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ABSTRACT: Generative adversarial networks (GANs), first published in 2014, are
among the most important concepts in modern artificial intelligence (AI). Bridging
deep learning and game theory, GANs are used to generate or “imagine” new
objects with desired properties. Since 2016, multiple GANs with reinforcement
learning (RL) have been successfully applied in pharmacology for de novo molecular
design. Those techniques aim at a more efficient use of the data and a better
exploration of the chemical space. We review recent advances for the generation of
novel molecules with desired properties with a focus on the applications of GANs,
RL, and related techniques. We also discuss the current limitations and challenges in
the new growing field of generative chemistry.
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■ INTRODUCTION

Since the 1960s, computational approaches for drug design and
discovery are continuously, including machine learning (ML),
have been developed and applied in many forms to the design of
compounds. Following the hypothesis that the physiological
response of a compound is merely a function of its chemical
constitution, these methods were initially designed to predict
the properties of compounds without the need to synthesize
these compounds. Going a step further, current methods for de
novo design aim at creating novel (previously unknown)
chemical entities with desired properties (e.g., pharmacological
activity) from scratch. This design concept comprises molecule
generation, molecule scoring and molecule optimization. For
drug discovery and medicinal chemistry specifically, this
involves tasks in drug target and lead compound identification,
drug design optimization against multiple property profiles of
interest, and finally identifying synthetic routes to realize the
composition of matter. Today, de novo design tools have the
capabilities to provide molecular structures which are often
readily synthesizable within a few reaction steps.
Standard de novo design methods often rely on explicit

chemical knowledge accumulation in the form of synthesis rules
or basic physical models. For this reason, they are limited by our
incomplete understanding of how molecules interact because
scientists cannot tell conventional software how to find insights
in data when they do not themselves know what elements of the
data are most important and how they relate to one another.
This explains in part why, despite the rapid advances in recent
decades in high-throughput screening technologies and the
inventiveness of medicinal and synthetic chemists, only a small
fraction of the druglike space has been investigated in the search
for new therapeutic compounds. The situation is made more
difficult by the fact that our fundamental understanding of

human disease and its high degree of complexity, which can only
be comprehended by combining the information from multiple
data types, is still far from complete, and this makes it difficult to
decide how to best intervene therapeutically. These factors
render decision making in medicinal chemistry and drug design
exceptionally demanding.
Researchers started to use deep learning (DL) to develop

methods for de novo drug design with the goal to overcome our
lack of understanding of the disease mechanisms and to more
efficiently explore the largely unexplored chemical space. DL
started to attract attention recently after DL algorithms
encountered major successes when applied in image and speech
recognition. DL methods now outperform humans for those
tasks, and the capabilities of DL quickly started to be
investigated in the field of biomedical sciences1 for addressing
problems including biomarkers and new target identification,
improvement of a patient’s prognosis by reducing error rate, and
selection of the most appropriate treatment by predicting
treatment outcome.2 DL-based algorithms often referred to as
AI methods in the literature, have many variants, are versatile
and flexible, and can treat information from the scientific
literature and databases as well as patient-level data. What
distinguishes DL from other ML methods and makes it so
attractive is its ability to identify relevant patterns within
complex, nonlinear data in an automatic fashion without the
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need for manual feature engineering. Among the DL
architectures proposed recently, the generative adversarial
networks (GANs) constitute a major breakthrough. GAN,
suggested in 2014,3,4 takes its origin at the intersection of DL
and game theory. GANs are able to generate new objects with
desired properties, and for that reason they are referred to as a
form of AI imagination. During the last 5 years, GANs and
variants using reinforcement learning (RL) have been deployed
in chemistry and pharmacology (Supporting Information Table
1) and the design and use of GAN and RL models for the
generation of novel molecules with specific desired properties
(Figure 1) has been successful with major milestones recently
achieved.
Recently, case studies using standard automated de novo drug

design methods for which designed compounds had their
activities verified by synthesis and assay were reviewed.5 These
novel potent compounds were obtained with de novo design
methods integrated into a larger multidisciplinary pipeline.
These de novo design methods showed promising results,
although generated compounds were sometimes a long way
from a candidate drug compound and additional optimization
steps were still required. In some cases, generated compounds
elicited high toxicity which prevented further development.
While the authors mainly focused on case studies using standard
de novo design computational methods, the present work
proposes to focus on the DL-based methods for de novo design.
This field is relatively new, and the performance of the first
models was evaluated by assessing at what extent the basic
structural features of the generated molecules matched the
average initial distribution of the training sets. Over time, more
precise metrics were included to better assess the properties and
druggability of the generated compounds. Models were
developed to generate molecules eliciting activity against a
specific target. The research to build DL-based models for de
novo drug design is also concerned with finding the best
approach to encode the molecular structures. Recently, several

