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Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia in humans, and its prevalence continues to increase because
of the aging of the world population. Much still needs to be learned about the molecular pathways involved in the development
and the persistence of the disease. Analysis of the transcriptome of cardiac tissue has provided valuable insight into diverse
aspects of atrial remodeling, in particular concerning electrical remodeling—related to ion channels—and structural remodeling
identified by dysregulation of processes linked to inflammation, fibrosis, oxidative stress, and thrombogenesis. The huge amount
of data produced by these studies now represents a valuable source for the identification of novel potential therapeutic targets. In
addition, the shift from cardiac tissue to peripheral blood as a substrate for transcriptome analysis revealed this strategy as a
promising tool for improved diagnosis and therefore better patient care.

Keywords Atrial fibrillation . Transcriptome analysis . Electrical remodeling . Structural remodeling

Introduction

Atrial fibrillation (AF) is the most common sustained cardiac
arrhythmia in humans. Its prevalence is highest in Australia,
Europe, and the USA (> 1%), even though many patients are
without symptoms and remain therefore undiagnosed
(Rahman et al. 2014). Based on its patterns, the arrhythmia
can be classified into (1) paroxysmal AF, which is self-
terminating within 7 days; (2) persistent AF, lasting longer
than 7 days; (3) long-standing persistent AF, when continuous
AF lasts for more than 1 year; and (4) permanent AF, in which
rhythm control strategies are not pursued (Kirchhof et al.
2017). A separate category is formed by postoperative AF
(poAF), which is one of the most frequent complications of
cardiac surgery at an estimated overall incidence of 26.7%
(Andrews et al. 1991). The incidence may rise up to 60%
depending on the type of cardiac surgery (Almassi et al.
1997). In most cases, AF is associated with other cardiovas-
cular diseases like heart failure, thyrotoxic heart disease, cor-
onary artery disease, and rheumatic valve disease (Nattel

2002). As has been reviewed by Andrade et al. (2014), the
development of AF generally originates from deregulation of
at least one of four phenomena: (1) ion channel function (usu-
ally affected by monogenic causes), (2) Ca2+-handling
(deregulated by heart failure and prior atrial infarction), (3)
structural remodeling (through aging, hypertension, valve dis-
ease, heart failure, myocardial infarction, obesity, smoking,
diabetes mellitus, thyroid dysfunction, and endurance exercise
training), and (4) autonomic neural regulation (disturbed by
endurance exercise training and occlusive coronary artery dis-
ease). As stated by these authors, AF appears therefore in most
cases as a consequence of other (cardiovascular) pathologies.
Age represents a dominant risk factor for AF, which is
reflected by the increase of the prevalence with increasing
age. In persons younger than 49 years, AF prevalence is
0.12–0.16%. It then rises to 3.7–4.2% in persons aged 60–
70 years and to 10–17% in persons aged 80 years or older
(Zoni-Berisso et al. 2014). Among the emerging risk factors,
genetic predisposition is increasingly being addressed
(Andrade et al. 2014). It has been estimated that at least 5%
of all AF patients have a positive family history, independent
of the presence of other clinical risk factors (Darbar et al.
2003). Genetic variants were initially searched for using seg-
regation analysis and candidate gene sequencing, which led to
the identification of the first mutation associated with AF in
the voltage-gated potassium channel KCNQ1 (Chen et al.
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2003). Since then, the advent of Genome Wide Association
Studies (GWAS) has allowed researchers to use an unbiased
approach towards the detection of common variants that attri-
bute to the risk of AF development (Kalstø et al. 2019). Two
recent GWAS studies resulted in the identification of 134
distinct genetic loci associated with AF (Nielsen et al. 2018;
Roselli et al. 2018) and showed the implication of genes re-
lated to ion channels and calcium signaling as well as devel-
opmental cardiac transcription factors with the top variants
being near PITX2, which regulates right-left differentiation
of the embryonic heart.

