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Background.  Human papillomavirus (HPV) vaccination of girls with very high (>90%) coverage has the potential to eradicate 
oncogenic HPVs, but such high coverage is hard to achieve. However, the herd effect (HE) depends both on the HPV type and the 
vaccination strategy.

Methods.  We randomized 33 Finnish communities into gender-neutral HPV16/18 vaccination, girls-only HPV16/18 vaccina-
tion, and hepatitis B virus vaccination arms. In 2007–2010, 11 662 of 20 513 of 40 852 of 39 420 resident boys/girls from 1992 to 1995 
birth cohorts consented. In 2010–2014, cervicovaginal samples from vaccinated and unvaccinated girls at age 18.5 years were typed 
for HPV6/11/16/18/31/33/35/39/45/51/52/56/58/59/66/68. Vaccine efficacy for vaccinated girls, HE for unvaccinated girls, and the 
protective effectiveness (PE) for all girls were estimated. We extended the community-randomized trial results about vaccination 
strategy with mathematical modeling to assess HPV eradication.

Results.  The HE and PE estimates in the 1995 birth cohort for HPV18/31/33 were significant in the gender-neutral arm and 
150% and 40% stronger than in the girls-only arm. Concordantly, HPV18/31/33 eradication was already predicted in adolescents/
young adults in 20 years with 75% coverage of gender-neutral vaccination. With the 75% coverage, eventual HPV16 eradication was 
also predicted, but only with the gender-neutral strategy.

Conclusions.  Gender-neutral vaccination is superior for eradication of oncogenic HPVs.
Keywords.   elimination; eradication; gender-neutral vaccination; herd effects; human papillomavirus.

The first prophylactic vaccines against oncogenic human 
papillomaviruses (HPVs) with high vaccine efficacy (VE) 
were licensed more than 10 years ago [1, 2]. However, imple-
mentation of these safe vaccines, which protect against inva-
sive HPV-associated cancers [3], has not been very successful, 
particularly in affluent countries. Girls-only HPV vaccination 
coverage varies from low in opportunistic settings (25%–40%; 
France and the United States) to moderate in most organized 
programs (70%–80%; Finland and Sweden). In Europe, very 

high coverage (>90%) has been achieved only in Scotland [4–7]. 
Gender-neutral vaccination is being launched in some affluent 
countries to also protect boys from HPV diseases.

Population studies have observed first order herd protec-
tion (females to males) and second order herd protection (fe-
males via males to females), associated with girls-only HPV 
vaccination, from the occurrence of genital warts in both 
females and males [8–10]. This suggests that low-risk HPV 
types with fast clearance rates can be controlled by girls-only 
HPV vaccination and the associated herd effects (HEs) [11]. 
The multiple high-risk (hr)HPV types included in the vac-
cine [12] or vaccine-induced cross-protection [13, 14] are 
pivotal for the generation of protection and HEs against the 
wide variety of HPV types [15, 16]. However, eradication of 
HPV16/18 with girls-only vaccination requires the gener-
ation of strong second order HE against HPV16/18 among 
unvaccinated girls, from vaccinated girls via the first order 
HE-protected unvaccinated boys, which requires the excep-
tionally high (>90%) vaccination coverage [7, 11]. The cur-
rent girls-only HPV vaccination achieving low to moderate 
coverage fails to deliver the necessary HE [4–7, 11, 17]. 
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Gender-neutral vaccination not only protects boys, but it also 
provides a chance to strengthen herd protection.

Our community-randomized trial (CRT) compares the 
overall impacts of girls-only and gender-neutral vaccination 
strategies on HPV prevalence reduction in an originally HPV 
vaccination-naive adolescent population in Finland [15, 16, 18]. 
The overall impact, ie, protective effectiveness (PE), comprises 
VE for vaccinated females and HE for unvaccinated females for 
the entire adolescent female population. In the CRT, however, 
the randomization did not fully succeed to control background 
HPV prevalence heterogeneity between communities, which 
was tackled with advanced statistical methods [15, 16]. In addi-
tion, however, communities had variable vaccination coverage, 
unevenly between intervention arms, which may have impacted 
the published estimates.