DL-based models for de novo design whose results had
undergone in vitro and/or in vivo validations were published.
In what follows, we recall the technical caveats of computer-
aided drug design. When presenting the progress made in the
development of DL-based methods for the design of therapeutic
compounds, we summarize the evolution of the main classes of
DL models for de novo design and provide examples of
application.

■ OVERVIEW OF COMPUTER-AIDED DRUG DESIGN
In the last 40 years, the discipline of chemoinformatics has
created many computational drug design tools, ranging from
classical quantitative structure−activity relationship (QSAR)
techniques6 to more recent advances in matched molecular
pairs7 and free-energy perturbation.8 QSARs and their relations
were proposed byHansch et al. in 1962,9 and since this time they
have been an active area of research. QSAR is widely used in the
drug design process to analyze the correlations between
molecular structure and biological activity. A QSAR method is
defined as an ML application and/or statistical method to the
problem of finding empirical relationships where the biological
activity (or any property of interest) of molecules is expressed in
terms of function of calculated molecular descriptors of
compounds. The step of descriptor generation in QSAR
modeling is a nondifferentiable transformation which does not
allow a straightforward inverse mapping from the descriptor
space back to molecules, although a few approaches for such
mapping (inverse QSAR) have been proposed.10De novo design
aims to generate biologically active molecules from scratch. In
that case, the chemotypes obtained from the process represent
new chemical entities (NCEs) that not only provide new insight
into the atomic scale of molecular−receptor interactions but are
also patentable.11 Structure-based de novo drug design
(SBDND) and ligand-based de novo drug design (LBDND)
are the two most commonly used computational approaches.12

SBDND requires an X-ray structure or reasonably valid

Figure 1. Timeline summarizing the development of ML, DL, and the learning concepts including GAN and RL. Those technologies were critical for
the emergence of generative chemistry.
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homology models of the desired targets, and ligands are
generated by joining atoms or fragments so that the resulting
product fits into the desired pocket.13 Many approaches are used
to generate novel ligand structures.14 Atom-based methods add
atoms one by one based on the receptor site, whereas fragment-
based approaches search fragment libraries and use the
fragments to build new molecules through growth and linkage.
Pharmacophore-based methods, another widely used model,
generate molecules that are structurally similar or comple-
mentary to the pharmacophore retrieved from defined pockets.
The fitness of the generated molecules is then evaluated by
physicochemical filters or by a scoring function based on
molecular docking and molecular dynamics.15−17 When there
are no high-resolution X-ray structures available, the ligand-
based design can be used as an alternative approach. LBDND
aims at creating NCEs by identifying fragments with
pharmacophoric features similar to the template scaffolds and
then replacing the template with new fragments. This fragment-
based molecular design follows the concept of scaffold-hopping.
According to this concept, the newly designed molecules should
possess property profiles similar to or superior to that of the
template but should contain different scaffolds.18 NCEs are
assembled by either commercially available building blocks or by
building blocks dissected by the pseudo-retrosynthesis of known
drugs.19,20 Some successful applications of compound opti-
mization for desired selectivity and pharmacological profiles by
coupling evolutionary algorithms with proper QSAR models or
similarity indices as fitness functions have been reported.21−24

