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Abstract
At the end of 2019, a new coronavirus (COVID-19) epidemic has triggered global public health concern. Here, a model

integrating the daily intercity migration network, which constructed from real-world migration records and the Suscep-

tible–Exposed–Infected–Removed model, is utilized to predict the epidemic spreading of the COVID-19 in more than 300

cities in China. However, the model has more than 1800 unknown parameters, which is a challenging task to estimate all

unknown parameters from historical data within a reasonable computation time. In this article, we proposed a pseudo-

coevolutionary simulated annealing (SA) algorithm for identifying these unknown parameters. The large volume of

unknown parameters of this model is optimized through three procedures co-adapted SA-based optimization processes,

respectively. Our results confirm that the proposed method is both efficient and robust. Then, we use the identified model to

predict the trends of the epidemic spreading of the COVID-19 in these cities. We find that the number of infections in most

cities in China has reached their peak from February 29, 2020, to March 15, 2020. For most cities outside Hubei province,

the total number of infected individuals would be less than 100, while for most cities in Hubei province (exclude Wuhan),

the total number of infected individuals would be less than 3000.
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1 Introduction

Infectious diseases have been raging in the world many

times in history. For example, the Black Death (also known

as the Pestilence) in the fourteenth century lasted for 30

years in Europe, with more than 25 million deaths,

accounting for about 1/3 of the European population at that

time [2]. In 1918, Spanish influenza, which initially out-

breaks within the U.S. military, eventually swept the world,

infected nearly 600 million people, and caused about 40–50

million death [3]. In 2003, SARS, with a fatality rate of

11%, spread from Guangdong Province to the whole

country, bringing huge losses to China’s national economy

[4]. In 2009, the H1N1 flu outbreak spread to 214 countries

and regions, causing 1, 220 deaths in a few months [5]. In

2014, the outbreak of the Ebola epidemic resulted in

28,637 infections and 11,315 deaths. At the end of 2019, a

highly contagious disease, which is caused by infection of

the SARS-CoV-2 virus and named the 2019 Coronavirus

Disease (COVID-19), broke out and caused millions of

infections [6, 7]. The spreading trends of the COVID-19,

including when the peaks would occur, how many people

would eventually be infected, the final infection rate of the

population of each city, and which cities would run the risk

of being out of control, are the core questions that need to

be answered.

Scholars from various disciplines have participated in

the research on epidemic transmission and control. The

epidemic spreading model can be traced back to the
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analysis of smallpox by Daniel Bernoulli in 1760 [8],

while the most classic epidemic spreading model is the

Susceptible–Infected–Removed (SIR) model proposed by

Kermack and McKendrich in 1927 [9]. Based on the SIR

model, scholars found that there exists an epidemic

threshold depended on the infection and recovery rate. If

the infection rate is greater than a threshold, epidemics

will spread on a large scale in the population. In 1932,

Kermack and McKendrich established the Susceptible–

Infected–Susceptible (SIS) model [10], which is similar to

the SIR model, except that infected individuals would

return to a susceptible state instead of an immune state

after recovery. In 1992, for infectious diseases with a

limited immune period, J. Mena-Lorca and et al.

improved and proposed a more complex Susceptible–In-

fected–Removed–Susceptible (SIRS) model [11]. Inspired

by these pioneering studies, a lot of efforts have been

devoted to investigating epidemic spreading under various

circumstances [12, 13]. One of the basic problems in

theoretical epidemiology is to study the epidemic

threshold of classic epidemic spreading models, e.g., SIR,

SIS, and SEIR, in various networks, such as scale-free

network and its extension [12, 13], complex heteroge-

neous networks [14], the real-world Oregon graph

[15, 16], adaptive networks [17], and the complete

worldwide air travel network [18]. Previous literature has

unveiled that the epidemic threshold is highly related to

the spectral radius of the adjacent matrix of the network

[19, 20]. Other researches focused on developing epi-

demic spreading models in different scenarios and the

temporal evolution [21, 22]. However, to our best

knowledge, few of them focus on developing models to

describe and predict the dynamic of real epidemic

spreading cases.

The migration of individuals, especially intercity

migration, plays a core role in the spread of SARS-CoV-2

[7, 18]. Wuhan is a metropolis with a population of more

than 11 million and is also one of the transportation hubs

in China. During the Spring Festival in 2019, 5 million

people set off from Wuhan to other cities in China.

Large-scale migration greatly enhanced the spread of

COVID-19 from outbreak areas to other cities in China.

