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Abstract

Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disease, is caused by several mostly heterozygous
mutations in sarcomeric genes. Hallmarks of HCM are cardiomyocyte and myofibrillar disarray and hypertrophy and fibrosis of
the septum and the left ventricle. To date, a pathomechanism common to all mutations remains elusive. We have proposed that
contractile imbalance, an unequal force generation of neighboring cardiomyocytes, may contribute to development of HCM
hallmarks. At the same calcium concentration, we found substantial differences in force generation between individual
cardiomyocytes from HCM patients with mutations in 3-MyHC (3-myosin heavy chain). Variability among cardiomyocytes
was significantly larger in HCM patients as compared with donor controls. We assume that this heterogeneity in force generation
among cardiomyocytes may lead to myocardial disarray and trigger hypertrophy and fibrosis. We provided evidence that burst-
like transcription of the MYH7-gene, encoding for 3-MyHC, is associated with unequal fractions of mutant per wild-type mRNA
from cell to cell (cell-to-cell allelic imbalance). This will presumably lead to unequal fractions of mutant per wild-type protein
from cell to cell which may underlie contractile imbalance. In this review, we discuss molecular mechanisms of burst-like

transcription with regard to contractile imbalance and disease development in HCM.
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Introduction

Hypertrophic cardiomyopathy (HCM) is characterized by
asymmetric hypertrophy of the interventricular septum and
the left ventricular wall. At the cellular level, often pro-
nounced disarray of cardiomyocytes and myofibrils and in-
creased fibrosis is found in the myocardium (Maron and
Maron 2013). Clinically, the disease is highly heterogeneous,
ranging from mild and almost asymptomatic disease courses
to severe diastolic dysfunction or heart failure. HCM is the
most common cause of sudden cardiac death in young athletes
(Maron and Maron 2013). The prevalence of HCM is gener-
ally assumed to be 1:500 (Maron et al. 2012); recent publica-
tions even estimate a prevalence of 1:200 (Semsarian et al.
2015).
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Several different mutations in an increasing number of
genes have been associated with HCM. Almost all patients
are heterozygous for the respective mutation; the disease is
transmitted autosomal dominant (Maron et al. 2012).
According to the European Society for Cardiology, 40-60%
of the HCM patients encode for mutations that affect sarco-
meric proteins (Authors/Task Force et al. 2014). Among
these, MYH7, encoding for the (3-myosin heavy chain (f3-
MyHC) and MYBPC3, encoding for the cardiac myosin bind-
ing protein C (cMyBP-C) account for more than 8§0%.
Another 10% is covered by TNNT2 and TNNI3, encoding
for cardiac troponin T (cTnT) and troponin I (cTnl), respec-
tively (Walsh et al. 2017). HCM is mostly a monogenic dis-
order; patients usually encode for one causative mutation.
However, rare cases of patients encoding for two distinct mu-
tations in the same gene on different alleles (compound het-
erozygous) or two mutations in different genes (double het-
erozygous) have been reported. These patients often exhibit a
much more severe course of disease (Richard et al. 2003; Van
Driest et al. 2004). In addition, the emergence of high through-
put sequencing methods enables the comprehensive analysis
of single nucleotide variants (SNV). This led to the detection
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of SN'Vs that are frequent in the healthy population but may
trigger susceptibility to HCM if patients cumulate two or more
of these SNV (Burns et al. 2017; Thomson et al. 2019).