■ DEEP-LEARNING FOR DRUG DISCOVERY:
SEARCHING FOR UNEXPLORED CHEMICAL SPACE

The attractive feature of DL approaches is the implicit chemical
knowledge generation by pattern recognition in structural

molecular data. This is an important difference with standard de
novo design methods which rely on the accumulation of explicit
chemical knowledge in the form of synthesis rules or basic
physical models. Imbued with the ability to derive their own
insights into which data elements matter, DL-based programs
can extract better predictions for a wider range of variables.
Considering the almost unlimited number of chemical
structures that can be generated de novo, conventional
computational drug design approaches tend to include limited
numbers of fragments and/or to employ sophisticated search
strategies to sample hit compounds from a predefined area of the
chemical space. It has been estimated that 1060 druglike
molecules could be synthetically accessible.25 Chemists have to
select and examine molecules from this large space to find
molecules that are active toward a biological target. Recent
advances in ML and AI techniques can help scientists to more
efficiently explore the whole druglike chemical space.26−29

Generative chemistry based on DL models learns the nonlinear
probability distribution between molecular chemical structures
and their biological and pharmacological properties from
massive data sets and then perform in silico design of de novo
molecules with desired properties.30−32 Architectures such as
recurrent neural networks (RNNs)33 and autoencoders
including variational autoencoders (VAEs),34 adversarial
encoders (AAEs),35 and GANs3 (Figure 2) can serve as
powerful tools for de novo molecular design. Detailed technical
reviews of each DL model are available elsewhere.36

■ RECURRENT NEURAL NETWORKS

RNNs are neural networks with an internal memory that are
suitable ML algorithms for sequential data. Segler et al. trained
an RNN based on the long short-term memory (LSTM)
architecture to generate molecular structures.37 The model was

Figure 2. Schematic representation of architectures used in generative chemistry. The VAE/AAEmodel (top) and the GAN-RLmodel (bottom) have
been successful in generating molecular structures of compounds with desired sets of properties.
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first trained on a large set of molecules to learn the grammar of
the simplified molecular input line-entry system (SMILES) and
then fine-tuned on a smaller set of molecules active against
desired targets where it adopted transfer learning concepts. It
was shown that the model could create novel molecules with
predicted activities targeting 5-HT2A, the malaria parasite, as
well as Staphylococcus aureus. The results demonstrated that
LSTM-generative models could be coupled with a docking
program to iteratively generate active molecules without the
need for a set of known ligands.38 Other LSTM neural networks
trained on druglike molecules were able to generate novel
molecules occupying the same area of chemical space as the
known bioactive molecules with potential activity against
various targets.39,40 Merk et al. trained an RNN-LSTM model
on the SMILES-encoded ChEMBL compound database. The
model was fine-tuned with active compounds against retinoid X
receptors (RXRs) and peroxisome proliferator-activated re-
ceptors (PPARs) for the de novo design of molecules for these
receptors.41 After prioritizing the generatedmolecules according
to their similarity in shapes and charges to known ligands and
using predictive binding results from machine-learning models,
the authors synthesized and tested five compounds and found
that four possessed low-micromolar levels of activity and
suitable selectivity profiles.

■ VARIATIONAL AUTOENCODERS
Gomez-Bombarelli et al. proposed a VAE generative model that
was trained on SMILES representations of publicly available
chemical structures.42 The model encoded molecules into low-
dimensional vectors in latent space as continuous and smooth
probability distributions, and the decoder of VAEs converted
these continuous vectors back to discrete molecular representa-
tions. The continuous representations of molecules allow
sampling of the chemical space stepwise, leading to the
successful optimization of molecules with desired druglike
properties. The model was trained on the ZINC and QM9
databases, and the authors compared the water−octanol
partition coefficient (log P), the synthetic accessibility score
(SAS), and the quantitative estimation of drug-likeness (QED)
of the generated molecules with those in the training sets. The
VAE-generatedmolecules showed chemical properties similar to
the original data set but with diverse chemical scaffolds.
Moreover, when applied to optimize the QED and SAS scores
of molecules, the model outperformed the genetic algorithm,
which required manual specification of mutation rates and rules.
Conditional variational autoencoder (CVAE) incorporated
molecular properties directly into both the encoder and decoder
that allowed one to handle the structures and the properties
independently, which is particularly useful in optimizing a given
molecule toward a certain property by marginal structure
modification.43 The author adopted CVAE to generate druglike
molecules and to concurrently optimize molecules toward a
desired molecular weight, log P, number of hydrogen bond
donors (HBDs), number of hydrogen acceptors (HBAs), and
topological polar surface area (TPSA). The model was tested to
generate molecules with similar properties to those of aspirin
and Tamiflu. The property values of the generated molecules
were found to be within an error range of 10% compared to the
properties of the two molecules used as references. Junction tree
variational autoencoder (JT-VAE), another VAE-based gen-
erative chemistry model, views molecules as graphs and
generates new molecules by assembling building blocks derived
from subgraphs of the molecules.44 It has been shown that JT-

VAE could successfully generate valid molecules with the
desired log P and optimize the log P value for the template
molecules.