Therefore, the intercity migration data is also an impor-

tant indicator for describing and predicting the spread of

the virus. Here, daily intercity migration data for 367

cities in China are collected and utilized to construct

intercity migration networks. Further, a model established

by combining complex network theory and the classic

SEIR model can be used to describe how COVID-19

spreads from Wuhan to other cities in China. This

dynamic model has more than 1800 unknown parameters

to be determined from the historical data. The inference

of model parameter values from rare historical time-

course data can be reformulated as an optimization

problem and is still one of the most challenging tasks

[23, 24]. Evolutionary algorithms have outstanding per-

formance in solving nonlinear optimization problem

[25, 26]. Hence, it is worth developing evolutionary

algorithms, which should be robust against noise, efficient

in computation, and flexible enough to meet different

constraints for estimating these 1800 unknown parame-

ters. In this article, a novel pseudocoevolutionary simu-

lated annealing algorithm is proposed to solve this

problem [27]. Results show that the proposed algorithm

successfully identified optimal parameter sets of this

epidemic spreading model. Also, the model can fit the

number of infected, recovered individuals, and the death

toll of each city with a minor error.

Based on the model, we find that migration control was

extremely effective in controlling the spread of the epi-

demic. If the government continues strict migration con-

trol, the infections numbers of most cities in China would

peak between mid-February to early March 2020. The peak

number of infections in most cities is smaller than 100,

while the proportion of infected individuals in each cities

population is smaller than 0.01%. However, if the epidemic

spreading is out of control, it would infect about 1% of the

population in Hubei province, while infecting about 0.3%

population outside Hubei province. The peak number of

infections in most cities would come at the end of April

2020. Evidence shows that China has controlled the

spreading of COVID-19.

The main contributions of this study are as follows:

• First, we integrate daily intercity migration data and

traditional SEIR model to develop an extended SEIR

model;

• A novel pseudocoevolutionary simulated annealing

algorithm is proposed. Additionally, we compared the

estimation result with simulated annealing, particle

swarm optimization, and pattern search algorithms.

Results show that the proposed algorithm provides the

best results;

• The pandemic situation of China has been investigated.

Results show that this technique can accurately reflect

the spread of COVID-19. Study shows that migration

control is extremely effective in controlling the spread

of the epidemic.

The rest of this paper is organized as follows. Section 2

reviews related works. The description of data is intro-

duced in Sect. refsec:dataspsdescription, including official

released confirmed cases, recovered cases, death toll, and

intercity migration data. In Sect. 4, the SEIR-migration

model and pseudocoevolutionary simulated annealing

algorithm are introduced. Then, the experimental design
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and results are shown in Sect. 5. Finally, conclusion and

future work are presented in Sect. 6.

2 Literature review

Complex network theory is a powerful tool for researchers

to study epidemic spreading. With the development of

complex network theory, a large amount of work has

investigated the effect of the structure of complex networks

(such as degree of relevance, clustering coefficients, com-

munity structure, hierarchical structure, and edge weights)

on the propagation properties of infectious diseases (such

as spreading rate, scale of propagation, and epidemic

threshold) [13, 28]. In 2001, Pastor-Satorras et al. studied

the propagation model on scale-free networks and proved

that scale-free networks are weak against infectious dis-

eases and can maintain spreading at any small infection

rate [12, 13]. In the same year, May and Lloyd investigate

the effect of network scale on spreading behavior of scale-

free networks and pointed out that there are positive

propagation thresholds for limited scale-free networks [29].

In 2002, Newman investigated the SIR propagation model

in a scale-free network and proved that there is an epidemic

threshold when the cutoff value of the degree of nodes in

the network is relatively small [30]. In 2007, Toroczkai

et al. proposed the concept of dynamic proximity networks

based on the premise of dynamic contact networks [31].

Ball et al. constructed a model that includes local adjacent

and global accidental connections, and results showed that

the degree distribution and accidental connections have a

significant effect on the spreading of epidemic [32]. In

2018, Wang et al. proposed a dynamic epidemiological

model based on complex routing in the form of multiple

routes [33].

Epidemic threshold bc plays an important role in epi-

demic spreading. For a large-scale system, when the

infection rate b[ bc, the proportion of infected individuals

will reach a limited proportion. Otherwise, if b\bc, the

proportion of infected people will reduce to almost zero.

Therefore, to control the outbreak of epidemics, reducing

the infection rate is one of the effective ways. Research

shows that frequent absorption, wearing a mask, and dis-

connecting from the infectious individuals will reduce the

probability of infection and then effectively control or slow

the outbreak of an epidemic [34]. Additionally, studies

have shown that quarantining, closing schools, and

restricting individuals from attending public events can

make people’s contact networks sparse and reduce infec-

tion rate [35]. In 2011, Jin et al. developed an epidemio-

logical model of influenza A, demonstrating that an

immunization strategy targeting specific populations with

given connectivity can greatly reduce epidemic spreading

[36]. Two years later, Guo et al. introduced a continuous-

time adaptive susceptible–infectious–susceptible (ASIS)

model, proving that the adaption of the topology can inhibit

infection [37]. In the same year, Peng et al. investigate

several epidemiological models, including susceptibility,

infection, and incomplete vaccination segment models, on

the Watts–Strogatz small world, Barabasi–Albert scale-

free, and random scale-free networks, for analyzing the

epidemic threshold and infection rate [38]. More infor-

mation can be found in the review papers [39]. However, to

our understanding, most of the literature about epidemio-

logical models analyzing the propagation in a network is

based on analytical methods and large-scale simulations,

without the support of real-world data.

