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ABSTRACT: Near-infrared photoimmunotherapy (NIR-PIT), a
newly developed cancer-cell-specific therapy, relies on a mono-
clonal antibody−photoabsorber conjugate (APC) and is based on
a photoinduced ligand release reaction. Local exposure of the
tumor to NIR light induces rapid immunogenic necrotic cell death.
The molecular properties of APCs, including their stability and
aggregation properties, have important implications for the long-
term stability and shelf life. In this study, panitumumab was
conjugated with IRDye700DX (IR700) as a model for other NIR-
PIT agents. Higher IR700-to-mAb conjugation ratios correlated
with increased in vitro cell death up to a ratio of 2.5 dye molecules
per antibody. Conjugation ratios higher than 2.5 did not improve
cell killing activity. APC aggregation was induced in a light-dose-
dependent manner. A near-room-level light dose was sufficient to induce aggregation of APCs. Solvent pH lower than 4 induced
aggregation, but higher pH did not induce aggregation. The IR700-to-mAb conjugation ratio, light irradiation dose, and solvent pH
affect the APC stability and efficacy.

KEYWORDS: Photoimmunotherapy, antibody−photoabsorber conjugate (APC), aggregation, photostability, pH stability,
size-exclusion chromatography (SEC)

Near-infrared photoimmunotherapy (NIR-PIT) is a newly
developed cancer treatment that induces highly cancer-

cell-specific cell death. NIR-PIT is based on a monoclonal
antibody conjugated to a silica−phthalocyanine dye, IR-
Dye700DX (IR700).1,2 This antibody−photoabsorber con-
jugate (APC) is injected, circulates, and binds to the target
tumor. Upon exposure to 690 nm NIR radiation, the IR700 on
the APC undergoes a ligand release reaction, leading to
alterations in its solubility from highly hydrophilic to highly
hydrophobic, resulting in a conformational change in the
APC−target antigen complex3 that leads to rapid cell
membrane damage and highly immunogenic cell death with
blebbing, rapid volume expansion, membrane rupture, and
extrusion of cell contents into the extracellular space.4,5 There
are minimal cytotoxic effects in adjacent normal cells.2 Phase
I/II clinical studies of NIR-PIT in patients with inoperable
head and neck cancer using cetuximab (anti-EGFR)−IR700
have been completed, and a phase III clinical trial is underway
wor ldw ide (h t tp s ://c l in i c a l t r i a l s . gov/c t2/show/
NCT03769506).
APCs bear important similarities to antibody−drug con-

jugates (ADCs), which have three components: a monoclonal
antibody, a cytotoxic small-molecule drug, and a linker.6 ADCs

utilize the antigen specificity of monoclonal antibodies to
deliver the therapeutic agent selectively to target tumors.7−9

The physical and chemical properties of ADCs have been well-
characterized, allowing for their translation into the clinical
setting.10,11 Some ADCs utilize light-sensitive functional
groups such as anthracyclines,12 duocarmycins,13 and bacterio-
chlorins,14 which may change the photostability of the
conjugate. Furthermore, light-induced aggregation in photo-
sensitive drug-bound ADCs has been demonstrated. For
example, Cockrell et al. demonstrated that exposure of a
trastuzumab−eosin photosensitizer conjugate to light induced
aggregation.15 The tendency for self-aggregation is an
important predictor of ADC stability and efficacy,16−18 and
given the structural similarities, it is likely that APCs would be
similarly subject to self-aggregation.
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Another key chemical and molecular property of an ADC is
the amount of therapeutic drug (or photoabsorber, in the case
of APCs) conjugated to the antibody, which affects the
delivered dose as well as the drug’s electrostatic surface charge,
hydrophobicity, and likelihood of self-aggregation. Aggregation
in particular is known also to depend on solvent properties
such as salinity,19 ionic strength,20 and pH21 and environ-
mental factors such as temperature.22