AF is associated with a hypercoagulable state, and
patients—symptomatic as well as asymptomatic—are at
high risk of ischemic stroke, which may be related to sev-
eral observed phenomena: (1) the loss of atrial systole
which leads to increased blood stasis, (2) the presence of
atrial endocardial damage, and (3) abnormalities of
procoagulant blood constituents (Choudhury and Lip
2003). The treatment of AF patients consists of
anticoagulation therapy to prevent thromboembolisms
and a pharmacological or ablation-based therapy aimed
towards either rhythm or rate control (Chung et al. 2020).
Stroke prevention consists of oral anticoagulation therapy,
either using vitamin K antagonists or antiplatelet therapies.
Pharmacological rate control is thought to be beneficial
mostly for asymptomatic older and frail patients and is
mainly obtained through beta-adrenergic blockers, some-
times in combination with nondihydropyridine calcium-
channel blockers and/or digoxin. Pharmacological rhythm
control strategies directed towards cardiac ion channels
depend on the clinical profile of the patients. Commonly
administered anti-arrhythmic drugs are amiodarone and
dofetilide. Catheter-based ablation has become the most
efficient strategy for rhythm control in symptomatic pa-
tients. However, the success rate of this procedure varies
from 60–80% in paroxysmal AF to 25% in persistent AF
patients (Rottner et al. 2020). Pharmacological treatment
also is not optimal, since it can lead to ventricular arrhyth-
mia and does not prevent recurrences of AF.

AF is associated with remodeling of the atrium, which oc-
curs at different levels: electrical remodeling defined as short-
ening of the atrial effective refractory period (AERP) and fail-
ure in its rate adaptation, contractile remodeling leading to a
decreased atrial transport function, and structural remodeling
involving myolysis and fibrosis (Allessie et al. 2002). These
changes of the atrial tissue are caused by AF but can in turn
also lead to AF, which describes the famous phenomenon of
“AF begets AF” (Wijffels et al. 1995). A better understanding
of the molecular changes associated with and leading to AF is
crucial to improve medical care and prevention of these pa-
tients. Towards this goal, numerous studies have been per-
formed using an “omics” approach. The rationale behind this
being that the “molecular fingerprint” of each patient provides

information on its diagnosis, prognosis, and response to treat-
ment (Seo et al. 2006).

The aim of this review is to provide an overview of
molecular insight obtained through transcriptome analy-
sis of atrial tissue and/or blood samples from AF pa-
tients. Only literature on coding RNA will be discussed
here; non-coding RNAs and integrated analyses are not
within the scope of this review.

Pre-transcriptome era

Before the first study towards the molecular deciphering of
AF based on a large-scale transcriptome approach appeared in
2003, several candidate transcripts had been analyzed using
(semi-)quantitative PCR. Because of the nature of the disease,
these studies were mainly focused on electrical components of
the remodeling process. The rapid stimulation of the atria in
AF leads to intracellular calcium overload which has been
shown to play a role in atrial electrical remodeling (Denham
et al. 2018). From the genes involved in calcium homeostasis,
two genes have been analyzed by several studies: the L-type
Ca2+ channel through which extracellular calcium enters the
cell and the sarcoplasmic reticulum Ca2+-ATPase 2 (ATPA2
or SERCA2) which pumps calcium from the cytosol into the
sarcoplasmic reticulum. Both genes were found to be down-
regulated in atrial tissue from AF patients (Gelder et al. 1999;
Brundel 1999; Brundel et al. 2001a). This expression change
was detected in persistent AF patients, but not in paroxysmal
AF. The downregulation of these calcium-related genes may
represent an adaptation of the atrial tissue to the calcium over-
load and has been considered to be a key element in the elec-
trical remodeling process by shortening the AERP (Nattel
et al. 2000). Since this shortening could also be caused by
an increase in cardiac K+ channel activity, the transcript levels
of some of these channels have been quantified. Surprisingly,
mRNA levels were consistently found to be downregulated
(Brundel et al. 2001a, 2001b). Therefore, the authors sug-
gested that, secondary to the L-type Ca2+ channel-related
AERP shortening, the myocardial cell further adapts to high
rate by reducing the expression of K+ channels to counteract
the shortening of the AERP. A final aspect of electrical re-
modeling addressed by candidate-gene-based early studies
was the expression level of connexin40 (GJA5). Its encoded
protein is a component of gap junctions which function to link
adjoining cells and mediate cell-to-cell electrical coupling and
communication. The early focus was on connexin40, since it
is mainly expressed in the atrium. Nao et al. were the first to
quantitate its expression level in atrial tissue from patients and
found a downregulation in persistent AF (Nao et al. 2003).
However, later studies did not confirm this finding (Chaldoupi
et al. 2009).
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Transcriptome analysis of coding genes
in atrial tissue