A common approach for explaining and analyzing real-

world phenomena is to establish epidemiological models

based on real-world observation data. These epidemio-

logical models are always nonlinear dynamical models

with high parameter dimension, which is often presented

as a set of ordinary differential equations (ODEs) or

discrete-time equations containing a large volume of

unknown parameters [40]. The identification of a large

volume of unknown parameters from historical observa-

tion data is critical for judging the performance of an

epidemiological model. The method for identifying

unknown parameters can be classified as ‘‘reverse engi-

neering techniques,’’ which usually formulate the problem

of parameter identification into a nonlinear optimization

problem that minimizes an objective function representing

the fitness of the model with respect to the observation

data [23, 24]. The identification results are highly

dependent on the optimization algorithm. Due to the

simplicity and ease of use, evolutionary algorithms are

widely utilized to identify unknown parameters of non-

linear dynamic models [41–44]. However, for nonlinear

dynamical systems with high parameter dimension, the

objective function is always complicated and has

tremendous local minima. Parameter estimation algo-

rithms face a high possibility of converging at local

optima but not global minima [45]. Additionally, one

parameter identification trial always required tens of hours

computation time [46, 47]. Therefore, the parameter

estimation problem is still a challenging task and even a

bottleneck for nonlinear dynamical models with high

parameter dimension. Evolutionary algorithms have been

extensively used in nonlinear optimization problems and

shown that can provide satisfying results [25–27, 48]. In

this article, a new pseudocoevolutionary algorithm is

proposed to solve this hard engineering problem, and the

more detail information about hard engineering can be

found in [49–52].
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3 DATA

3.1 Official data of COVID-19 cases

Testing is the only way to know whether a susceptible

individual is infected or not. At present, there exist two

kinds of tests (techniques) for testing COVID-19. One kind

of tests (techniques) checks the presence of the COVID-19

virus, aiming to establish whether an individual is currently

infected. The other kind of tests examines the presence of

antibodies, which can figure out whether an individual has

been infected in the past, even this individual has recovered

and not carried COVID-19 virus now. A summary of the

current state of testing technologies associated with their

implementations can be found in [53]. Now, the most

common way to perform a COVID-19 test is adopted by

detecting the viral RNA through polymerase chain reaction

(PCR). In this work, the official number of infected cases

only contains individual who has a positive COVID-19

testing result. In China, Wuhan is received the first con-

firmed case of COVID-19 infection on December 8, 2019

[6]. Most other cities in China released data of COVID-19

infections around January 20, 2020. The data of COVID-19

infections, recovery, and death toll used in the study were

derived from official data released by the National Health

Commission of China. Hubei Province was the epicenter of

the epidemic in China. Most of the infections occurred in

Hubei Province (as shown in Fig.1), while the number of

other provinces is relatively small. In this study, one of our

aims is to develop an epidemiological model that accu-

rately describes how the number of infections, recovery,

and death toll change over time in various cities.

3.2 Intercity travel data

COVID-19 mainly spread through human-to-human

transmission. In this case, the intercity migration of

infected and exposed individuals has become the main

driving force for COVID-19 to spread from one city to

another. Chinese New Year (mid-January to early February

2020) is the most important holiday for Chinese people. In

2020, the period around during the Spring Festival holiday

in 2019 is approximately from mid-January to early

February 2020. Wuhan, as one of the most important

transportation hubs in China and the world, is one of the

cities with the largest flow of entry and exit around the

Spring Festival. China’s Ministry of Transport estimates

that Wuhan has about 5 million trips, while China as a

whole has about 3 billion trips during the Spring Festival

holiday. We have collected daily intercity travel data for
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Fig. 1 Daily data of COVID-19 infections, recovery, and death toll in

5 cities in Hubei province and 5 metropolis in China from December

8, 2019, to February 13, 2020. a Cumulative number of infections of 5

cities in Hubei; b cumulative number of recovery of 5 cities in Hubei;

c cumulative number of death toll of 5 cities in Hubei; d cumulative

number of infections of 5 metropolis; e cumulative number of

recovery of 5 metropolis; f cumulative number of death toll of

metropolis (color online)
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367 cities in China. The data provide the intensity of

population migration and also indicate the strength of the

population in and out of various cities. Based on these data,

we can develop the migration networks (shown in Fig. 2).