To date, no common mechanism has been determined to
explain how different mutations in different genes can lead to
the same phenotype of HCM. Patients with missense muta-
tions, the most common type of HCM mutations (Maron et al.
2012), express both mutant and wild-type mRNA and protein.
According to the poison peptide hypothesis, HCM mutations
alter the physiological function of the respective proteins,
thereby affecting the force generating mechanism in
cardiomyocytes (Bonne et al. 1998). Depending on the affect-
ed gene and on the localization within the gene, mutations can
alter calcium sensitivity, isometric force levels, acto-myosin
ATPase activity, shortening velocity, relaxation properties,
and/or cross-bridge cycle kinetics (reviewed in (Ashrafian et
al. 2011; Marian and Braunwald 2017; Moore et al. 2012)).
Interestingly, alterations can be highly divergent. MYH7-mu-
tations R719W and R723G e.g. decrease calcium sensitivity
(Kirschner et al. 2005) whereas MYH7-mutation 1736T
(Kirschner et al. 2005) or TnT-mutation R92Q (Robinson
et al. 2002) increase calcium sensitivity. ATPase rates can
either be increased (MYH7-mutation R719W (Seebohm
et al. 2009)) or reduced (MYH7-mutation R453C (Bloemink
et al. 2014; Sommese et al. 2013)). This exemplary listing
may depict the complexity of HCM mutation effects on sar-
comeric function. In addition, the poison peptide mechanism
likely does not apply to mutations that lead to a truncated
protein, as many mutations in MYBPC3 do. In most patients,
the truncated isoform is not incorporated into sarcomeres, the
total level of functional cMyBP-C is reduced in
cardiomyocytes and originates from the wild-type allele only
(haploinsufficiency) (Vignier et al. 2009). The cMyBP-C is a
structural protein that interacts with the thick and the thin
filament and seems to act as an inhibitor of cross-bridge inter-
actions (van Dijk et al. 2012). Reduced levels of cMyBP-C in
HCM patients with haploinsufficiency presumably lead to al-
terations in force generation, especially altered cross-bridge
cycle kinetics (reviewed in (Marian and Braunwald 2017,
Schlossarek et al. 2011)). Taken together, a common mecha-
nism of HCM development caused by different mutations
remains elusive.

Evidence from our own previous work, however, led us to
suggest a concept for a potential common mechanism that
contributes to HCM development for heterozygous mutations
which alter parameters of cardiomyocyte force generation.
When we analyzed the effects of MYH7 mutations in single
M. soleus fibers, we detected a large variability in calcium-
dependent force generation among individual fibers from the
HCM patients, respectively (Kirschner et al. 2005). The vari-
ability was substantially larger than between fibers from con-
trol individuals. We also observed a similarly large variability
among individual cardiomyocytes from HCM patients with
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different mutations in the MYH?7 gene, respectively (Montag
et al. 2018). We hypothesized that different fractions of mu-
tated and wild-type protein from cell to cell might be the
reason for the observed highly variable function of individual
muscle cells (Brenner et al. 2014; Kirschner et al. 2005; Kraft
et al. 2016; Montag et al. 2018). A mosaic of stronger and
weaker cells may thus lead to contractile imbalance between
individual cardiomyocytes (Brenner et al. 2014; Kraft et al.
2016; Montag et al. 2018). This hypothesis was supported by
the finding that fractions of mutant and wild-type mRNA var-
ied substantially among individual HCM cardiomyocytes
from the same cardiac tissue which had been used in function-
al studies (Kraft et al. 2016; Montag et al. 2018). As underly-
ing mechanism that may lead to the observed unequal allelic
expression of MYH7, we identified stochastic, burst-like ex-
pression which is independent for mutant and wild-type alleles
(Montag et al. 2018). The resulting contractile imbalance may
disrupt the functional syncytium of the myocardium and con-
tribute to development of myocardial disarray, hypertrophy,
and fibrosis. In this review, we aim to further elucidate the
mechanisms that underlie contractile imbalance and how it
may affect disease development in HCM.

Stochastic gene expression from cell to cell

Several years ago, researchers detected in bacteria and yeast
that cells, which originate from the same genetic background,
express divergent levels of specific proteins. In a culture of
clonal cells, some cells expressed low levels, some expressed
high levels, and some expressed medium levels of the identi-
cal protein. This evoked a phenotypic variability between in-
dividual cells (Blake et al. 2003; Elowitz et al. 2002) that
resulted in a mixture of cells with different functional proper-
ties. Interestingly, over time, protein expression in individual
cells changed and likewise did the functional activity (Cai
etal. 2006). Such a phenotypic heterogeneity was subsequent-
ly also shown in cultured mammalian cells (Lo et al. 2015;
Sigal et al. 2006) and cancer cell lines (Roumeliotis et al.
2017).