Tables 1 and 2 show an overview of the studies that used a
global transcriptome approach towards a better understanding
of the divers remodeling processes associated with AF.
Almost all results are based on at least five patients per group.
The easier availability of right atrial tissue compared with left
atrial tissue explains the small majority of RAA-based studies
in this list. This concerns mainly the earlier studies. Even
though the left atrium is believed to be critical in AF initiation
and maintenance, both atria are linked to the pathogenesis of
AF (Iwasaki Yu-ki et al. 2011). Therefore, even though atten-
tion should be payed to the tissue origin on which the conclu-
sions are based, both atria provide relevant information for the
analysis of tissue remodeling. Only three studies analyzed
tissue from paroxysmal AF patients; therefore, the overall re-
sults are mostly related to maintenance of the arrhythmia.

Deshmukh et al. (2015) were the only authors who distin-
guished susceptibility to and persistence of AF by comparing
three groups of patients: patients in sinus rhythm (SR) without
a history of AF (NoAF), patients in SR with a history of AF
(AF/SR), and patients in AFwith a history of AF (AF/AF). AF
susceptibility was defined as the difference between the AF/
SR and the NoAF groups, whereas AF persistence was de-
fined as the difference between the AF/AF and the AF/SR
groups. They found that AF susceptibility was associated with
a decreased expression of pathways associated with inflam-
mation, oxidation, and generic cellular stress responses. Based
on these results, they hypothesized that an insufficient tran-
scriptional response to inflammatory and oxidative stress may
lead to AF development, which may help to explain the asso-
ciation of AF with older age when stresses develop. Ion chan-
nel changes were only found associated with persistence of
AF, which implies that these are consequences rather than
causes of AF. Their findings confirmed those obtained
through the candidate-transcript approach: the L-type calcium
channel subunits CACNB2 and CACNA1C were downregu-
lated, whereas some K+ channel subunits (KCNJ2 and
KCNJ4) were upregulated. It is difficult to compare the dif-
ferent studies with a focus on ion channel remodeling since
there is little overlap between their findings. Ion channels
reported to be differentially expressed by two studies are
KCNK1 (TWIK-1), KCNE1 (minK), and CACNA2D1.
KCNK1 was found downregulated by Ellinghaus et al.
(2005) but upregulated by Gaborit et al. (2005). Based on
knockdown of KCNK1 in zebrafish, low expression levels
would reduce the atrial substrate for AF (Christensen et al.
2016). However, as stated by the same authors, both an excess
and deficiency of KCNK1 could be pro-arrhythmic. KCNE1
and CACNA2D1 were found to be upregulated by both
Gaborit et al. and Tsai et al. (2016b). Gaborit et al. found an
upregulation of both genes in right atrial tissue from AF

patients, whereas Tsai et al. compared the expression ratios
of LAA/RAA in AF vs. SR patients. A polymorphism in
KCNE1 has been associated with increased risk of AF
(Alzoughool et al. 2020). The link between CACNA2D1
and AF has not been described by others. Jiang et al. (2017)
did not find any expression changes in K+ nor Ca2+ channels,
but they identified upregulation of Cl− channels (CLIC1-6) in
AF tissue. This was however not found in the other ion
channel-focused studies. Reversibility of the electric gene ex-
pression profile after reversal to SR was suggested by Gaborit
et al. who demonstrated SR-level gene expression of 8 AF-
related genes (CACNA2D2, ITPR1, PLN, CLCN6,
KCNAB1, MIRP2, KCND3, and KCNJ2) in a group of pa-
tients who had undergone successful cardioversion.