In this work, we present final, outlier-free results with re-
spect to vaccination coverage from the CRT. This outlier-free 
analysis, which was planned already in the study protocol be-
fore launching our CRT in 2007, tackles uneven distribution 
of vaccination coverage by excluding communities with an 
exceptional coverage of HPV vaccination from the analysis 
(Appendix 1). Starting with the trial vaccination coverage, we 
further present model-based timelines for eradication of onco-
genic HPV types [19] with different assumptions of vaccination 
strategy, coverage, and VE.

METHODS

To evaluate the impact of girls-only versus gender-neutral HPV 
vaccination strategies, Finland conducted a CRT in 2007–2014 
with the AS04-adjuvanted HPV16/18 (Cervarix) vaccine and 
hepatitis B virus (HBV) (Engerix) control vaccine [18]. The trial 
was started immediately after licensure of HPV vaccines and con-
ducted in early adolescents aged 12 to 15 years. We briefly repeat 
the trial procedures, which are described elsewhere with more 
details, including characteristics for study groups [15, 16, 18].

Procedures

The 33 trial communities were randomized into 3 arms. In 11 
Arm A  communities with gender-neutral HPV vaccination, 
90% of participating girls and boys received the HPV16/18 vac-
cine, and 10% received the HBV vaccine. In the 11 Arm B com-
munities with girls-only HPV vaccination, 90% of participating 
girls received the HPV16/18 vaccine, and 10% of girls and all 
participating boys received the HBV vaccine. Finally, in the re-
maining 11 control Arm C communities, all participating girls 
and boys received the HBV vaccine [18].

All trial communities had more than 35  000 inhabitants 
and were located outside the Helsinki metropolitan area, at 
≥35-km distance from each other. Background HPV16/18 ex-
posure was estimated using HPV16/18 seroprevalence meas-
ured in a random sample of 50 women per community under 
age 23. The 33 communities were stratified into low (<20.5%, 

12 communities), intermediate (20.5%–24%, 9 communities), 
and high (>24%, 12 communities) HPV16/18 seroprevalence 
categories and randomized based on these categories to reduce 
the variation across arms [18].

The HPV-040 study (Eudra-CT-2007-001731-55, 
NCT00534638) and parallel ancillary studies on Chlamydia 
trachomatis screening (Dnro 111/2009) and HPV screening 
(ETL-code 13149, NCT02149030) were approved by Finnish eth-
ical committees of the Pirkanmaa and Pohjois-Pohjanmaa hos-
pital districts in 2007, 2009, and 2013, respectively [15, 16, 18].  
The primary HPV-040 study provided a beneficial vaccination 
in the control arm and cross-vaccination at the study end. The 
latter two studies provided cervicovaginal self-samples for C 
trachomatis and HPV analyses.

The Finnish Population Register was used (1) to identify all 
80 272 residents of study communities born in 1992–1995 and 
(2) to follow their residential history throughout the study. In 
2007–2009, invitation letters and consent forms were sent to 
their parents or legal guardians, resulting in 11 662/20 513 par-
ticipants of 40  852/39  420 resident boys/girls. Three vaccine 
doses (at months 0, 1, and 6) were given to 99.4% of partici-
pants at schools: girls and boys in Arm A and girls in Arm B 
were blinded until age 18.5 years [15, 16].

All female residents of the study communities born in 1992–
1995, including initial nonparticipants, were invited to attend fol-
low-up visits at the age 18.5 years during 2010–2014. Self-collected 
cervicovaginal samples for HPV and C trachomatis testing for 
the ancillary studies were typed for HPV6, 11, 16, 18, 31, 33, 35, 
39, 45, 51, 52, 56, 58, 59, 66, and 68 (HPV deoxyribonucleic acid 
[DNA] positivity by polymerase chain reaction [PCR]). All female 
attendees consented to participate in a C trachomatis screening 
trial and filled in a questionnaire on demographic information, 
life-style factors, and sexual health. Finally, the attendees were 
offered the vaccine they had not received at baseline [15, 16].