While these properties are therefore likely to be important
for the reproducibility and efficacy of NIR-PIT, they remain

uninvestigated in APCs. Therefore, in this study we
investigated the effect of IR700 load, light exposure, and
solvent pH on APC chemical and physical properties,
including stability. The model APC used in this study was
panitumumab−IR700 (Pan−IR700), which is directed against
EGFR-expressing cancer cells.
In order to evaluate the aggregation properties of Pan−

IR700, the analytic conditions for size-exclusion chromatog-
raphy (SEC) were optimized. Nonconjugated panitumumab
and Pan−IR700 were analyzed under general SEC conditions

Figure 1. SEC analysis of panitumumab and Pan−IR700. (A) SEC analysis was performed using 200 mM phosphate buffer (pH 6.8) as a mobile
phase. Poor separation was observed in the chromatogram of Pan−IR700. (B) Chemical structure of IR700. (C) SEC separation of Pan−IR700
was improved after 10% acetonitrile was added to the phosphate buffer.
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using 200 mM phosphate buffer as a mobile phase. SEC
chromatograms of these samples are shown in Figure 1A. The
chromatogram of panitumumab showed a single peak eluting
at 12 min. On the other hand, the chromatogram of Pan−
IR700 showed a poor peak shape and incomplete resolution.
Addition of 10% acetonitrile improved the separation of Pan−
IR700, and the elution time of this monomer was almost the
same as that of panitumumab (Figure 1C). Thus, all of the
following examinations were performed using this analytical
condition.
We evaluated the correlation between the IR700 loading and

in vitro NIR-PIT efficacy. Figure 2A indicates that the
percentage of PI-negative (i.e., viable) cells decreased with
increasing IR700 loading up to an IR700-to-panitumumab
ratio of 2.5:1, whereupon it reached a plateau at higher
conjugation ratios. SEC analysis was performed for each agent
(Figure 2B). Fluorescence quenching was observed at ratios

above 2.5:1. These results indicated that an IR700-to-
panitumumab ratio of 2.5:1 shows maximum cytotoxicity,
suggesting that the number of cell-bound antibody molecules
correlated with the antitumor effect of NIR-PIT but the
number of IR700 molecules did not.
In order to evaluate photoinduced aggregation, Pan−IR700

in a vial was illuminated with fluorescent light or LED light and
then subjected to SEC analysis. Chromatograms displayed
three peaks: a high-molecular-weight species (HMWS),
monomer, and free dye. The monomer peak eluted slightly
earlier with increasing light dose, possibly due to light-induced
oligomer formation of mAb−IR700 initiated by single ligand
release of C14H34NO10S3Si from IR700. Such oligomers, which
were identified as high-molecular-weight ladders on the SDS-
PAGE gels in three different antibody−IR700 conjugates,
including Pan−IR700,3 would grow up to form aggregation
upon a second ligand release reaction. Additionally, the area
under the HMWS peak increased in a light-dose-dependent
manner (Figure 3A). Figure 3B shows the change in the
proportion of aggregates at each irradiation dose. It is worth
noting that aggregation occurred with irradiation as low as 500
lx h. When light sources of different wavelengths were used,
similar increases in water-soluble aggregates were observed.
The effect of pH on the stability of panitumumab and Pan−

IR700 was evaluated using SEC analysis. Chromatograms of
panitumumab (Figure 4A) show that no significant change
occurred for 8 h under all pH conditions. On the other hand,
chromatograms of Pan−IR700 (Figure 4B) show broadening
and tailing of the monomer peak. In addition, an increase in
the HMWS peak can also be seen. Time- and pH-dependent
changes in aggregation are demonstrated in Figure 4C.
Panitumumab was stable for 8 h under all pH conditions. In
contrast, significant aggregation was observed over time in
Pan−IR700 at pH 4, but the APC was stable at pH 5−8. To
better understand the stability of Pan−IR700, deproteinized
samples were analyzed using LC/MS/MS (Figure 4D,E). We
detected a higher volume of released ligand (C14H34NO10S3Si)
at pH 4 than at higher pH. These results suggested that acidic
pH prompts ligand dissociation and results in aggregation of
Pan−IR700 monomers.
Self-aggregation is an important parameter in quality control