The implication of fibrosis in atrial remodeling was identi-
fied in persistent AF in both right (Lamirault et al. 2006) and
left (Adam et al. 2010) atrial tissue. Wnt signaling has been
proposed to play a role in cardiac fibrosis and in the patho-
genesis of AF (Naito et al. 2010). Interestingly, this pathway
was found to be affected in atrial remodeling in two studies:
Sigurdsson et al. (2017) identified Wnt-signaling-related re-
modeling of left atrial tissue from patients who developed
poAF. Zou et al. (2018) compared tissue from the pulmonary
vein/left atria junction (LA-PV) to LAA tissue in AF patients.
The idea behind this strategy was that the LA-PV junction is
considered to be a “trigger” region for the maintenance and
immediate recurrence of AF, whereas the LAA acts as a “sub-
strate.” The upregulation of Wnt signaling and extracellular
matrix receptor interaction pathways in LA-PV tissue revealed
that fibrosis-related structural remodeling of the atrium may
be related to initiation of the arrhythmia.

Four studies specifically addressed prothrombotic aspects
of the remodeling process, three of which showed concordant
results with the identification of AF-associated differentially
expressed genes involved in the blood coagulation and protein
C pathways (Lamirault et al. 2006; Zhou et al. 2014; Tsai et al.
2016b): upregulation of the von Willebrand Factor (VWF),
found by both Lamirault et al. and Zhou et al., confirmed the
finding of a candidate-transcript-based study (Kumagai et al.
2004). The downregulation of ENTPD1 was counterintuitive,
since it should lead to inhibition of platelet aggregation
(Kawashima et al. 2000). However, this finding was revealed
in two studies (Lamirault et al. 2006; Tsai et al. 2016b),
underlining its validity. These same studies also both identi-
fied a downregulation of PROCR (EPCR), which codes for a
protein that augments the activation of protein C. The fourth
study focused on prothrombotic remodeling in AF used a
different approach (Zou et al. 2019). The authors performed
in silico analysis on two microarray datasets: GSE79768,
which they used to compare LAA tissue from AF and SR
patients, and GSE58294, containing gene expression data
from blood samples from cardioembolic stroke patients and
controls. They looked for genes differently expressed in both
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atrial tissue from AF patients and in blood samples from
stroke patients and stated that these four genes (ZNF566,
PDZK11P1, ZFHX3, and PITX2) could represent the molec-
ular association between atrial dysfunction and embolic
stroke. However, less than half of the stroke patients had a
history of AF (Stamova et al. 2014), which limits the rele-
vance of the dataset for AF-related stroke analysis.

Both thrombosis and fibrosis are closely related to inflam-
mation pathways, and therefore it is not surprising that atrial
remodeling has now been found to involve all three processes.
Inflammation plays a role in the development of AF on both a
local and a systemic level (Zhou and Dudley 2020), which is
underlined by the identification of many inflammation-related
genes in the here discussed research. The upregulation of in-
terleukin 6 (IL6) identified by both Ohki et al. (2005) and
Zhou et al. (2014) is a perfect example, since AF patients also
have higher plasma levels of IL6 (Conway et al. 2004). Since
inflammatory mechanisms structurally remodel atrial tissue,
they thereby facilitate the persistence of the arrhythmia. This
was nicely illustrated by Tsai et al. (2016a), who analyzed
LAA tissue from patients who underwent surgical ablation
and then compared the expression profiles between patients
who stayed in SR to patients with recurrence of AF after the
surgery. They found that atrial remodeling was different in
these two patient groups with an upregulation of inflammatory
markers in the group of failed rhythm control. These findings
are of potential interest for the identification of targets towards
improvement of response to ablation-based treatment.