■ GENERATIVE ADVERSARIAL NETWORKS
Insilico Medicine was the first to publish a deep adversarial
model, AAE, trained on publicly available biological and
chemical data including 6252 compounds profiled on the
MCF-7 cell line for new compound generation.45 The system
takes a vector of binary fingerprints and the molecule’s cell
inhibition concentration in log scale as inputs, and it outputs an
inhibition concentration and a vector consisting of probabilities
assigned to each bit of the fingerprint. The generated vectors
were screened against 72 million compounds from PubChem,
and the maximum likelihood function was used to select top hits
for each of the vectors. Sixty nine compounds were identified as
belonging to various chemical classes with profiled anticancer
activities. This work was followed by a second AAE model, the
drug generative adversarial network (druGAN).46 Compared to
the first model, druGAN improved the performance of the
discriminator by introducing an additional hyperparameter to
improve the training. DruGAN also uses fingerprints to
represent molecules and adopts Tanimoto similarity to measure
the similarity between the generated molecules and the original
data. Overall, druGAN exhibited higher adjustability in
generating molecular fingerprints and had a better capacity to
process very large data sets of molecules. The study included a
comparison between druGAN and a VAE model. Both the AAE
and VAEmodels were shown to perform very well depending on
the kind of task to be solved. Consequently, both VAE and AAE
can be considered valuable tools for use with fingerprints and
with other molecular structure representations. Another study
constructed various types of generative adversarial autoencoder
models and applied them to inverse QSAR to generate novel
chemical structures.47 By implementing Bayesian optimization
to search for molecules in the latent space of the models with
desired properties predicted by a QSAR model, novel structures
with predicted activities were revealed, indicating the usefulness
of the generative models in tackling drug discovery problems.
Recently, Polykovskiy et al. proposed the entangled conditional
adversarial autoencoder (ECAAE), which was conditioned on
generating selective molecules for JAK3.48 The model
demonstrated higher performance in the generation of novel
chemical structures given complex conditions, such as activity
against a specific protein, solubility, and ease of synthesis. The
300 000 conditioned compounds generated by this model were
screened with a series of filters, including medicinal chemistry
filters, log P, SAS, and docking as well as MD simulation, to
identify 100 of the most promising hits. The most promising
molecule was chosen by experienced medicinal chemists and
was synthesized and tested in vitro against JAK3, JAK2, B-Raf,
and c-Raf. The molecule was shown to have low-micromolar
activity against JAK3 (IC50 = 6.73 μM) but was inactive against
JAK2 (IC50 = 17.58 mM), B-Raf (IC50 = 85.55 μM), and c-Raf
(IC50 = 64.86 μM). Another model called generative tensorial
reinforcement learning (GENTRL) was used to generate in vivo
active DDR1 and DDR2 inhibitors.49 DDR1 and DDR2
inhibitors with different property and selectivity profiles were
assayed in vitro, followed by in vivo mouse experiments that
validated the pharmacokinetics of the inhibitors. This study
illustrates the effectiveness of this generative approach by
showing that the molecules can be generated in a time and cost
efficient manner and that they can be synthesized, are active in

ACS Medicinal Chemistry Letters pubs.acs.org/acsmedchemlett Innovations

https://dx.doi.org/10.1021/acsmedchemlett.0c00088
ACS Med. Chem. Lett. 2020, 11, 1496−1505

1499

pubs.acs.org/acsmedchemlett?ref=pdf
https://dx.doi.org/10.1021/acsmedchemlett.0c00088?ref=pdf


vitro, are metabolically stable, and show in vivo activity in
disease-relevant models. However, it was pointed out that the
GENTRL-generated molecule was similar to ponatinib and that
the molecules described still required optimization.50 However,
considering that the design/make/test/evaluate workflow in
drug discovery can only afford a limited number of cycles
because each step is resource- and time-consuming, this case
study represents an important milestone for generative
chemistry because it showed how AI methods can be integrated
within the drug design cycle and contribute to its optimization.