The variable protein expression from cell to cell and over
time was attributed to the so-called burst-like transcription.
This model of gene expression assumes that transcription oc-
curs in stochastic pulses (Blake et al. 2003; Elowitz et al.
2002). Transcription of a gene starts, pauses, and restarts again
in a stochastic manner over time (Fig. 1). Burst-like transcrip-
tion has been determined in bacteria, yeast, and in mammalian
cells, including cells within tissues (Blake et al. 2003; Elowitz
et al. 2002; Montag et al. 2018; Raj et al. 2006; Raj and van
Oudenaarden 2008). In a tissue, this means that one cell ac-
tively transcribes a respective gene while in a neighboring cell
transcription can pause at the same time (Fig. 1). Even though
accumulation of mRNA from recent bursts within the cells
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Fig. 1 The transcriptional activity of three individual cells is
schematically depicted. A burst of transcription is indicated by a blue
bar, transcriptional pauses are indicated by the absence of bars. At a
given time point, some cells are in a bursting phase whereas in other
cells transcription is pausing. This will lead to different mRNA and
protein amounts in the cells, which may cause phenotypic variability
between the individual cells

will partly equalize total mRNA and protein levels from cell to
cell, a distinct variability between cells has been reported to
remain (Blake et al. 2003; Cai et al. 2006; Elowitz et al. 2002;
Symmons et al. 2019). To minimize functional differences
between cells, the stochasticity of on and off switches appears
low for structural proteins to gain comparable levels of pro-
teins from cell to cell and allow for concerted actions of the
tissue (Rajapakse and Smale 2017; Sun and Zhang 2020). In
contrast, it seems higher for secreted proteins which do not
only affect a single cell (Sun and Zhang 2020).

Determinants and regulators of burst-like
transcription

The mechanisms that underlie gene expression and burst-like
transcription shall be discussed here in more detail. Permanent
inactivation of specific genes or alleles is exerted by DNA
methylation at CpG islands (CG-rich regions in promoters
and in coding regions of genes). This epigenetic mechanism
controls e.g. tissue specific inactivation of specific genes.
DNA methyltransferases add methyl groups to cytosines with-
in CpG islands. These methyl groups interfere with transcrip-
tion factor binding to the DNA and thereby inhibit transcrip-
tion. In addition, methylcytosine binding proteins (MBP) re-
cruit histone-deacetylases and other co-repressors, finally in-
creasing the chromosomal density and thereby forming tran-
scriptionally inactive chromosomal structures (reviewed in
(Attwood et al. 2002)). These structures do not take part in
transcriptional bursting.

Adjustable regulation of gene expression shapes the bursts
of transcription and occurs via alterations in the occupancy of
chromosomes with nucleosomes, also called nucleosomal
density. Nucleosomes are defined as chromosomal DNA
which is wrapped around a histone octamer (Kornberg
1974). Genes with a high nucleosomal density are associated
with numerous histones especially at the promoter sites and
show lower transcription rates. In contrast, promoters of active
genes show a lower nucleosomal density (reviewed
in (Nicolas et al. 2017)). Key regulators of nucleosome den-
sity are histone modifications. Specific residues of histones
can be methylated, acetylated, phosphorylated, and/or
ubiquitinated (for a detailed review about modifications see
(Bannister and Kouzarides 2011)). In brief, most kinds of
acetylation, ubiquitination, and phosphorylation lead to re-
duced nucleosomal density and thereby to a higher transcrip-
tional activity (Bannister and Kouzarides 2011). Histone
methylation mainly increases the nucleosomal density, reduc-
ing transcription activity (Bannister and Kouzarides 2011).