Oxidative stress is also intermingled with inflammation,
and oxidative damage of atrial tissue has been demonstrated
in AF patients (Mihm et al. 2001). The first transcriptome
study of AF was focused only on this process (Kim et al.
2003). They used a small-scale microarraywhich was oriented
towards biological functions potentially involved in AF and
focused on differentially expressed genes related to oxidative
stress. They found an upregulation of genes facilitating oxida-
tive stress and a downregulation of genes involved in the
protection against oxidative stress and damage repair,
reflecting a dysregulated oxidative stress balance. PoAF is
especially closely linked to both inflammation and oxidative
stress (Zakkar et al. 2015). This is related to activation and
stimulation of these processes by cardiopulmonary bypass and
cardioplegic arrest. Kertai et al. (2016) nicely addressed this
issue in a group of patients undergoing coronary artery bypass
grafting (CABG) surgery and stratified according to pharma-
ceutical treatment. Gene set enrichment analysis of their data
clearly showed the implication of oxidative stress-related
pathways in the development of poAF. The single most sig-
nificantly upregulated gene in patients who developed poAF
was VOPP1, a gene linked to oxidative stress albeit in the
opposite sense: loss of this gene leads to oxidative cell injury
(Baras et al. 2011).

Besides the differences between left and right atrial tissue,
some authors looked at other intra-atrial region-specific ex-
pression profiles. Yeh et al. (2013) compared LA-PV tissue
to LAA tissue. An in silico analysis of these data focused on

Table 2 Top 5 differentially expressed genes in atrial appendage tissue from AF patients vs. SR patients

Reference Top 5 genes upregulated Top 5 genes downregulated

(Kim et al. 2003) ADCY9, FABP7, MAOA, CDK5R1, GPNMB CTNNA2, ACTN4, SMN1, GRK6, THPO

(Ohki et al. 2005) GPX1, VEGFB, RHOC, MIF, ARAF PRDX3, CAV2, ATP2A2, GJA1, RAB1A

(Kim et al. 2005) UNC5C, FZD9, CDKN1A, IL8, SOCS3 PLA2G1B, NRGN, TFAM, DRD2, RFC5

(Barth et al. 2005) MCF2L, RDHL, COLQ, DKFZP434P1750, FKBP1A TIMP3, COG5, ASTN2, GPR22, FLJ23462

(Gaborit et al. 2005) CACNA2D1, PLN, CLCN6, KCNAB1, KCNE1 CACNA1G, CACNA2D2, ITPR1, SCN2B, KCND3

(Lamirault et al. 2006) HPS3, MYH7, NPPB, RPS23, MC5R ADH1B, SLPI, AKT3, C3, CLU

(Kharlap et al. 2006) none NOR1, DEC1, BCL2A1, MSF, MCP1

(Ou et al. 2013) ADIPOQ, FABP4, PLIN, RBP4, TF, SLPI BMP10, RPS4Y1, NPR3, PRKACA, PSD3

(Zhou et al. 2014) NPPB, HSPA2, HLA-B, RBCK1, CTGF CA14, DLK1, HLF, MID1IP1, HOXA4

(Deshmukh et al. 2015) ANGPTL2, FHL2, CALM3, DHRS9, RNF216 RBM38

(Chilukoti et al. 2015) RETN, LOX DGAT2, DDIT3, ANGPTL1, NR4A3, PYGM

(Tsai et al. 2016a) CCL19, C7, HSPB1, STAT1, PPP1R12B IL1B, CXCL6, CFB, C3, IL18

(Kertai et al. 2016) VOPP1, C21orf45, RNF214, RNPC3 LOC389286, LOC100134108, GGT3, LOC286016,
IMAGp998C053946

(Tsai et al. 2016b) TF, PLIN, ADIPOQ, PCK1, THRSP KRT7, NMU, GPM6A, RPESP, C8orf84

(Sigurdsson et al. 2017) KCNA7, ANK1, DFNB31, DKK1, SNORA53 LOC645323, IL34, ABCC6P1, TUBB2B, ADAMTS19

(Thomas et al. 2019) LAA HLA-DQA2, MYH7, PCSK1N, DPYSL4, ATRNL1 C11orf87, HPCAL4, RASD1, EREG, GJD2

(Thomas et al. 2019) RAA COMP, SYTL5, C20orf26, FLJ42969, RHCG MMP3, CXCL13, PSG5, HLA-DRB5, MTRNR2L9