Statistical Analyses

To determine the HE, 1 - ratio of risks of HPV infection (HPV 
DNA positivity) was estimated in non-HPV-vaccinated women 
for Arm A versus Arm C and Arm B versus Arm C. Likewise, 
the VE was estimated in HPV- versus HBV-vaccinated women 
for Arm A versus Arm C and Arm B versus Arm C [16]. The 
overall PE of HPV vaccination for all females born in 1992–
1995, in Arm A and Arm B communities, was determined as 
a weighted combination of the VE in HPV-vaccinated women 
and the HE in non-HPV-vaccinated women. The VE was 
weighted by the coverage of HPV vaccination, and the HE was 
weighted by 1—coverage [15, 16].

Both VE and HE were estimated by the generalized estimating 
equation (GEE) method (Appendix 2)  using SAS 9.4 (SAS 
Institute Inc., Cary, NC) [15, 16, 20, 21]. Binomial response 
and logit link was applied. An exchangeable correlation struc-
ture between responses of women from the same community 
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and independence between responses of women from different 
communities were assumed. The 95% confidence intervals (CIs) 
were based on the profile likelihood [15]. To compare Arm 
A and B estimates for HE and PE, the probabilities P(A>B) were 
calculated from the log-normal approximated likelihoods.

Herd effect estimates were corrected for exceptional coverage 
of vaccination (outlier communities) and for the different pro-
portion of HBV-vaccinated women among follow-up attendees 
in Arm C compared with Arms A and B. The outlier commu-
nities were defined by a cutoff level of 20% relative difference 
from the mean vaccination coverage of girls and boys in Arm 
A, and of girls in Arm B, in the remaining communities. To cor-
rect the unbalance in HBV-vaccinated/unvaccinated ratio, Arm 
C attendees were represented by all unvaccinated attendees and 
a stratified random sample from each 44 community-birth year 
strata of HBV-vaccinated attendees using the sampling ratio 
0.125 in each stratum. For such Arm C representation, the 
HBV-vaccinated/unvaccinated ratio was similar to Arms A and 
B, and the GEE method was applied. The sampling procedure 
was repeated 21 times, and the HE estimates are means of the 
random-sample-specific GEE estimates. The 95% CIs were es-
timated using the entire non-HPV-vaccinated cohort [15, 16].

Two separate dynamic transmission models [19, 22] were 
used to emulate the trial in advance. Both models predicted de-
lays in the HE so that HPV prevalence in the 1994–1995 birth 
cohorts was lower than in the 1992–1993 birth cohorts, both 
among nonvaccinated and vaccinated women [18]. Indeed, 
HPV prevalence peaks between 18 and 22 years of age, above 

the ages at vaccination of trial birth cohorts, and, therefore, the 
older vaccinated trial birth cohorts can be expected to block 
HPV transmission into the younger ones (Figure 1). Thus, both 
the VE and the HE estimates were also calculated separately for 
the different birth cohorts. All comparisons were against com-
bined Arm C (1992–1995) birth cohorts to decrease the impact 
of natural variation in the control Arm C prevalence rates on 
the estimates.

Vaccine efficacy and HE estimates were adjusted at the in-
dividual level for C trachomatis positivity, used as a surrogate 
to control for heterogeneity in behavior between the commu-
nities, and/or different sexual behavior between vaccinated and 
unvaccinated women, respectively. Adjustment at the com-
munity level was also performed for prevalence of smoking 
(<25%/≥25% current active smokers at age 18.5), as a surro-
gate of risky health behavior, and for HPV vaccination coverage 
of girls (reference <50%, and 50%–55%/55+% or 50+% if the 
model did not converge). Mobility was adjusted for by a vari-
able consisting of both individual and community level aspects 
(semiurban vs urban) at study baseline and at the time of the 
follow-up visit [15, 16].