After the outbreak of COVID-19, the Chinese government

has rapidly restricted the intercity migration since January

23, so the strength of intercity migration has dramatically

reduced since January 23. Figure 3 shows the total inflow/

outflow of travelers of 6 metropolis in Chinese. Note that

after migration control, the strength of the intercity

migration of Wuhan has almost reduced to zero. The

control measure effectively reduced the speed of virus

transmission and ultimately successfully controlled the

further spread of the virus.

Base on this data, we can construct the migration matrix,

which is given as

MðtÞ ¼

m11ðtÞ m12ðtÞ � � � m1KðtÞ
m21ðtÞ m22ðtÞ � � � m2KðtÞ

..

. ..
. . .

. ..
.

mN1ðtÞ mN2ðtÞ � � � mKKðtÞ

2
66664

3
77775
; ð1Þ

where K ¼ 367 is the number of the cities, and mijðtÞ is the

migrant volume from city i to city j at time t. Migration

matrix M thus effectively describes the network of cities

with human movement constituting the links of the net-

work. Figure 3 plots the daily total inflow and outflow

migration strengths of Wuhan, showing the abrupt decrease

in migrant strength after the city shut down all inflow and

outflow traffic from February 01, 2020.

4 The SEIR-migration model
and pseudocoevolutionary simulated
annealing algorithm

First, we will give a brief description of human contact

networks with multiple sub-networks representing a city or

administrative regions for epidemic spreading propagation.

A real human contact network consists of multiple sub-

networks, just as a country consisting of many cities,

towns, and villages. Here, we consider a human contact

network G ¼ ðV;EÞ contains K sub-networks

fG1;G2; . . .;GMg. V stands for the set of nodes, and E is

the set of edges. Here, each node represents an individual.

If two individuals/nodes vi and vj have contacts, there will

be a link ei;j between them, otherwise, no connection

(shown in Fig. 4a). Note that nodes in the same sub-net-

work have plenty and strong connections with network

neighbors, which results in a highly clustered sub-network.

However, nodes belonging to different sub-networks have

less and weak connections. In this work, a sub-network can

be treated as a city, while nodes in a sub-network stand for

citizens. The K sub-network (city) forms a huge contact

network of a country (shown in Fig. 4b).

In the classic SIR model, each individual can be in three

different states: infected (I), susceptible (S), and recovered

(R). In an epidemic spreading case, infected individuals (I)

can infect susceptible individuals (S) through human con-

tact network, while an infected individual can be cured and

turn into recovery state (R). Once an infectious disease

starts to spread in a certain sub-network, due to the

Fig. 2 Intercity travel network

of main cities in China on

February 10, 2020. Node size

represents the inflow volume,

while arrows show direction.

Color of lines indicates

migration strength (color

online)
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denseness of the sub-network nodes and the short distance

between neighboring nodes, the epidemic will outbreak

within the sub-network in a short time (G1 in Fig. 4b).

With the epidemic spread, plenty of susceptible nodes in

the network transit into infected nodes. Some infected

nodes have connections with nodes in other sub-network.

Then, the virus can spread from one sub-network to another

sub-network through the nodes connecting two sub-net-

works and eventually spread to the entire network (G2 in

Fig. 4b).

4.1 SEIR-Migration model

Studies reveal that the median incubation period of

COVID-19 to be 5.6 days (95% CI 4.8-6.3) [54]. Exposed

individuals can also infect other individuals during the

incubation period. Each node in human contact networks

may assume one of four possible states in the epidemic

spreading process, namely susceptible (S), exposed (E),

infected (I), and recovered/removed (R). For sub-network

(city) j, the number of nodes in the four states SjðtÞ, EjðtÞ,
IjðtÞ, and RjðtÞ, at time t.
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Fig. 3 Total inflow/outflow of travelers of 6 metropolis in Chinese. a Travelers to these 6 metropolis; b travelers from these 6 metropolis (color

online)

(a) An illustrated human contact network with
susceptible, infected, and recovered individuals.

(b) A human contact network with 3 sub-networks
and an epidemic spreading from one sub-network
to another.

Fig. 4 An illustrative example of epidemic spreading a human contact

network including three sub-networks (cities) G1, G2 and G3. a Virus

spread from person to person through a human contact network. A

susceptible individual may become an infection if he/she contacts

with an infection. A red man with virus icon on the head represents an

infection who can spread virus to susceptible neighbors (light blue

man), and the solid line between two individuals means they have

closely contacted and virus can transmit from one person to the other.