testing of antibody-based drugs. Aggregation may reduce the
therapeutic efficacy, alter the pharmacokinetics, and increase
the risk of an immunogenic drug reaction.15 Therefore, we
focused on APC aggregation properties in response to light
irradiation and pH changes, which are especially important
parameters in drug storage and administration.
SEC analysis of ADCs and APCs sometimes poses

challenges because secondary interactions between the column
and the drug conjugate are common. Experience from analysis
of aggregates in ADC formulations tells us that the addition of
an organic modifier such as dimethyl sulfoxide,23 isopropyl
alcohol,24 propylene glycol,25 or acetonitrile26 can be used to
decrease the nonspecific interactions between the stationary
phase and the hydrophobic drug, thus reducing peak tailing
and enhancing the resolution. In this study, adding 10%
acetonitrile canceled out the hydrophobic interaction between
the phthalocyanine of IR700 and the stationary phase of the
column.
In general, the amount of drug loaded to an antibody−drug

conjugate correlates positively with the therapeutic efficacy.
However, while high drug loading can enhance the therapeutic
effect, it also affects the stability and physical properties of the

Figure 2. Effect of the IR700 loading. (A) Membrane damage and
necrosis induced by NIR-PIT were measured by dead cell count using
PI staining. Data are shown as means ± SEM. n = 4 in each group.
(B) Plots of the absorption and fluorescence intensities of the
monomer peak. Fluorescence quenching was observed at IR700:pa-
nitumumab ratios above 2.5:1.
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drug, sometimes resulting in decreased ADC activity.27 In
contrast, the unique mechanism of NIR-PIT allows that the
IR700 load does not necessarily correlate with the therapeutic
efficacy. While several previous studies have revealed the
correlation between NIR light or mAb−IR700 dosage and
antitumor effect in vitro and in vivo,2,28 the effect of the IR700
conjugation ratio has never been reported. In this study, in
vitro NIR-PIT efficacy was shown to increase with increased
mixing ratio up to 2.5:1, after which no significant differences
were observed in the proportion of PI-negative (i.e., viable)
cells (Figure 2A).
Second, we characterized the fluorescence intensity of Pan−

IR700. Fluorescence quenching occurs by fluorescence
resonance energy transfer (FRET), contact quenching, or
collisional quenching due to high concentrations.29,30 Here,
fluorescence quenching was observed in mixing ratios above
2.5:1. Interestingly, we note a correlation between the trends in
fluorescence quenching and NIR-PIT efficacy,3 and therefore,
fluorescence quenching measurements could be used to
determine the optimum amount of IR700 in future studies.
Previous studies have shown that NIR-PIT occurs not only

in near-infrared light1,2,31 but also in short-wavelength light
such as Cerenkov light.32 However, there have been no reports
that evaluated APC photoreactivity in room light. Here we
have shown that Pan−IR700 aggregates in only an hour with
500 lx irradiation which is almost the same illuminance as with
room light (Figure 3). These results indicate that this is a very
light-sensitive substance, and drug storage and administration
protocols would therefore likely benefit by aiming to keep
APCs in opaque containers until immediately before
administration. Furthermore, contamination of aggregates
could pose a safety risk to patients18 and should therefore be
handled with caution during manufacture, storage, and
administration.
The effects of pH on the stability of APCs are also

important, especially in clinical use, because the pH of buffered
solutions for drip infusions can vary from pH 4 to 8. In this
study, we have demonstrated that panitumumab showed no
aggregation nor denaturation in 8 h across multiple pH values.
In contrast, Pan−IR700 significantly aggregated and denatured
in just 1 h under acidic conditions, and LC/MS/MS analysis
confirmed that IR700 degraded at pH 4. Under acidic