Only studies providing lists of most differentially expressed genes are included in the table. AF atrial fibrillation, LAA left atrial appendage, RAA right
atrial appendage, SR sinus rhythm
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extracellular matrix remodeling is already mentioned above
(Zou et al. 2018). Yeh et al. compared these different tissues
in both AF and SR patients. Within the group of AF patients,
expression profiles were clearly different between LA-PV and
LAA, and these differences affected numerous functional cat-
egories associated with AF. Interestingly, the AF-associated
transcription factor PITX2 and its target SHOX2 were higher
expressed in LA-PV, underlining the “trigger” function of
LA-PV tissue. They also found stronger thrombogenetic and
fibrotic remodeling in LAA tissue. When they compared the
LA-PV/LAA ratios in AF patients to the LA-PV/LAA ratios
in SR patients, these were found to be non-identical, suggest-
ing that besides the anatomic factor, AF itself contributes to
the intra-atria regional differential gene expression.

Finally, Chilukoti et al. (2015) focused on epicardial adi-
pose tissue (EAT). The rationale behind this study was that
AF has been associated with an increase in epicardial fat and
atrial adipocyte accumulation and the arrhythmia could induce
atrial adipocyte-/adipositas-related gene expression (AARE).
The AARE genes were identified from an atrial pacing-based
animal model and then tested on human RA and EAT samples
from both AF and SR patients. To some extent, AF did indeed
induce AARE in human RA tissue, but no clear adipocyte
differentiation signature was found. Unfortunately, the data
of the comparison between RA and EAT of the AF/SR gene
expression levels seemed not to be optimally exploited in
order to be able to provide further insight into AF-related
epicardial adipose tissue remodeling in humans.

Transcriptome analysis of coding genes
in peripheral blood

As described above, transcriptome analysis on atrial tissue has
provided substantial information on molecular pathways in-
volved in tissue remodeling caused by AF and leading to its
susceptibility. Because of the necessity of cardiac tissue for
this strategy, research is limited to a subpopulation of AF
patients, namely, those with valvular heart disease or
coronary heart disease necessitating surgical intervention
with cardiopulmonary bypass. To include a wider range of
AF patients in this type of research, a surrogate tissue is
needed. An ideal surrogate tissue used in gene profiling
analysis will be one that expresses many genes, many of
which are responsive to physiological or environmental
alterations. Liew et al. (2006) have shown that human periph-
eral blood cells fulfill these criteria. They stated that the con-
tinuous interactions between blood cells and the entire body
give rise to the possibility that subtle changes occurring in
association with injury or disease, within the cells and tissues
of the body, may trigger specific changes in gene expression
in blood cells reflective of the initiating stimulus. In addition,
blood contains a number of circulating cell types that are

mechanistically associated with both myocardial and vascular
disease processes, and peripheral blood gene expression pro-
filing has been performed in a number of cardiovascular dis-
eases (Aziz et al. 2007). Kontaraki et al. (2010) were the first
to look for a link between AF and gene expression levels in the
blood. They analyzed heart failure patients with or without AF
and found an association between the presence of the arrhyth-
mia and an increased level of SERCA2 expression. This is in
contrast to the results obtained from tissue-based profiling
studies. This could be related to the differences between the
patient populations. The authors suggested that this could also
be part of an adaptive response mechanism aimed towards a
reversal of contractile dysfunction.

Thus far, only four studies have analyzed the coding tran-
scriptome in blood samples from AF patients (Table 3). The
first results obtained in this area were from a large study aimed
towards the identification of blood transcriptomic signatures
of stroke of different origins (Jickling et al. 2010). Among
patients with cardioembolic stroke, they compared AF to SR
groups and identified 37 differential genes. Using this signa-
ture, they were able to distinguish between AF and non-AF
origin of stroke in cryptogenic cases. The authors did not
provide a detailed description of the gene signature, but they
did mention that the distinction between patient phenotypes
was associated with differences in patterns of inflammation.