An infected individual can be cured and then become a recovered

individual (light green mean); b a human contact network with three

highly clustered communities (cities) of infected, susceptible, and

recovered individuals. (Color online)
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Here, mijðtÞ represents the volume of individuals mov-

ing from city i to city j at time t. Here, we assume the

population of city j is Pj. Then, the number of infected

individuals moving from city i to city j is

DIin
ij ðtÞ ¼

IiðtÞmijðtÞ
Pi

: ð2Þ

Also, the volume of individual migrating from city j isPN
i¼1 mji. Then, the number of infected individuals moving

out of city j is

DIout
j ðtÞ ¼ IjðtÞ

PN
i¼1 mjiðtÞ
Pj

; ð3Þ

Thus, the dynamic change of the number of infected cases

in city j at time t is given by

DIjðtÞ ¼ jjEiðtÞ � cjIjðtÞ

þ kI
XN
i¼1

IiðtÞmijðtÞ
PiðtÞ

� � 

� IjðtÞ
PN

i¼1 mjiðtÞ
PjðtÞ

!
;

ð4Þ

where DIjðtÞ ¼ Ijðt þ 1Þ � IjðtÞ. Moreover, if city i has a

population of Pi and the eventual percentage of infection is

di, then Ns
i ¼ diPi. Thus, we have

Ns
i ðtÞ ¼ SiðtÞ þ EiðtÞ þ IiðtÞ þ RiðtÞ; ð5Þ

where Ns
i is the eventual number of infections. Similarly,

the dynamic changes of infected, susceptible, recovered

individuals, and the population of a city can be obtained.

Then, we have the modified SEIR model with considera-

tion of human migration dynamics as follows:

DIjðtÞ ¼ jjEiðtÞ � cjIjðtÞ

þ kI
XN
i¼1

IiðtÞmijðtÞ
PiðtÞ

� � 

� IjðtÞ
PN

i¼1 mjiðtÞ
PjðtÞ

!
;

DEjðtÞ ¼
bj

Ns
j ðtÞ

IjðtÞSjðtÞ

þ aj
Ns
j ðtÞ

EjðtÞSjðtÞ � jjEiðtÞ

þ
XN
i¼1

EiðtÞmijðtÞ
PiðtÞ

� �

� EjðtÞ �
PN

i¼1 mjiðtÞ
PjðtÞ

;

DSjðtÞ ¼ �
bj

Ns
j ðtÞ

IjðtÞSjðtÞ

� aj
Ns
j ðtÞ

EjðtÞSjðtÞ þ
XN
i¼1

SiðtÞmijðtÞ
PiðtÞ

� �

� SjðtÞ
PN

i¼1 mjiðtÞ
PjðtÞ

;

DRjðtÞ ¼ cjIjðtÞ;

DPjðtÞ ¼
XN
i¼1

mijðtÞ �
XN
i¼1

mjiðtÞ;

DNs
j ðtÞ ¼ kI

XN
i¼1

IiðtÞmijðtÞ
PiðtÞ

� � 

� IjðtÞ
PN

i¼1 mjiðtÞ
PjðtÞ

!
þ
XN
i¼1

EiðtÞmijðtÞ
PiðtÞ

� �

� EjðtÞ
PN

i¼1 mjiðtÞ
PjðtÞ

þ
XN
i¼1

SiðtÞmijðtÞ
PiðtÞ

� �

� SjðtÞ
PN

i¼1 mjiðtÞ
PjðtÞ

;

ð6Þ

where DEjðtÞ ¼ Ejðt þ 1Þ � EjðtÞ, DSjðtÞ ¼ Sjðt þ 1Þ
�SjðtÞ, DRjðtÞ ¼ Rjðt þ 1Þ � RjðtÞ, DNs

j ðtÞ ¼ Ns
j ðt þ 1Þ

�Ns
j ðtÞ, and DPjðtÞ ¼ Pjðt þ 1Þ � PjðtÞ. The physical

meaning of each parameter of model (6) is presented in

Table 1, while a detailed description of the model is given

in [1]. Note that we assume the recovered individuals are

assumed to stay in the city j.

4.2 Parameter identification problem

Model (6) has a large volume of unknown parameter. The

parameter estimation problem can be transformed into a

nonlinear optimization problem (NLP). The purpose of

optimization is to find a set of suitable parameters to make

the estimated growth trajectory that matches historical

data. Here, we define Ij;0 ¼ Ijðt0Þ and Ej;0 ¼ Ejðt0Þ, which

are the initial number of infected and exposed individuals

in city j, respectively. Note hat Wuhan is the epicenter of

the COVID-19 pandemic in China, with Hubei province

being the region immediately surrounding it. Therefore, it

is reasonable to assume that Wuhan has initially infected

individuals. Then, IWHðt0Þ;EWHðt0Þ 6¼ 0, and

Ijðt0Þ;Ejðt0Þ ¼ 0 for all other cities, where IWHðt0Þ and

EWHðt0Þ represent the initial number of infected and

exposed individuals in Wuhan, respectively. For city j,

there exist a set of unknown parameters, i.e.,

hj ¼ faj; bj; cj; jj; djg: ð7Þ
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Then, the unknown parameter set is

H ¼ fIWH;0;EWH;0; kI ; h1; h2; . . .; hKg. Totally, there exist

5K þ 3 unknown parameters, where K is the number of

cities. Thus, an enormous effort of computation is required

to estimate the suitable parameters.