Mathematical Modeling

The mathematical transmission model, used for predictions 
about elimination, is described elsewhere in detail [19]. In 
short, the deterministic and dynamic transmission model 
is based on Finnish contact structure of sexual partners, and 
it produces age-specific prevalence of HPV by type under a 
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Figure 1.  Herd effects (HEs) induced by human papillomavirus (HPV) vaccination. The first order HE from vaccinated girls to unvaccinated boys (girls-only vaccination), and 
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given vaccination scenario. For the current work, the infec-
tion duration-dependent clearance rates were re-estimated 
(1) for HPV16 and HPV18 separately and (2) for two classes 
HPV31/33/45/52/58 (moderate clearance) and the remaining 
other oncogenic HPV types (fast clearance). The duration of 
vaccine-induced protection was assumed to remain for 20 years 
and to be lost at the rate of 0.05 1/year thereafter [23].

The vaccination-strategy-specific immunity threshold for 
each HPV type, ie, the effective coverage of vaccination needed 
to eradicate the type, was determined numerically by increasing 
the vaccination coverage of a theoretic 100% VE vaccine until the 
eradication occurred in the new steady state. The basic reproduc-
tion number (R0) was then calculated as the inverse of the immu-
nity threshold. For girls-only vaccination, the R0 corresponds to 
from girls to girls (via boys) transmission, and for gender-neutral 
vaccination R0 is for transmission between both genders. The 
critical coverage of vaccination for VE of 95%, 80%, or 50% was 
then obtained by dividing the immunity threshold by VE.

To illustrate the potential eradication following different vac-
cination strategies, the relative reduction of type-specific prev-
alence among women under 25 was computed with time since 
the start of vaccination using different vaccination scenarios 
and coverages. In addition to a high 95% VE, lower 80% and 
50% VEs were also used for moderate and fast clearance types, 
reflecting different levels of cross-protection.

RESULTS

We identified and excluded 4 Arm A and 1 Arm B outlier com-
munities (Supplementary Figures 1–2). The resulting outlier-
free coverage of HPV vaccination was 49% (47% with all 
communities) for girls and 21% (19%) for boys in Arm A and 
47% (44%) for girls in Arm B. The elimination of outlier com-
munities reduced the variation of community-specific vaccina-
tion coverage from 33%–60% to 45%–55% for girls and from 
12%–29% to 13%–27% for boys in Arm A and from 34%–52% 
to 39%–52% for girls in Arm B. The HBV vaccination coverage 
in the Arm C was 53% and 31% for girls and boys, respectively.

The HE in non-HPV-vaccinated 18.5-year-old females was 
estimated as a reduction of HPV prevalence for HPV-vaccine 
covered types 16/18/31/33/35/45 (Table  1). The combined 
HPV18/31/33 prevalence among these females had a clear 
decreasing trend over time in the gender-neutral vaccination 
Arm A only (Figure 2). Accordingly, the HPV18/31/33 HE es-
timate in the youngest 1995 birth cohort was significant only 
in Arm A (59%), and it was higher than in Arm B (24%) with 
high probability P(HEA > HEB) = 91.6% (Table 1). The current 
outlier-free HE estimates agreed substantially with the earlier 
estimates including all study communities [16] (Supplementary 
Figure 3). Type-specific HPV18, HPV31, and HPV33 HE esti-
mates were all materially equal and approximately 150% higher 
in the gender-neutral arm than in the girls-only arm. The 

Table 1.  Herd Effect (With 95% Confidence Interval) Against Genital Human Papillomavirus (HPV) Infection and Type-Specific HPV Prevalence (%) by HPV 
Vaccination Strategya in Non-HPV-Vaccinated 18.5-Year-Old Females by Trial Arm and Birth Cohort

Arm A (Gender-Neutral) Arm B (Girls-Only) Arm C (Control)

HPV Type Birth Cohorts Prevalence (95%CI) HEc (95% CI) Prevalence (95% CI) HEc (95% CI) Prevalencef (95% CI)

HPV16 1992–1995 7.5 (5.8–9.6) 14.9 (−13.2 to 36.0) 7.6 (6.0–9.6) −1.3 (−29.4 to 20.7) 8.3 (7.4–9.2)

 1995  9.5 (5.8–15.1) −19.9 (−92.9 to 25.5) 8.7 (5.6–13.3) 19.2 (−81.8 to 21.9) 8.1 (6.4–10.2)