Genes or alleles with a low nucleosomal density are acces-
sible for transcription factors (TF) and RNA polymerase II
(RNA-Pol II) that enable transcription (Li et al. 2007).
Binding and release of TFs and RNA-Pol II occurs stochasti-
cally (Larsson et al. 2019; Urban and Johnston Jr. 2018),
based on the thermodynamics of DNA and TF/RNA-Pol II
interaction in the nuclear surrounding (Blake et al. 2006).
The probability of TF and RNA-Pol II-binding increases with
a decreasing nucleosomal density. In line with this, activated
genes with a lower nucleosomal density show a higher burst
frequency and burst size (duration) (Brown et al. 2013;
Hornung et al. 2012b).

Based on this background, generation of transcriptional
bursts can be described in a simplified way: to activate a gene,
the nucleosomal density on the promoter is reduced. Random
binding events of TFs and RNA-Pol II to the DNA lead to
bursts of transcription; stochastic unbinding terminates the
burst; rebinding will start another burst.

Burst-like transcription can be governed at different levels.
We can distinguish between control of basal burst rates for
specific genes and flexible modification of burst size and fre-
quency to regulate gene expression. Basal burst rates seem to
be determined mainly by regulatory sequences. Specific gene
elements such as TATA boxes in the promoter recruit TFs and
RNA polymerases. Genes, which encode for TATA boxes,
show higher burst frequencies (Blake et al. 2006; Hornung
et al. 2012a) and burst frequency and size depend on specific
TATA box sequences (Hornung et al 2012a). Additionally,
RNA-Pol II was shown to pause during transcription of a
particular mRNA molecule and to continue after a certain
time. This pausing and restarting was shown to underlie tran-
scriptional bursts (Dobrzynski and Bruggeman 2009). It
seems to be stochastic and can presumably be influenced by
specific DNA sequences to affect burst size and frequency
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(Fujita et al. 2016). Flexible modifiers of bursts adjust gene
expression to specific circumstances. Upregulated genes show
e.g. decreasing nucleosomal density which will lead to a
higher accessibility for TF and RNA polymerase and thereby
a higher burst frequency and size (Kalo et al. 2015). The
nucleosome and deacetylation remodeling complex (NuDR)
was shown to fine tune gene expression by controlling the
accessibility of TF and RNA-Pol II to the DNA (Bornelov
et al. 2018). In addition, the availability of TFs and RNA-
Pol IT will shape the bursts. Higher levels of TFs may cause
a higher burst frequency, as shown for cFos (Senecal et al.
2014). Moreover, binding probabilities of TFs on the DNA
and thereby the bursts can be affected by trans-acting factors
that modify the affinity of the TF for a particular promoter
(Boettiger 2013).

Assays to determine burst-like transcription

Different methods can be used to determine burst-like tran-
scription. In fixed cells or tissues, single-molecule RNA fluo-
rescence in situ hybridization (smRNA-FISH) can visualize
actively transcribed alleles (Levesque et al. 2013). Probe sets
that can bind to the pre-mRNA at the chromosomal locus and
to the nascent mRNA are hybridized in fixed cells or tissue.
Co-localization of the probe sets in the nucleus indicates an
active transcription site (aTS), an actively transcribed allele
(Levesque et al. 2013). Burst-like transcription, which is in-
dependent for the two alleles, is indicated by the occurrence of
cells without, cells with one, and cells with two aTS in the
same population. This method was used to determine active
transcription sites in cultured cells (Levesque et al. 2013) and
tissue sections from mouse kidney (Symmons et al. 2019).
Our group provided evidence for burst-like transcription of
the MYH?7 gene in cardiac tissue from HCM patients and
non-transplanted donor hearts (Montag et al. 2018).
Preliminary data indicate that MYBPC3 and TNNI3 are also
expressed burst-like (Montag et al. 2019).