conditions, the siloxane bond between the phthalocyanine
and the ligand is likely hydrolyzed (Figure 4F). This reaction
increases the hydrophobicity of Pan−IR700, resulting in
aggregation and denaturation. These results suggest that acidic
solutions negatively affect the APC stability, which could have
implications during manufacturing.
One of the limitations of this study is that size-exclusion

chromatography using UV/PDA detectors can only evaluate
changes in water-soluble aggregates. Evaluation of water-
insoluble aggregates such as subvisible particles using dynamic
light scattering33 might enhance our understanding of the
aggregation properties of the APC. In addition, a fuller
understanding of the effects of variations in concentration, type
of antibody, and temperature are required in future studies.
In conclusion, this is the first study to evaluate several

important physicochemical properties of APCs for NIR-PIT,
including (1) IR700-to-antibody conjugation ratio and its
effect on therapeutic efficacy, (2) the effect of the ambient light
irradiation dose on APC aggregation, and (3) the effect of
solvent pH on APC degeneration and aggregation. Attention
should be devoted to minimizing variations in these
parameters, especially during vulnerable steps in the process,
such as drug synthesis, packaging, and storage. Our results
indicate that small variations in these parameters can have
significant effects on drug efficacy and stability, and consistent
manufacturing and storage protocols in the future will likely
help to minimize patient safety risks and improve therapeutic
efficacy.

■ EXPERIMENTAL PROCEDURES
Chemicals and Reagents. The water-soluble silica−phthalocya-

nine dye IRDye 700DX NHS ester (C74H96N12Na4O27S6Si3,
molecular weight = 1954.22) was purchased from LI-COR Bioscience
(Lincoln, NE). A fully humanized IgG2 monoclonal antibody (mAb)
against human epidermal growth factor receptor (hEGFR),
panitumumab, was purchased from Amgen (Thousand Oaks, CA).
All other chemicals were reagent-grade.

Synthesis of IR700-Conjugated Panitumumab (Pan−IR700).
Panitumumab was conjugated to IR700 according to a previously
published protocol.34 The conjugated antibody was purified using a
Sephadex G50 column (PD-10, GE Healthcare) and filtered using a
0.22 μm PVDF syringe filter (Millipore). All operations were
performed in a dark room of 200 lx or less. The antibody
concentration was measured by the absorption at 280 nm (8453

Figure 3. Evaluation of photoinduced aggregation. (A) SEC chromatograms showing the effect of fluorescent light irradiation. The high-molecular-
weight species (HMWS) peak increased and the monomer peak tended to elute slightly earlier with increasing light irradiation. (B) The
aggregation ratio of Pan−IR700 increased in a light-dose-dependent manner.
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Figure 4. Effect of solvent pH. (A) SEC chromatograms of panitumumab. No specific changes were visually observed at any pH after incubation for
8 h. (B) SEC chromatograms of Pan−IR700 at 280 nm and 689 nm. An increase in the HMWS peak was observed at pH 4 after incubation for 8 h.
(C) Plots of the increase in the amount of aggregation vs incubation time at different pH values. The amount of aggregation increased over time at
pH 4. (D) LC/MS/MS detected release of the ligand after incubation for 8 h at pH 4. (E) Ligand peak intensities of samples at different pH after
incubation for 8 h. The ligand peak was significantly higher at pH 4. (F) Hypothesized change of chemical structure of Pan−IR700 under acidic
conditions.
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Value System, Agilent Technologies). Similarly, the amount of
conjugated IR700 was determined by the absorption at 689 nm.
Size-Exclusion Chromatography. For the systemic evaluation

of stability, SEC was performed using a Shimadzu Nexera XR HPLC
system. TSKgel UltraSW Aggregate (7.8 mm × 300 mm, 3 μm; Tosoh
Bioscience) with a TSKgel guard column UltraSW (6.0 mm × 40 mm,
3 μm; Tosoh Bioscience) was used for separation of the APCs by size.
The mobile phase was composed of a 200 mM sodium phosphate
buffer (pH 6.8).
Acetonitrile (10%) was added to the sodium phosphate buffer.