HPV18 1992–1995 5.0 (3.7–6.9) −16.3 (−60.8 to 15.9) 3.9 (2.8–5.4) 15.1 (−19.8 to 39.8) 5.0 (4.3–5.8)

 1995 1.9 (0.6–5.4) 58.3 (−13.5 to 84.7) 2.9 (1.3–6.2) 27.0 (−45.8 to 63.5) 2.7 (1.8–4.1)

HPV31 1992–1995 3.5 (2.4–5.1) 6.6 (−40.5 to 37.9) 3.8 (2.7–5.2) −5.9 (−51.8 to 26.2) 3.8 (3.2–4.5)

 1995 0.6 (0.1–3.5) 83.9 (21.2–96.7)e 2.9 (1.3–6.2) 34.9 (−49.0 to 71.5) 3.4 (2.3–4.9)

HPV33 1992–1995 2.9 (1.9–4.3) −41.4 (−125 to 11.2) 3.0 (2.0–4.3) −86.2 (−176 to −25.5)e 2.1 (1.7–2.7)

 1995 1.3 (0.3–4.5) 64.9 (−57.5 to 92.2) 1.4 (0.5–4.2) 24.8 (−108 to 72.8) 1.4 (0.8–2.5)

HPV35 1992–1995 1.1 (0.6–2.1) 46.1 (−17.6 to 75.3) 1.1 (0.6–2.1) 50.7 (−4.5 to 76.7) 1.6 (1.3–2.1)

 1995 1.3 (0.3–4.5) 3.4 (−203 to 69.2) 1.4 (0.5–4.2) 4.2 (−168 to 65.8) 2.1 (1.3–3.3)

HPV45 1992–1995 3.0 (2.0–4.5) −36.2 (−110 to 11.8) 2.2 (1.4–3.3) −4.5 (−63.9 to 33.4) 2.5 (2.0–3.1)

 1995 2.5 (1.0–6.3) −14.5d (−178 to 52.7) 1.0 (0.3–3.5) 52.1d (−49.8 to 84.7) 2.1 (1.3–3.4)

HPV18/31/33 1992–1995 10.1 (8.1–12.5) −39.6 (−71.9 to −13.4)e 9.5 (7.8–11.7) −6.4 (−32.4 to 14.4) 9.8 (8.9–10.9)

 1995 3.8 (1.8–8.0)b 59.1 (14.3–80.5)e 6.8 (4.1–11.0) 23.9 (−23.2 to 53.0) 6.7 (5.2–8.7)

Abbreviations: CI, confidence interval, HE, herd effect. 
aArm A, gender-neutral (49% girls, 23% boys HPV-vaccinated); Arm B, girls-only (47% girls HPV-vaccinated); Arm C, hepatitis B virus (HBV) vaccination.
bSignificantly different.
cGeneralized estimating equation (GEE) estimates adjusted for Chlamydia trachomatis/mobility/smoking/vaccination coverage, balanced for equal proportions of HBV vaccinated and 
nonvaccinated. Herd effect (1-ratio of risks, GEE model, HBV-vaccinated/unvaccinated-ratio balanced between arms using mean GEE estimates from 21 balanced materials).
dNot adjusted for mobility.
eSignificant.
fThe prevalence in Arm C is mean of prevalence estimates from 21 balanced materials. For the estimation of pertinent 95% CI, a material with the mean prevalence and actual size of Arm 
C was used.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa099#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa099#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa099#supplementary-data
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numbers for HPV45 alone were too low for reliable estimates. 
No HE against HPV16 was observed (Table 1).

The overall PE of the vaccination strategy for all 18.5-year-old 
females (Table 2) was a weighted combination of the strategy-
specific HE among non-HPV-vaccinated girls (Table 1) and the 
VE among HPV-vaccinated girls [16] (Supplementary Table 1).  
The HPV16 PE estimates (36% and 33%, respectively) were 
significant for the 1995 birth cohort both in the gender-neu-
tral and girls-only arms. In the gender-neutral Arm A, the 
combined HPV18/31/33 PE estimate (66%) for the 1995 birth 

cohort was 40% higher than the corresponding girls-only Arm 
B estimate (47%): P(PEA > PEB) = 92.2%.