In living cells, fluorescently tagged mRNAs can be used to
examine kinetics of burst-like transcription over time. Here,
specific stem loop sequences are inserted by genome editing
to the 3'- or 5'-end of the mRNA of interest. Fluorescently
labeled bacterial proteins that can bind to the specific stem
loop sequences are co-expressed in these cells and fluorescent
signals indicate whether the respective RNA is transcribed.
Live cell imaging then directly visualizes transcription of the
mRNA molecules in the nuclei and the stochastic on and off
switch of the gene of interest (Darzacq et al. 2007; Yunger
et al. 2010).

The activity of a respective gene is most likely correlated
with the number of aTS per nucleus. In highly active genes,
the bursts will occur more frequently and have a longer dura-
tion (Dar et al. 2012). This will result in a higher percentage of
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cells that contain one or two aTS. In contrast, genes with a low
activity will show high percentage of cells without aTS and
more cells with only one aTS (Fig. 2a). This will also apply to
polyploid cells that contain more than 2n of chromosome sets.
In two independent studies where the ploidy of healthy adult
human cardiomyocytes was determined, 19 or 22% of the
nuclei were diploid, 45 or 60% tetraploid, 2% hexaploid,
15% or 23% octoploid, 1 or 11% 16-ploid, and 0 or 1% were
32-ploid (Herget et al. 1997; Montag et al. 2018). Increases in
ploidy are found in cardiac diseases such as myocardial in-
farction and HCM (Herget et al. 1997; Montag et al. 2018,
Shliakhto et al. 2007; Sukhacheva et al. 2015). In line with
this, we have determined nuclei with more than two MYH7-
aTS for both donor and HCM patients (Montag et al. 2018).
Genes with a low activity will show mostly nuclei without
aTSs and few nuclei with more than two aTS. In contrast, most
nuclei from highly active genes will show more than two aTS.
For cardiomyocytes, where most cells are tetraploid, we ex-
pect the maximum at 4 aTS per nucleus (Fig. 2b).

Burst-like transcription leads to allelic
imbalance from cell to cell

So far, we have discussed burst-like transcription at the gene
level. Importantly, the described mechanisms that underlie
burst-like transcription also lead to a stochastic expression of
the alleles over time, meaning each allele is switched on and off
independently from the other one. Therefore, in cells from the
same population, at a given time point, either allele A alone can
be active, allele B alone can be active, both alleles can be active,
or no allele can be active (Fig. 3a). This induces an allelic
imbalance from cell to cell (Fig. 3b); in the same population,
some cells contain high fractions of mRNA from allele A, some
contain high fractions of mRNA from allele B, and others con-
tain mRNA from both alleles in different ratios (Montag et al.
2018; Raser and O’Shea 2005; Symmons et al. 2019).

Initial studies termed this phenomenon random monoallelic
expression. They could show that the expression of the alleles
can differ between the cells from the same population (Reinius
and Sandberg 2015). However, in contrast to the association that
may be evoked by the term “monoallelic,” the authors also de-
tected cells, which expressed both the maternal and the paternal
allele. This detection of mono- and biallelic mRNA expression
led to the assumption of a dynamic on and off switch, a stochastic
choice of the two alleles (Deng et al. 2014; Levesque et al. 2013;
Reinius and Sandberg 2015). With the emergence of single-cell
RNA sequencing techniques, the unequal allelic expression from
cell to cell is determined in more and more different cell types
(Borel et al. 2015; Deng et al. 2014; Sun and Zhang 2020).

