structure in iRMSD did encompass predicted iRMSD, but not 

actual iRMSD, in their 90% confidence intervals. The predictions actually became better 

over iterations but did not improve over the starting ZDOCK model.
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Figure 10: 
The estimated energy landscapes along the first two principal components (PC) for two 

medium-difficulty docking cases with near-native starting ZDOCK models. The starting 

structures, BAL samples, lowest-energy predictions, and ground-truth native structures are 

represented as large black dots at the origin, black dots, white triangles, and white stars, 

respectively. All the color-coding energy values are in the unit of RT and relative to the 

lowest sample energy value within each region.

Cao and Shen Page 32

J Chem Theory Comput. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cao and Shen Page 33

Table 1:

Uncertainty quantification performances of BAL on protein docking based on η, the relative error in iRMSD; 

and P , the portion of confidence intervals from 100 runs encompassing the global optima. For η, means (and 

standard deviations in parentheses) are reported.

Dataset 1 – σ 0.99 0.95 0.90 0.85 0.80

Training
η 0.40 (0.23) 0.35 (0.18) 0.31 (0.17) 0.27 (0.15) 0.22 (0.10)

P 0.97 0.91 0.84 0.79 0.75

Test a η 0.43 (0.26) 0.39 (0.21) 0.28 (0.16) 0.25 (0.13) 0.21 (0.09)

P 0.95 0.87 0.83 0.75 0.73

Test b η 0.44 (0.22) 0.38 (0.16) 0.26 (0.14) 0.23 (0.10) 0.19 (0.08)

P 0.91 0.84 0.80 0.74 0.71

CAPRI η 0.43 (0.20) 0.35 (0.13) 0.27 (0.11) 0.22 (0.10) 0.20 (0.09)

P 0.91 0.85 0.81 0.74 0.70
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Table 2:

Binary assessment of our 5 scoring functions on a prediction xi being near-native or not: MM-GBSW energy 

model ΔE(xi), random-forest energy model y(xi), and 3 BAL-determined probabilities that a region/cluster Xi
is near-native given anative-containing list, the prediction xi in that region is near-native given a native-

containing list, or xi is near-native.

Dataset Assessment ΔE(xi) y(xi) P (Xi |UK) P (iRMSD(xi, x*) ⩽ 4 |UK) P (iRMSD(xi, x*) ⩽ 4)

Training
AUROC 0,489 0.806 0.903 0.944 0.967

AUPRC 0.241 0.624 0.684 0.771 0.796

Test a
AUROC 0.460 0.810 0.892 0.929 0.939

AUPRC 0.199 0.550 0.592 0.613 0.634

Test b
AUROC 0.490 0.789 0.847 0.898 0.927

AUPRC 0.203 0.540 0.571 0.609 0.615

CAPRI
AUROC 0.491 0.771 0.844 0.893 0.919

AUPRC 0.214 0.561 0.600 0.610 0.614
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Table 3:

Summary of docking results measured by the number and the portion of targets in each set that have an 

acceptable near-native top-1, 3, 5, or 10 prediction.

ZDOCK (Starting Point) PSO BAL

Dataset 
(size)

N1 (F1) N3 (F3) N5 (F5) N10 
(F10)

N1 (F1) N3 (F3) N5 (F5) N10 
(F10)

N1 (F1) N3 (F3) N5 (F5) N10 
(F10)

Training 
(50)

6 (12%) 11 
(22%)

13 
(26%)

17 
(34%)

9 
(18%)

15 
(30%)

17 
(34%)

20 
(40%)

14 
(28%)

19 
(38%)

20 
(40%)

22 
(44%)

Test 
(126)

20 
(16%)

29 
(23%)

33 
(26%)

41 
(33%)

26 
(21%)

33 
(26%)

39 
(31%)

45 
(36%)

32 
(25%)

40 
(32%)

42 
(33%)

50 
(40%)

CAPRI 
(15)

2(13%) 2 
(13%)

3 
(20%)

4 
(27%)

3 
(20%)

3 
(20%)

4 
(27%)

5 
(33%)

3 
(20%)

4 
(27%)

5 
(33%)

5 
(33%)
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