The dynamics of HEs established in our heterosexual trans-
mission model (Figure 1) agreed with the CRT findings (Table 1). 
When only girls are vaccinated, the strongest (first order) HE is 
the protection exerted from vaccinated girls onto unvaccinated 
boys (Figure 1, top panel). The protection of unvaccinated boys 
is subsequently reflected in unvaccinated girls but gets weaker 
at each reflection (second order HE, third order HE, etc). 
Generating the first order HE directly onto the unvaccinated girls 
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Figure 2.  Prevalence reduction of human papillomavirus (HPV) types 18/31/33 in unvaccinated 18-year-old females by birth cohorts (1992–1995) and vaccination strategy: 
(Arm A) gender-neutral (49% girls and 23% boys HPV vaccinated [P for trend .0005]); (Arm B) girls-only (47% girls vaccinated [P for trend .092]); (Arm C) control, hepatitis B 
virus vaccination (P for trend .447) at the age of 12–15 years in 2007–2010. The trend of reduction by birth cohorts in the gender-neutral Arm A was stronger than that of the 
girls-only Arm B (P = .0556) or control Arm C (P = .0015).

Table 2.  Overall Protective Effectiveness (With 95% Confidence Interval) Against Genital Human Papillomavirus (HPV) Infection and Type-Specific HPV 
Prevalence (%) by HPV Vaccination Strategya and Birth Cohort

 Arm A (Gender-Neutral) Arm B (Girls-Only) Arm C (Control)

 Birth Cohorts Prevalence (95%CI) PEb (95% CI) Prevalence (95% CI) PEb (95% CI) Prevalence (95% CI)

HPV Type       

HPV16 1992–1995 4.1 (3.2–5.2) 53.3 (40.1–64.9)c 4.3 (3.5–5.4) 42.0 (27.9–54.4)c 8.1 (7.3–9.1)

 1995 5.0 (3.2–8.0) 35.5 (2.5–61.1)c 5.0 (3.3–7.5) 32.4 (2.6–56.6)c 7.7 (6.1–9.8)

HPV18 1992–1995 2.6 (1.9–3.6) 38.5 (17.6–56.1)c 2.2 (1.6–3.0) 51.5 (34.4–65.9)c 5.0 (4.3–5.8)

 1995 1.1 (0.4–2.9) 76.5 (47.6–92.6)c 1.6 (0.7–3.4) 57.9 (25.1–80.4)c 2.7 (1.8–4.1)

HPV31 1992–1995 2.2 (1.6–3.0) 40.5 (17.9–58.6)c 2.4 (1.8–3.2) 32.0 (8.9–51.1)c 3.8 (3.2–4.5)

 1995 0.7 (0.3–1.8) 79.9 (55.6–90.6)c 1.9 (1.0–3.7) 53.8 (16.6–77.4)c 3.4 (2.3–4.9)

HPV33 1992–1995 2.2 (1.7–3.0) −4.0 (−45.1 to 28.4) 2.3 (1.7–3.0) −25.9 (−70.9 to 10.9) 2.1 (1.7–2.7)

 1995 1.0 (0.4–2.5) 50.1 (0.9–73.9)c 1.1 (0.5–2.3) 33.4 (−24.4 to 66.4) 1.4 (0.8–2.5)

HPV35 1992–1995 0.9 (0.5–1.3) 45.2 (11.1–68.6)c 1.1 (0.8–1.6) 32.3 (−1.9 to 56.9) 1.6 (1.3–2.1)

 1995 1.0 (0.4–2.6) 23.8 (−61.4 to 68.1) 1.1 (0.5–2.3) 7.5 (−69.9 to 52.6) 2.1 (1.3–3.3)

HPV45 1992–1995 1.7 (1.2–2.5) 19.8 (−15.1 to 47.4) 1.4 (0.9–2.0) 35.1 (5.9–57.9)c 2.5 (2.0–3.1)