Importantly, stochastic on- and off-switching of the alleles
over time may lead to accumulation of mRNA from previous
bursts depending on the particular mRNA turnover rates.
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Fig. 3 Burst-like transcription of MYH?7 leads to allelic imbalance from
cell to cell. a Schematic of cardiomyocytes within cardiac tissue with
active transcription sites (aTS) for allele A (wild-type; light gray star)
and allele B (mutant; dark gray star). The tissue contains cells that at
the given time point transcribe both alleles, no allele, only allele A, and
only allele B. b Accumulation of mRNA molecules from bursting of the
two alleles leads to different ratios of wild-type vs. mutant mRNA from
cell to cell, ranging from cells with mainly wild-type allele A (light gray
waves), mainly mutant allele B (dark gray waves), and mixtures of both
alleles. ¢ Using smRNA-FISH, we visualized active transcription sites
(aTS) in nuclei from an HCM patient with the MYH7 mutation R723G.
We found nuclei without aTS (top), cells with one aTS (middle), and cells
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with more than one aTS (here, two aTS, bottom). This indicates burst-
like, independent transcription of the two MYH?7 alleles. d In individual
cardiomyocytes isolated by laser-microdissection from cryosections of
myocardial samples from the same patient, we detected highly variable
fractions of mutant MYH7 mRNA from cell to cell as revealed by single-
cell RT-PCR and allele-specific restriction analysis (top). Densitometric
quantification of mutant and wild-type mRNA fractions showed substan-
tial allelic imbalance from cell to cell, with cells that express essentially
only mutant mRNA, cells that express almost only wild-type mRNA, and
cells with mRNA from both alleles in different ratios (bottom).
Figures from ¢ and d are reprinted and modified from (Montag et al.
2018), with permission from Frontiers
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Thus, cells without aTS may contain mRNA molecules of this
gene and cells with only allele A being active still may contain
mRNA molecules from allele B. In addition, the allelic ex-
pression within one cell will change over time. Therefore, a
cell with mainly mRNA from allele B can express high levels
of mRNA from allele A at another time point. The mecha-
nisms described for regulation of bursts will also affect un-
equal allelic mRNA distribution from cell to cell. Higher burst
rates will lead to a higher activation rate of both alleles and
may thus reduce the allele-specific variability between indi-
vidual cells from one population (Kalo et al. 2015).

For the MYH?7 gene, we have recently provided evidence
that burst-like transcription of mutant and wild-type alleles
could lead to allelic imbalance from cell to cell. In
cardiomyocytes from HCM patients with different MYH7 mu-
tations, we observed burst-like transcription of the two MYH7
alleles by smRNA-FISH (Fig. 3c) and highly variable frac-
tions of mutant and wild-type mRNA from cell to cell (Fig.
3d) (Montag et al. 2018). Model calculations were used to test
our hypothesis that burst-like transcription underlies the ob-
served allelic imbalance from cell to cell (Montag et al. 2018).
Indeed, using the fraction of cardiomyocytes with active tran-
scription sites from our experiments and published MYH7-
mRNA turnover rates as an input for the model, the calculated
variability of allelic expression of mutant and wild-type f3-
MyHC among individual cardiomyocytes was comparable to
our experimental data. Thus, we assume that the MYH7 tran-
scriptional bursts underlie the observed unequal allelic expres-
sion from cell to cell (Montag et al. 2018). In line with our
research, a recent study shows burst-like transcription of ma-
ternal and paternal alleles for different genes in mouse kidney
and relates this to cell-to-cell allelic imbalance of these genes
(Symmons et al. 2019).

Translation of unequal allelic mRNA fractions
from cell to cell into unequal fractions
of mutated and wild-type protein