Lin et al. performed a large transcriptome screen on 244
participants from the Offspring Cohort of the Framingham
Heart Study (Kannel et al. 1979). They succeeded to identify
an AF-specific blood signature, consisting of 7 genes (Lin
et al. 2014). None of these genes had been associated with
AF in the past. The most significant gene was PBX1, which
codes for a transcription factor involved in cardiovascular de-
velopment. The 6 other genes in decreasing order of signifi-
cance were as follows: C17orf39 (or GID4), a transcriptional
coactivator; purine nucleoside phosphorylase (PNP);
C18orf10 (or TPGS2), a component of the neuronal
polyglutamylase complex; SLC7A1, a high affinity cationic
amino acid transporter which has been linked to hypertension
and endothelial dysfunction (Yang et al. 2007); SPTB, in-
volved in the stability of erythrocyte membranes; and
ANKH, an inorganic pyrophosphate transport regulator.
They also analyzed the association of biological pathways
with their AF gene expression profile, and they did identify
several cardiac (disease)-related gene networks. This included
the hypoxia signaling pathway, hereby demonstrating that the
implication of oxidative stress in AF is reflected in both the
cardiac and the blood transcriptome. The same 7 genes were
then analyzed by Thériault et al. (2017) in AF and SR patients
from a different patient population: the SIRS cohort (Steroids
in Cardiac Surgery), consisting of patients undergoing cardiac
surgery involving the use of cardiopulmonary bypass
(Whitlock et al. 2014, 2015). This cohort therefore resembled
the patient groups analyzed by the cardiac transcriptome
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strategies. Besides the 7 AF-related genes, they also checked
expression levels of 1254 genes associated with biological age
(Peters et al. 2015). The rationale behind this approach was
that since AF and chronological age are strongly associated,
the individual’s biological age—assessed by the 1254 gene
expression profile—could be a potential marker of AF. They
did indeed find that both gene signatures were independently
associated with the presence of AF and had added value when
combined with clinical risk factors for AF. This is especially
important for the diagnosis of paroxysmal AF, which is not
always easily detected by ECG monitoring and which is as-
sociated with an increased risk of stroke. Although both stud-
ies on the 7 AF-related genes succeeded to detect prevalent
AF, they were not able to predict the occurrence of the ar-
rhythmia. No association was found between blood gene ex-
pression levels and the incidence of AF.

The fourth study investigated the effect of electrical cardio-
version (ECV) on blood gene expression levels (Raman et al.
2016) in order to identify the effect of reversal from AF to SR
on the blood transcriptome. The two most significantly differ-
entially expressed genes in AF vs. SR patients were
SLC25A20 and PDK4. Both genes were downregulated after
ECV, showing a reversal of the gene expression profile after
reversal to SR. These genes are involved in cardiac metabo-
lism, and the authors therefore stated that their decrease sug-
gests an adaptive gene expression change in response to met-
abolic demands of the heart. The advantage of their study
design was that each patient acted as its own control, thereby
excluding biases based on clinical parameters. However, be-
cause of the study design, they could only analyze patients
with persistent AF. Therefore, the relevance of the identified
signature to stratify AF patients for risk of stroke still needs to
be determined in paroxysmal AF patients.

Conclusion

The use of a large-scale transcriptome approach has allowed
an unbiased, non-candidate-gene-based delineation of molec-
ular changes associated with AF in humans. The ample in-
volvement of ion channel remodeling was confirmed by these
studies, as well as the inter-related pathways related to