Let XjðtÞ be the extended state vector, i.e., XjðtÞ ¼
½STj ðtÞ ET

j ðtÞ ITj ðtÞ RT
j ðtÞ PT

j ðtÞ ðNs
j ðtÞÞ

T �T , then, we define:

XðtÞ ¼ ½XT
1 ðtÞ XT

2 ðtÞ � � � XT
KðtÞ�

T ð8Þ

Model (6) can be reformulated as

DXjðtiÞ ¼ f ðXjðtiÞ;XðtiÞ Hj Þ; ð9Þ

where f(x) is the right side of (6), and H is the set of

unknown parameters. Note that DXjðtÞ ¼ Xðti þ 1Þ � XðtiÞ,
then, Eq. (9) can be reformulated as:

Xjðti þ 1Þ ¼ XjðtiÞ þ f ðXjðtiÞ;XðtÞ Hj Þ: ð10Þ

Finally, the parameter estimation problem can be formu-

lated as the following constrained nonlinear optimization

problem:

P0: min
H

PK
j¼1

PN
i¼1

wijðIðtiÞ � Îðti Hj ÞÞ2

s:t:

ðiÞ Xjðti þ 1Þ ¼ XjðtiÞ þ f ðXjðtiÞ;XðtiÞ Hj Þ:
ðiiÞ HU �H�HL;

ðiiiÞ j ¼ 1; 2; . . .;K;

8><
>:

ð11Þ

where Îðti Hj Þ represents the estimated number of infected

individuals at time ti with parameter set H and initial

condition fIWH;0;EWH;0g. wij stands for the weighted

coefficient. The unknown parameter set is bounded

between HL and HU . In this work, an inverse approach is

taken to find the unknown parameters and states by solving

(11).

4.3 Proposed pseudocoevolutionary simulated
annealing algorithm

Table 1 Parameter set of model

(6)
bj: The rate at which the infected individuals infect the susceptible individuals in city j

aj: The rate at which the exposed individuals infect the susceptible individuals in city j

jj: The rate at which exposed individuals become infected in city j

cj: The recovery rate in city j

kI : The possibility of an infected individual moving from one city to another

dj: The eventual percentage of infections in city j

Ij;0: The initial number of infected individuals in city j

Ej;0: The initial number of individuals in city j

Algorithm 1 Sub-algorithm for calculating time series Ij(ti)
Input: Parameter set and initial number of infected and exposed individuals of each city Θ =

{IWH,0, EWH,0, kI , θ1, θ2, · · · , θK}, where θj = {αj , βj , γj , κj , δj} and j = 1, 2, · · · K;
Output: A time series {I(t0), I(t1), · · · , I(tN )};

Initialization :
1: Set IWH)(t0) = IWH,0 and EWH)(t0) = EWH,0, otherwise Ij)(t0) = 0 and Ej(t0) = 0; Rj(t0) =

0; Ns
j (t0) = δjPj(t0), Sj(t0) = N

(
j t0) − Ij(t0) − Ej(t0); X(t0) = [XT

1 (t0), XT
2 (t0), · · · , XT

K(t0)]T and
Xj(t0) = [ST

j (t0), ET
j (t0), ITj (t + 0), RT

j (t0, PT
j (t0), (Ns

j (t0))T ]T .
LOOP Process

2: for i = 0 to N − 1 do
3: Calculate X(ti + 1) from model (6), namely,

Xj(ti + 1) = Xj(ti) + f(Xj(ti), X(t) |Θ).

Since Ij(ti) ∈ Xj(ti) and Xj(ti) ∈ X(ti), we can derive Ij(ti) from X(ti).
4: end for
5: return I(t0), I(t1), , I(tN )
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Algorithm 2 Sub-algorithm for estimating the optimal parameter set Θ̄∗

Input: The initial parameters set of all the K cities Θ0 and the set of index (Φ = {a1, a2, · · · , an},
1 ≤ aj ≤ K) of the city, of which the parameters need to be optimized.