To date, quantification of mutant and wild-type 3-MyHC at the
single-cell level is not possible due to technical limitations.
Model calculations showed comparable variable fractions of
mutant and wild-type alleles from cell to cell at mRNA and
protein level (Montag et al. 2018). The assumption that variable
fractions of mutated mRNA from cell to cell correspond to a
similar variability also at the protein level is strongly supported
by the large functional variability among individual HCM
cardiomyocytes (Kraft et al. 2016; Montag et al. 2018).
Additional evidence for variable allele-specific protein distribu-
tion from cell to cell is provided by independent studies that
showed a patchy distribution of wild-type cMyBP-C protein
from cell to cell and even within individual cardiomyocytes
of HCM patients with cMyBP-C truncation mutations
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(Aldag-Niebling et al. 2018; Kraft and Montag 2019;
Parbhudayal et al. 2018; Theis et al. 2009). The truncations lead
to haploinsufficiency; thus, the remaining protein in the sarco-
meres originates just from the wild-type allele. Only periods
with bursts from the wild-type allele will therefore lead to (over-
all reduced) expression of functional protein, which may under-
lie the patchy distribution of cMyBP-C from cell to cell. In
addition, a recent publication shows that MYBPC3-mRNA is
transported to the Z-disc where it is translated and incorporated
into the sarcomeres (Lewis et al. 2018). If the mRNA from a
burst of one allele is transported to a certain area of a cell, this
may lead to the observed uneven distribution of wild-type
cMyBP-C within individual cardiomyocytes (Aldag-Niebling
et al. 2018; Kraft and Montag 2019; Theis et al. 2009). Taken
together, model calculations as well as uneven distribution of
wild-type cMyBP-C and functional variability from cell to cell
strongly suggest that allelic mRNA-imbalance translates into
imbalance of wild-type and mutated protein from cell to cell.

Consequences of allelic imbalance from cell
to cell: the contractile imbalance hypothesis
and HCM pathogenesis

In heterozygous individuals where mutant and wild-type al-
leles encode for proteins with different functional properties, it
will affect the function of the cell from which allele the protein
is translated at a specific time point. For mutations in secreted
proteins, the impact on each individual cell may be small since
all cells in the vicinity will be exposed to a comparable mix-
ture of wild-type and mutated proteins (Sun and Zhang 2020).
In HCM patients with mutations that alter force generation as
shown for MYH7 mutations (Bloemink et al. 2014; Kirschner
et al. 2005; Seebohm et al. 2009; Sommese et al. 2013), dif-
ferent fractions of mutant and wild-type sarcomeric proteins
from cell to cell may lead to different phenotypes of individual
cells. Such a phenotypic heterogeneity could increase disease
severity in addition to primary functional effects of the muta-
tion itself (Deng et al. 2014).

To characterize functional effects of HCM mutations in f3-
MyHC, we analyzed calcium-dependent force generation in
isolated, permeabilized single cardiomyocytes from HCM pa-
tients with mutations A200V and R723G compared with donor
controls (Kraft et al. 2016; Montag et al. 2018). Mutation
A200V is located in the myosin head domain, close to the
nucleotide-binding pocket. Mutations in this region are as-
sumed to affect the ATPase activity of 3-MyHC (Colegrave
and Peckham 2014). Mutation R723G is located in the convert-
er region of 3-MyHC. The mutation leads to an increased stiff-
ness of the converter and thereby increased force generation
(Seebohm et al. 2009). Taking together all analyzed cells, re-
spectively, both mutations lead to a right shift of the force-pCa-
curve, indicating calcium desensitization. However, when
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looking at the individual force-pCa curves of the HCM
cardiomyocytes for each mutation, we found a rather large var-
iability in calcium sensitivity and thus in force generation at
physiological calcium concentrations (Fig. 4). This variability
was much larger in HCM cardiomyocytes than in donor cells.
Whereas some HCM cardiomyocytes showed relative force
generation comparable to donor cells, other cardiomyocytes
from the very same patient showed a 10-20-fold reduced force
at the identical calcium concentration (Fig. 4). We named this
functional variability among individual cardiomyocytes con-
tractile imbalance. Preliminary data suggest that a missense
mutation in ¢Tnl and a truncation mutation in cMyBP-C also
lead to contractile imbalance (Montag et al. 2019).