■ OPTIMIZATION WITH DEEP GENERATIVE MODELS
USING REINFORCEMENT LEARNING

RL51 is used to fine-tune generative neural networks by
rewarding or penalizing generative behaviors. Olivecrina et
al.52 proposed a method to tune a sequence-based generative
model for molecular de novo design that through augmented
episodic likelihood can learn to generate structures with certain
specified desirable properties. The RNN-based model was
pretrained on the ChEMBL database to generate molecular
structures similar to that of the drug celecoxib and to generate
predicted actives against dopamine receptor type 2 (DRD2).
The similarity was evaluated using a variant of the Jaccard index.
When trained toward generating predicted actives against
DRD2, the model generated structures of which more than
95% were predicted to be active and could recover test set
actives even in the case where they were not included in either
the activity model or the Prior. When tasked to generate
structures similar to that of the drug celecoxib, the model could
locate the intended region of chemical space which was not part
of the Prior even when all analogues of celecoxib were removed
from it. However, none of these predictions were tested through
in vitro or in vivo experiments. A comparable deep RL framework
integrating generative models trained with a stack-augmented
memory network and predictive QSAR models was also
proposed.10 The model was able to generate chemical libraries
for creating compounds with desired structural complexity or
with desired physical properties, such as melting point or
hydrophobicity. The model could also be used to generate
compounds with predefined inhibitory activity against desired
targets. The structural properties and SAS of the generated
molecules were evaluated.More than 99.5% of de novo generated
molecules had SAS values below 6. SAS is scaled to be between 1
and 10. Molecules with high SAS values, typically above 6, are
considered to be difficult to synthesize, whereas molecules with
low SAS values are easily synthetically accessible. Therefore,
despite their high novelty, most generated compounds were
considered to be synthetically accessible. The advantage of this
deep RL framework is that it does not rely on predefined
chemical descriptors; the models are trained on chemical
structures represented by SMILES strings only. Using DNNs
directly on SMILES is fully differentiable, and it also enables
direct mapping of properties to the SMILES sequence of
characters. This distinction differentiates this approach from
traditional QSARmethods and makes it simpler to both use and
execute. SMILES strings were also used for QSAR model
building but in most cases to derive string-based numerical
descriptors. The architecture called sequence generative
adversarial network (SeqGAN) combines GANs with an RL-
based generator to create sequences of discrete tokens.53

Another extension of SeqGAN, called objective-reinforced
generative adversarial network (ORGAN), was also proposed.54

This model added an objective-reinforced reward function for

particular sequences into the SeqGAN reward loss. Considering
the success of the ORGAN model, architectures based on
objective functions for molecular design within the ORGAN
paradigm were later developed.55 For instance, the model called
objective-reinforced generative adversarial network for inverse-
design chemistry (ORGANIC) used various criteria as objective
filters to train the ORGAN model. The results showed how
different objective reward functions made it possible to bias the
generation process to generate molecules with desired user-
specified properties, such as QED. Other recent architectures
based on the GAN and RL paradigms include the RANCmodel,
which used a differentiable neural computer (DNC) as a
generator.56 DNC is a category of neural networks that features
the addition of an explicit memory bank to increase generation
capabilities. The comparisons with ORGANIC showed that
RANC performed better in terms of number of unique
structures and number of generated molecules that passed the
medicinal chemistry filters. The molecules generated by this
model did not undergo in vitro and in vivo assessment. The focus
was to ensure that the model was capable of generating
molecules whichmatched the distributions of chemical features/
descriptors. Another similar model called adversarial threshold
neural computer (ATNC) was also published.57 ATNC also
used DNC as a generator but included a supplementary
computational unit called the adversarial threshold (AT),
which acted as a filter between the agent (generator) and the
environment (discriminator and objective reward functions).
ATNC also included a new objective reward function, called
internal diversity clustering (IDC), to improve the diversity of
generated molecules. ATNC generated 72% of valid and 77% of
unique SMILES. Moreover, the druglikeness properties of the
molecules were estimated using chemical descriptors. The
performances were compared with that of ORGANIC, and both
models were trained on the SMILES string representation of
molecules. The results showed that ATNC could generate more
valid molecules with better druglike properties than ORGANIC
could. In order to perform in vitro validation, de novo molecules
generated by the ATNC model trained on 30 000 kinase
inhibitors from a public database were screened against in-house
small molecule collections by similarity searches. The inhibition
potency of the similar compounds found in the collections was
tested against a panel of kinases, and some hits were observed,
indicating the usefulness of ATNC for generating hit
compounds. In ref 58, the authors described a SMILES-based
generative model, called Bidirectional Adversarial Autoencoder,
which infers molecular structures inducing a predefined change
in gene expression. The model separates cellular processes
captured in gene expression changes into two feature sets: those
related and unrelated to the drug incubation. Themodel uses the
first set to formulate a drug hypothesis. The model was validated
using the LINCS L1000 data set and it was shown that themodel
can generate novel molecular structures which can induce the
desired gene expression change or predict a gene expression
difference after incubation of a given molecular structure.
Although the initial AI-based generative chemistry models