oxidative stress, inflammation, thrombogenesis, and fibrosis.
Some genes identified as genetic factors associated with pre-
disposition to developing AF (Feghaly et al. 2018) are also
highlighted in this review as affected by atrial remodeling in
AF (GJA5, IL6, KCNE1, KCNJ2, PITX2, ZFHX3). As stated
by Gutierrez and Chung (2016), the added value of tran-
scriptome analyses compared with genetics may lie in the
understanding of the AF age paradox: even in the presence
of predisposing genetic factors, AF does not develop at a
young age, implying a dependence of AF triggering on atrial
remodeling. Since the produced gene expression data are gen-
erally deposited in public databases like Gene Expression
Omnibus, they provide a precious source of information for
future reanalyses addressing different questions. Four of the
studies listed in Table 1 are in silico analyses of transcriptome
data produced by other researchers: both Censi et al. (2010)
and Ou et al. (2013) used the data from Barth et al. (2005),
whereas Zou et al. (2018, 2019) used the data from Yeh et al.
(2013) and from Tsai et al. (2016b). Therefore, even though
today the obtained knowledge has not yet led to better patient
care, it can be used as a base towards the identification of
novel therapeutic targets. When comparing the transcriptome
data to proteome data (Sühling et al. 2018), some similarities
are observed: inflammation markers are associated with AF-
related atrial remodeling in plasma (Kornej et al. 2018) as well
as with the development of poAF when measured in EAT
(Viviano et al. 2018). The implication of fibrosis was
underlined by the higher level of collagen type I alpha 1 chain
in LAA tissue from persistent and long-standing persistent AF
compared with paroxysmal AF (Klein et al. 2018). In contrast
to transcriptome studies, proteome studies on circulating
markers were able to identify biomarkers associated with the
incidence of AF (Lind et al. 2017; Ko et al. 2019).
Interestingly, one of the biomarkers was interleukin 6, which
has been found to be associated with the existence of AF
through transcriptome analysis, reinforcing the potential role
of this marker. The data obtained through genomic (and ge-
netic) approaches may be used as an input for model systems
based on induced pluripotent stem cells (iPSCs). iPSC-
derived human atrial cardiomyocytes can be obtained and
may be stimulated to obtain an AF-like phenotype (van
Gorp et al. 2020). The effect of genetic manipulation of these

Table 3 Overview of peripheral blood-based transcriptome analyses of AF patients

Reference Tissue Number of patients AF type Matched controls Method Focus of the publication

(Jickling et al. 2010) Whole blood 10 AF/8 SR Not stated Yes Microarray Cause of stroke

(Lin et al. 2014) Whole blood 177 prevalent AF/143
incident AF/2126 SR

Not stated Yes Microarray AF identification

(Raman et al. 2016) Whole blood 46 Persistent Yes Microarray After vs. before ECV

(Thériault et al. 2017) Whole blood 91 AF/325 SR Paroxysmal/
persistent/permanent

Yes Microarray AF identification

AF atrial fibrillation, ECV electrical cardioversion, SR sinus rhythm
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cells as well as pharmacological treatment on the electrophys-
iological phenotype can be assessed. Thus far, however, the use
of iPSCs in AF remains limited, mostly because of the difficul-
ties involved in the differentiation of pluripotent stem cells into
atrial cardiomyocytes. Finally, the exploitation of peripheral
blood as a surrogate tissue shows potential towards the devel-
opment of a more powerful diagnostic tool for (paroxysmal)
AF. It is my opinion that the most powerful clinical application
of transcriptome-oriented tools in AF will stem from stratifica-
tion of patients based on circulating markers. First of all, bio-
markers for the incidence of AF are needed, in order to antici-
pate the development of AF-related comorbidities. Second,
even though radiofrequency catheter ablation has become more
and more successful as a cure of AF, it is still associated with
recurrence, albeit at a lower frequency than with drug treatment
(Poole et al. 2020). In addition, it is a costly, time-consuming
treatment associated with potentially life-threatening complica-
tions in 1 to 5% of cases (stroke, pericardial tamponade, atrio-
esophageal fistula, hemidiaphragmatic paralysis) (Haegeli and
Calkins 2014). Taking these facts into consideration, one could
imagine screening potential candidates for radiofrequency cath-
eter ablation by blood gene expression profiling to identify AF
patients least likely to develop recurrent AF after the procedure.
Finally, a similar approach could be used to identify cardiac
surgery patients at risk of developing poAF, a strategy already
showing promising results when based on non-coding tran-
scripts (Khan et al. 2020). Targeted perioperative anti-
arrhythmic strategies in these patients may lead to a decrease
in the rate of AF.
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