Implications and limits of the contractile
imbalance hypothesis

The finding that individual cardiomyocytes generate different
forces at the same calcium concentration may have a severe
impact on the physiological function of the myocardium. Our
results suggest that the coordinated contraction of neighboring
cardiomyocytes within the functional cardiac syncytium may
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Fig. 4 Contractile imbalance in HCM patients with mutations in f3-
MyHC. Single permeabilized cardiomyocytes, isolated from heart tissue
of HCM patients (red) with the mutation A200V (left) or R723G (right),
respectively, and from donor myocardium (blue) as controls were adjust-
ed for phosphorylation levels. Cardiomyocytes were subjected to differ-
ent calcium concentrations to measure isometric force generation. a
Forces of each individual cardiomyocyte were normalized to maximum
force and plotted against the respective calcium concentration (force-pCa-

be disturbed in the heart of HCM patients. During each twitch,
contracting neighboring cardiomyocytes will generate differ-
ent forces. This will render them unable to act uniformly.
Stronger cells in the myocardium may over-contract, whereas
weaker cells may be over-stretched, finally disrupting the
myocardial network. Over the years while the phenotype de-
velops, contractile imbalance may thereby exacerbate or lead
to the typical, HCM-associated myocardial disarray.

As derived from model calculations, burst-like transcription
which is independent for the two alleles will lead to varying
fractions of mutated and wild-type mRNA and protein within
each cell over time. Thus, cardiomyocytes with high fractions
of wild-type protein and therefore almost normal function can
convert into cells with high fractions of mutant protein (or low
levels of functional protein in case of truncation mutations) and
highly altered function at another time point. Repeatedly alter-
ing function of individual cardiomyocytes may further contrib-
ute to disruption of the syncytium and thereby to development
of cardiomyocyte and myofibrillar disarray.

Increased stretch in cultured cardiomyocytes induces release
of TGF-f3, angiotensin II, and endothelin-1 (Ruwhof et al.
2000; van Wamel et al. 2001) and expression of hypertrophy
marker genes (van Wamel et al. 2002). In a HCM mouse
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(indicated by boxes in a) were plotted for individual cardiomyocytes from
patients and controls. Whereas for controls, force generation varied no
more than twofold, the patient’s cardiomyocytes showed a much larger
variability of 10 to 20-fold. Data were published in Montag et al. (2018);
a is reprinted and modified from (Montag et al. 2018), with permission
from Frontiers
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model, increased strain due to the mutation was associated with
increased TGF-3 expression and activated pro-fibrotic path-
ways and hypertrophic remodeling (Teekakirikul et al. 2010).
In other mouse models, expression of TGF-[3 activated fibro-
blasts and myofibroblasts and thereby induced cardiac fibrosis
and hypertrophy (Khalil et al. 2017). Accordingly, we assume
that contractile imbalance in HCM patients may lead to myo-
cardial disarray and release of TGF-f3, finally triggering hyper-
trophy and fibrosis (Brenner et al. 2014).

Notably, substantial alteration of sarcomere function and
the force generating mechanism by HCM mutations is patho-
logic for the myocardium per se, as can be seen from very rare
homozygous HCM patients where a mutation-induced con-
tractile imbalance cannot be expected. Interestingly, these pa-
tients show a different and mostly more severe course of dis-
ease compared with their heterozygous relatives (Nishi et al.
1994). In homozygous HCM patients, the disease may be
aggravated due to a gene dosage effect, as discussed in more
detail in Brenner et al. (2014). Another hypothesis suggests a
mechanism which may underlie a non-uniformity between
cardiomyocytes in heterozygous and homozygous patients.
It assumes that the mutation-induced disturbed protein func-
tion may affect the development of the contractile system in
early stages of life and induce different degrees of myofibrillar
disarray from cell to cell early on (Mansson 2014).

Conclusions

We have shown that the alleles of the MYH7 gene are tran-
scribed in bursts, most likely causing allelic imbalance from
cell to cell. The unequal fractions of mutated and wild-type 3-
MyHC are associated with contractile imbalance among the
individual cardiomyocytes; at the same calcium concentra-
tion, cardiomyocytes generate highly different forces. This
may disrupt the myocardial syncytium and trigger cardiomyo-
cyte disarray, a hallmark of HCM. In addition, the variable
forces may induce pro-hypertrophic and pro-fibrotic pathways
in HCM patients. We assume that this mechanism may apply
for all HCM mutations that alter force generation, irrespective
of the kind of alteration or the underlying mechanism.
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