offered promising possibilities, their performance was limited by
the methods used for representing and encoding the molecules.
Most of the first generative models are SMILES-based models
and cannot properly employ fragment-based objective reward
functions because the SMILES format notation does not allow
fragments to be found in the SMILES string of a molecule. To
circumvent this issue, researchers have proposed models using
other molecular representations, (Figure 3), such as graph
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representations, where each molecule is represented in a unique
way. Kearnes et al. proposed a graph convolution architecture to
encode small molecules as undirected graphs of atoms
connected by bonds for virtual screening.59 The results
demonstrated comparable performance to that of neural
networks models trained on molecules encoded by fingerprints.
JT-VAE, for example, generated molecules by building blocks
derived from subgraphs of valid molecules. The key advantage of
this technique is that the decoder can use valid components and
correct interactions to realize a valid molecule piece-by-piece.44

Another example addressing these problems is a GAN-RL-based
generative model called MolGAN that uses graph-structured
data.60 MolGAN is an implicit, likelihood-free generative model
for small molecular graphs that circumvents the need for
expensive graph-matching procedures or node-ordering heu-
ristics. MolGAN includes an RL objective that favors the
generation of molecules with specific desired chemical proper-
ties. Another example is Mol-CycleGAN.61 This CycleGAN-
based model is designed to generate optimized compounds with
a chemical scaffold of interest. Given a molecule, this model
could generate a structurally similar molecule with an optimized
value of a given property, such as log P. A direct 3D
representation of a molecule could also be an alternative for
molecular representation. A study was recently published to
describe the wave transform in which atoms were extended to fill
nearby voxels with a transformation. The results demonstrated
that this representation reached a better performance in training
autoencoders.62

■ ASSESSMENT AND VALIDATION OF GENERATIVE
CHEMISTRY APPROACHES

AI-based approaches require rigorous evaluation to determine at
what extent they might be applied in real world drug discovery
settings. Unfortunately, publications describing AI-based
approaches do not always disclose all documentation needed
to perform an objective evaluation of their abilities. With the
increasing number of approaches proposed in the field, there is a
need to develop a unified set of benchmarks to evaluate and

compare generative models. This includes the formulation of
practices about how large a training data set is required, how
long the model should be trained, and which metrics and loss
functions are the most appropriate for monitoring the
performance and assessing the validity of the model outputs.
Initiatives are underway to establish a range of standards in
generative chemistry. For instance, the Alliance for Artificial
Intelligence in Healthcare (AAIH), cofounded by Insilico
Medicine, has proposed the Molecular Sets (MOSES).63