Output: Optimal parameter set Θ̄∗;
Initialisation :

1: Initialize temperature T and set
Θcurrent = Θ0

Compute the value of objective function from Algorithm-1 and objective function (11) with parameter
set Θcurrent

costcurrent =
K∑

j=1

N∑

i=1

wij(I(ti) − Î(ti
∣∣Θ̄current ))2,

Initialize temperature T and random starting point

Θ̄0 = ΘL + krand ∗ (ΘU − ΘL),

where krand is a randomly generated real number between 0 and 1.
LOOP Process

2: for iiter = 0 to imax do
3:

iiter = iiter + 1,

tempiter = 0,

Θprevious = Θcurrent

costprevious = costcurrent

4: while tempiter ≤ nrep do
5:

tempiter = tempiter + 1.

6: if j ∈ Φ then
7: Select a new set of parameters (θj) from the neighborhood,

θj ← θj

8: else
9: Keep θj = θj,0.

10: end if
Compute the value of objective function (11) and derive δ

δ = costcurrent − costprevious.

11: if δ < 0 then
12: Accept new parameter set.
13: else
14: Accept new parameter set with probability exp(−δ/T ).
15: end if
16: end while
17:

T = α ∗ T, (0 < α < 1).

18: end for
19: return Θ̄∗

10
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Note that the cumulative number of infections varies

widely by cities. For example, Wuhan, the city with the

largest number of infected people in China, is infected by

more than 50,000 people. However, in some small cities,

only a dozen people are infected, or even no one has been

infected yet. Therefore, the weighted coefficient of the

objective function 11 should be carefully adopted. In this

work, wij is defined as follows:

wij ¼
aPN

i ðIjðtiÞÞ
: ð12Þ

If the city is Wuhan, we have a ¼ 5000; otherwise, a ¼ 1.

In our model, each city has a set of unknown variables

hj ¼ faj; bj; cj; jj; djg, which controls the size of infected

population, spreading rate, and the death rate.

Note that this model has 5K þ 3 parameters, namely the

proposed model has a high-dimension unknown parameter

set, which should be optimized. The search space for these

optimization problems may be highly nonlinear and con-

tain many local minima. Evolutionary algorithms have

been extensively used in nonlinear optimization

[25, 26, 48]. In this article, we proposed a new pseudo-

coevolutionary algorithm to solve this inverse engineering

problem. This main procedure tunes all the parameters,

while the other two processes tune part of the parameters.

The parameter estimation problem is separated into three

co-adapted SA-based optimization processes. This main

procedure tunes all the parameters, while the other two

processes tune part of the parameters.

Algorithm 3 Pesudocoevolutionary algorithm for estimating the optimal parameter set Θ∗

Input: The set of unknown parameters and initial number of infected and exposed individuals of each city
Θ = {IWH,0, EWH,0, kI , θ1, θ2, · · · , θK}, where θj = {αj , βj , γj , κj , δj} and j = 1, 2, · · · K;

Output: Optimal parameter set Θ∗;
Initialisation : Initialize temperature T , and random starting point

Θ0 = ΘL + krand ∗ (ΘU − ΘL),

The index of adopted cities is Φ = 1, 2, · · · , K.
1: Apply Algorithm-2 to optimize parameter set to achieve Θ̄∗.

Θ0 ← Θ̄∗

LOOP Process
2: for i = 0 to M do
3: for j = 1 to K do
4: Set the model parameter as Θ0 and apply Algorithm-1 to derive

{Î(t0 |Θ0 ), Î(t1 |Θ0 ), · · · , Î(tN |Θ0 )}.
5: Using evaluation criteria (13) to derive RMSPEj for each city.
6: Find the index of the M1 largest RMSPEj and set Φ = {a1, a2, · · · , aM1}, where ai represents the

index of the i-th largest RMSPEj.
7: Apply Algorithm-2 to optimize parameter set to achieve Θ̄∗.

Θ0 ← Θ̄∗

8: Randomly generate M2 unique integers ai between 1 and K and set Φ = {a1, a2, · · · , aM2}.
9: Apply Algorithm-2 to optimize parameter set to achieve Θ̄∗.

Θ0 ← Θ̄∗

10: end for
11: end for

Θ∗ ← Θ0

12: return Optimal parameter set Θ∗.
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1. In the main procedure, we tune the all the 5K þ 3

parameters. Then, we adopt root mean square percent-

age error (RMSPE) as follows:

RMSPEj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i¼1

Îjðti Hj Þ � IjðtiÞ
IjðtiÞ

� �2

vuut ; ð13Þ

Here, RMSPEj is utilized as the criterion to measure

the difference between the real daily infection data and

the estimated infected individuals generated by this

extended SEIR-migration model with an optimal

parameter set H;

2. In this process, we find the index of the M1 largest

RMSPEj and only tune the parameter sets of the

corresponding cities.