Approximately 25 μg of each sample was injected onto the column
without dilution. The absorbance at 280 and 689 nm was monitored
by a SPD-M30A PDA detector. We also monitored the excitation
wavelength at 689 nm and the emission wavelength at 700 nm using
an RF-20 Axs detector. Data were processed using Shimadzu
Labsolutions software.
Effect of IR700 Loading. In order to evaluate the effect of the

IR700 loading, six samples with different IR700:panitumumab mixing
ratios (0:1, 0.5:1, 1.25:1, 2.5:1, 5:1, 10:1, 20:1) were prepared. These
samples were analyzed using SEC, and the monomer peak areas at the
absorption wavelength and fluorescence wavelengths of IR700 were
plotted. The therapeutic effect of each sample was evaluated by in
vitro NIR-PIT as described below.
Cell Culture. A431 luciferase cells expressing hEGFR were grown

in RPMI-1640 medium supplemented with 10% fetal bovine serum
and 1% penicillin streptomycin in tissue culture flasks in a humidified
incubator at 37 °C in an atmosphere of 5% carbon dioxide and 95%
air.
In Vitro NIR-PIT. The cytotoxic effects of NIR-PIT were

determined by flow cytometry analysis. A431 cells (2 × 105) were
seeded into 12-well plates and incubated for 24 h. The medium was
replaced with fresh culture medium containing 10 μg/mL APC,
followed by incubation for 3 h at 37 °C. Cells were washed with PBS
and then irradiated with an NIR (690 nm) laser (ML7710, Modulight
Inc.) at a power density of 4 J/cm2. Cells were detached 1 h after
irradiation, and propidium iodide (PI) was added. Samples were
analyzed by flow cytometry (FACSCalibur, BD Biosciences).
Evaluation of Photoinduced Aggregation. In order to

evaluate the photostability of Pan−IR700, a fluorescent light
(318C3 45 W fluorescent light with a 6500 K daylight bulb, Dazor
Lighting Technology) or an LED light (L1570 LED desk light, Dazor
Lighting Technology), which have a color temperature of 6500 K, was
used to illuminate each sample at 500 lx h. The illuminance of each
light source was measured with an illuminometer. A 1 mL aliquot of
Pan−IR700 (500 μg/mL) was dispensed into each vial, and three
vials were prepared for each irradiation condition. Samples were
irradiated with 0, 500, 1000, 2000, 4000, 8000, 16 000, 32 000, or
64 000 lx h and subsequently analyzed by SEC. The aggregation ratio
of each sample was calculated with the following equation:

= ×% aggregation
area of aggregate peak

area of all peaks
100

Effect of Solvent pH. Phosphate buffer solutions (100 mM,
covering a pH range of 6.0−8.0) and acetate buffer (100 mM,
covering a pH range of 4.0−5.0) were prepared. Panitumumab and
Pan−IR700 solutions (500 μg/mL) were mixed with an equal volume
of each buffer and incubated at 25 °C under shielded conditions for a
period of 8 h. The pH after mixing was measured with a pH monitor
by mixing blank PBS and each buffer solution. These samples were
withdrawn at time intervals of 0.5, 1, 2, 4, and 8 h and then analyzed
using SEC. To better understand the effect of pH, we performed LC/
MS analysis. Each sample was diluted 5-fold with 1% formic acid in
methanol. After centrifugation at 14 000 rpm at 4 °C for 10 min, the
supernatants were transferred into new tubes. LC/MS analysis was
performed on a liquid chromatograph mass spectrometer (LCMS-
8050, Shimadzu) as described in previous work.5
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