MOSES is a benchmarking platform to support research on
DL for drug discovery which contains a set of molecular
generative models and metrics for evaluating the novelty and
quality of generated molecules. GuacaMol is another similar
effort supported by BenevolentAI. Another issue to be
considered when assessing the performance of a generative
model is whether a simpler approach that does not employ AI
could have produced the same molecules. Although it may be
difficult to perform a head-to-head comparison, the existence of
these alternatives should be taken into account. For standard
computational methods, the requirements for the novelty,
activity, and breadth of structure−activity relationship are
defined by guidelines specially designed for computational
papers. This contributes to improve the quality of computational
medicinal chemistry papers and to ensure that articles are
reviewed in a consistent manner. Similar guidelines should be
established by journals publishing AI-based case studies. This
will enable a better systematic evaluation of the results
presented. Criteria by which molecules generated using DL-
based design methods could be assessed were recently
suggested.50

As discussed above, the systemic pharmacological effect of a
drug is governed by nonlinear relationships between contribu-
ting factors whose biological effects are not always well
understood. The chemical structure of a drug alone does not
necessarily account for the observed pharmacological effect in a
simple fashion and most drugs have multiple biological targets
and activities, and their relative importance is highly dependent
on the individual genetic profile of patients, and many other

Figure 3.Different approaches suggested for representing molecular structures. Although the first published DL-based model for de novo drug design
used fingerprints to represent the molecules, SMILES is currently the most used format for encoding molecular structures. Other representations such
as graphs are also attracting interest. Combining different encoding formats allow building a more detailed description of the molecular structures
leading to better performance of de novo design methods.
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factors. This poses a particular challenge for de novo drug design
because in this context drug design appears to be an ill-posed
problem due to the number of often unknown factors. This leads
to an unpredictable system behavior which does not always
follow the correspondence between structure and function, a
prerequisite for systematic optimization. This complexity is not
always precisely taken into account when representing
molecular structures in terms of molecular graphs for instance,
as evidenced by the limitations of graph-based molecular
fingerprints, and this makes molecule scoring a complex task.
The limited appropriateness of the quantitative scoring
functions also makes difficult the fully automated compound
fine-tuning and hit-to-lead expansion. Advanced AI methods
could be developed to create more adapted scoring functions
thanks to their abilities to combine data of different types
(genomics, proteomics, metabolomics, lipidomics, etc.) and to
use biological information encoded within the data without the
need for hand-crafted rules.
What distinguishes healthcare from other fields when it comes

to validating AI technologies is that while the advances in high
performance computing and data management allow training
the systems very quickly, the time needed to test the output is
much longer than that in other industries dealing with pictures,
videos, or text. The time it takes to perform in vivo validation of
molecules produced by AI technologies by far exceeds the time it
takes to build and train themodels. It also takes effort andmoney
and necessitates collaborations involving experts in AI and
biological, chemical, and medical sciences. Synthesis and
experimental validation will remain the main gating factor for
the transformation of drug discovery using AI over the next few
years, and the process will require a significant amount of
investment to demonstrate its worth prospectively to commit to
make and test the identified compounds. For successful AI-aided
compounds, the rate of entry into the market also depends on
how the regulatory agencies will consider the potential and
safety of the use of AI within the drug discovery and healthcare
industries.

■ CHALLENGES AND OUTLOOK
The lack of synthetic tractability has been a weakness of many of
earlier computational de novo molecular design approaches. In
generative models, the synthetic tractability or accessibility is
evaluated using the synthetic accessibility score method64 which
relies on the knowledge extracted from known synthetic
reactions and adds a penalty for high molecular complexity.
Recent case studies (Supporting Information Table 2) showed
that DL-based methods were able to generate molecular
structures that are synthetically tractable and elicit the desired
biological activity. This suggests that DL-based design methods
can learn implicit rules about this important aspect from the
training structures provided. Nevertheless, there is still
significant manual input to the process of de novo design with
generated structures requiring manual curation to make them
more amenable for synthesis. This happens when certain
chemical building blocks are unavailable, are unstable, require
lengthy preparation, or lack sufficient reactivity. It is worth
emphasizing that the design of molecular structures is only a
component of a larger workflow that includes docking and other
in silico filtering. In the future, research will focus on the
amelioration of the assessment of synthetic accessibility and this
might require the definition of more adapted scoring functions.
Finally, considering that de novo drug design is primarily
dependent on data, in terms of quantity and quality, additional

resources should be invested in data curation and integration in
order to realize the full impact of AI techniques in the future. We
have listed (Supporting Information Table 2) representative
examples of AI-based de novo molecular methods. These case
studies, published in peer-reviewed journals, provide an
overview of the current capabilities of AI.
Disruptive technologies bridging multiple scientific domains

are impacting and reshaping the future of chemical biology and
drug discovery. AI algorithms can learn to identify subtle
information, enabling them to efficiently and precisely analyze
the correlations between molecular structure and biological
activity as well as build up a reliable QSAR model that can
generate de novo compounds with desired properties.21,24,48,65