3. In order to avoid that the parameters of some cities

have not been adopted and adjusted individually during
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Fig. 5 Estimated historical data and prediction of the number of infected individuals in 17 selected cities in China for the next 150 days
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the whole identification process, we randomly select

M2 cities and adjust their parameters.

The whole optimization procedure is summarized in

Algorithm-3, while Algorithm-2 is utilized for searching

optimal parameters in subspace in each step.

5 Experimental results

The National Health Committee of China has published

data on the spread of the COVID-19 epidemic from Jan-

uary 20, 2020. We use these historical data for parameter

estimation of the SEIR-migration model (6). The pseudo-

coevolutionary simulated annealing algorithm, as described

in Sect. 4.3, is adopted to find the optimal parameter set of

this model. Since the parameters of the model are all

estimated from historical data through reverse engineering

techniques, the accuracy and integrity of the data are

essential. In the early stage of COVID-19, people do not

know much about this virus, and the diagnostic techniques

are limited. Therefore, during the early stage of the out-

break of COVID-19, the historical data of Wuhan City are

possible to deviate from the true value in a wide range.

Hence, we reduce the weighting coefficients corresponding

to Wuhan data in the objective function. In addition, after

the outbreak of the epidemic, Chinese government has

adopted effective quarantine measures and promoted epi-

demic prevention knowledge. These measures can effec-

tively reduce the infection rate in each city. Therefore, the

parameters in the model should be time-varying. Never-

theless, to simplify the calculation, we assume that these

parameters are constant over the whole process. We also

applied traditional simulated annealing, particle swarm

optimization, genetic algorithm, and pattern search method

to estimate the parameters of the model. However, these

methods cannot provide a satisfied result or cannot even

converge in an acceptable computation time (such as one

day), while the proposed method can converge to the

global optima in two hours.

This model can estimate the daily number of infected,

exposed, and recovered individuals in all 367 cities. Due to

space limitations, we only show the results of 17 cities in

Fig. 5. Assuming that the migration control measures,

infection rate, and recovery rate will remain unchanged for

a period of time in the future, this model can provide a

prediction of the amount of actively infected individuals in

each city, as shown in 5. Results clearly show that the

number of actively infected individuals has reached or

peaked in most cities in China from February 20 to March

15, 2020. The prediction results show that there will be few

new confirmed cases from early March, and the number of

actively infected individuals will gradually decrease. The

pseudocoevolutionary simulated annealing algorithm suc-

cessfully finds the optimal parameter set:

a ¼ 0:5631 � 0:0161, b ¼ 0:2742 � 0:0178, c ¼ 0:0509�
0:0007, j ¼ 0:1310 � 0:0035. Figure 6a shows the esti-

mated peak number of infected individual in each province,

while Fig. 6b reveals the estimated total number of infec-

ted individuals in each province. Results show that the

number of infections in most provinces is smaller than

1000. It is reasonable to assume that our knowledge of the

COVID-19 will gradually increase. Then, the medical

treatment will improve and the recovery rate will increase

each day. We assume the recovery rate will increase 0.0005

each day, namely every 20 days, the number of daily

recovered individuals increases by 1% of the total number

of infected individuals. Then, most cities in China will

have almost zero infections before July 2020. Therefore,

we can claim that China has already controlled the

spreading of COVID-19 in China.

6 Conclusion

The novel Coronavirus Disease 2019 (COVID-19) epi-

demic has caused 75,204 confirmed cases and 2,006 death

utile February 19, 2020, which triggers global public health

concern. Peak prediction informing social and non-
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Fig. 6 a Peak number of infections in each province; b estimated total number of infected individuals eventually infected in a province
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pharmaceutical prevention interventions is illuminating but

remains difficult to achieve accuracy. Intercity migration is

one of the essential factors in the spread of the disease. We

construct migration networks of 367 cities in China. An

SEIR-migration model with more than 1800 unknown

parameters is utilized to model the spreading of COVID-19

in the 367 cities in China. We proposed a pseudocoevo-

lutionary simulated annealing algorithm to identify these

unknown parameters from historical data of the number of

infected, recovered, and death toll. From this model, we

can achieve all the essential information about the epi-

demic spreading, including infection rates, recovery rates,

and eventual percentage of the infected population for 367

cities in China. The main conclusion of our study is that the

COVID-19 epidemic spreading would peak between mid-

February to early March 2020, with about 0:8%, less than

0:1%, and less than 0:01% of the population eventually

infected in Wuhan, Hubei Province, and the rest of China,

respectively. Results indicate that the COVID-19 epidemic

has been controlled. This work provides a method for

estimating the proportion of infected people. However,

only seroprevalence studies may actually estimate the

proportion of infected individuals.
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