This could lead to a major disruption of the pharmaceutical
industry by AI,66 as this field will be entering into an era where
scientists will be able to deliver drugs to patients in a more
efficient and more cost-effective manner.1,30 Within the next few
years, the integration of AI within drug discovery pipelines is
most likely to be incremental and will depend on the ability of AI
to provide scientists with reliable solutions to the challenges
faced by the industry. Where AI can make a huge difference is
having drugs that fail early on, to avoid making all that
investment in them. In addition to the AI-based computational
design of novel compounds against selected targets, other
ambitious challenges would be to identify molecules that are
pharmacologically active and orally bioavailable.
The often nonlinear structure−activity relationships of drugs,

as well as their complex physicochemical properties, lead to
complicated optimization problems when applying automated
in silico drug design.5 Although the recent growing interest in
applying AI for solving key challenges in drug discovery has
revealed the capacities of generative deep networks for molecule
design, the reliable and practical models that can predict binding
affinities to prioritize thousands of generated molecules for
synthesis and testing remain lacking.67 One primary reason for
this insufficiency is that the binding of the ligand to its receptor is
driven not only by the enthalpy contribution but also the
entropy contribution, particularly the influence of the free-
energy cost of displacing ordered or partially ordered water.68

Interestingly, a recent study seems to address this unmet need by
demonstrating the successful application of virtual screening on
ultra large compound libraries.69 The authors constructed
libraries of 170 million diverse compounds from the well-
characterized chemical reaction products of 70 000 building
blocks and performed docking against AmpC β-lactamase and
the D4 dopamine receptor. The study carefully designed the
docking protocol, avoiding a large chemical space that could
overwhelm the true active compounds in order to successfully
identify potent binders with new scaffolds against the targets.
Though the team encountered problems in designing selective
compounds by large-library dockings,70 they demonstrated the
practical application of docking a large compound library in de
novo drug design, an approach that could be used as a scoring
function for prioritizing generated molecules. It could be
implemented in RL generative models as a reward function to
guide the models to efficiently explore the whole chemical
space.37 Moreover, the synthetic accessibility of generated
compounds remains a challenge to fully exploiting AI-based
generative chemistry tools in drug discovery. Advances in
chemical intelligence approaches that utilize automated robotic
systems to allow the universal assembly of complex molecules on
demand,29,71 as well as DL-based chemical synthesis planning,72

may provide solutions for the synthetic tractability.
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The integration of AI in the activities of scientists will be
facilitated with the formation of multidisciplinary teams
developing this technology even as they test hypotheses in the
laboratory to make the systems better able to learn. Enabling
those feedback loops to improve the algorithms through testing
their predictions and assumptions contributes to augment the
abilities of the scientists and also to improve the understanding
of AI capabilities and limitations. As AI-based technologies are
integrated, more scientists will be responsible for establishing
research directions and produce data. The scientists will have
major roles to play in the evaluation of the results from the point
of view of accuracy in the sense that scientific data is sometimes
contradictory. For instance, some biological facts may be true in
animal models but not in humans. Scientists are also important
to interpret the result within the right experimental context
because in biology context matters with protein interactions
taking place in one organ but not in others. AI-based
technologies are often not yet sophisticated enough to pick up
on such context.
Looking ahead, one can foresee that the increase in

computational power and the improvement of the overall
performance of generative models will contribute to optimize
the early stage of drug discovery with new capabilities to
generate higher-quality target-oriented diverse compound
libraries with well-designed druglike properties. These new
capabilities combined with the steady progress in automated
chemical synthesis and in the development of reliable computa-
tional simulation techniques for predicting the binding energy of
generated compounds73 will allow a major step toward fully
automated de novo drug design.74,75
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