 1995 1.4 (0.6–3.3) 37.7 (−35.9 to 78.1) 0.7 (0.2–1.8) 67.6 (20.4–90.4)c 2.1 (1.3–3.4)

HPV18/31/33 1992–1995 6.4 (5.3–7.6) 15.3 (−0.6 to 29.9) 6.2 (5.2–7.3) 30.6 (17.4–42.9)c 10.9 (9.9–12.0)

 1995 2.8 (1.6–4.8) 65.6 (46.1–78.9)c 4.3 (2.8–6.6) 46.8 (24.4–64.4)c 8.4 (6.6–10.5)

Abbreviations: CI, confidence interval; PE, protective effectiveness. 
aArm A, gender-neutral (49% girls, 23% boys HPV-vaccinated); Arm B, girls-only (47% girls HPV-vaccinated); Arm C, hepatitis B-virus vaccination.
bPE = overall protective effectiveness, a combination of vaccine efficacy and herd effects weighted by the proportions of HPV16/18-vaccinated and non-HPV16/18-vaccinated women, 
respectively.
cSignificant.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa099#supplementary-data
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by vaccinating 23% of the boys in our CRT more than doubled 
the HPV18/31/33 prevalence reduction among unvaccinated 
girls in 4 years (Table 1). The model predicted strengthening HEs 
toward the younger trial birth cohorts (Figure 1) were observed 
in our trial as the strongest HEs, and prevalence reductions were 
found among the 1995 birth cohort with the gender-neutral vac-
cination strategy (Table 1, Figure 2). It is remarkable that when 
the cross-protective vaccine efficacies (HPV31/33 VE) were not 
optimal, the profit from gender-neutral vaccination strategy also 
in the HPV-vaccinated individuals due to the increased herd pro-
tection become visible as significant PE estimates in the youngest 
1995 birth cohort (Figure 1, right panel; Table 2).

The model-predicted immunity thresholds for specific HPV 
types, and the corresponding VE-specific critical coverages of 
vaccination, varied remarkably according to type-specific HPV 
clearance rates (Table 3). To eradicate HPV 16 with a vaccine 
with a high 95% VE, even 95% girls-only coverage is required, 
whereas for the gender-neutral strategy 74% coverage is suffi-
cient. For HPV18 and other, faster clearing HPV types, the crit-
ical coverage with the 95% VE vaccine were lower, accordingly, 
with the gender-neutral strategy still remaining beneficial. 
On the other hand, even with lower VE (80%/50%), the gen-
der-neutral vaccination still provides achievable critical cover-
ages for moderate and fast clearance HPV types (Table 3).

With 75% gender-neutral vaccination coverage, just above the 
critical coverage, our model predicted the HPV16 eradication 
to take place among young adults in 30 years and other HPV 
types being eradicated in approximately 20 years (Figure 3). The 
75% girls-only vaccination, remaining below the corresponding 
critical coverage, did not eradicate HPV16 or HPV18. Modeled 
gender-neutral vaccination with 25% boys and 50% girls cov-
erage eventually ends up to approximately 70% relative reduc-
tion for HPV16 prevalence, clearly better than that of the 50% 
girls-only coverage (Figure 4). Compared with HPV16, the HEs 
are much higher for HPV18 and moderate clearance types, even 
with a suboptimal VE (Figures 3–4).

DISCUSSION

Based on unique CRT data and associated modeling, we show in 
an originally HPV-vaccination-free population that vaccination 
with moderate coverage will rapidly eradicate hrHPVs from young 
adults, except HPV16, if a gender-neutral strategy is applied.

At the outset, the moderate to fast clearance rates character-
istic of HPV18/31/33 infection made them permissive to gen-
der-neutral vaccination-derived herd protection and prevalence 
reduction even with low to moderate vaccination coverage. The 
HEs from vaccinated boys and girls to unvaccinated girls and 
boys rose rapidly when low-to-moderate coverage, gender-neu-
tral vaccination was applied. Successive modeling revealed that 
eradication of HPV18/31/33 and eventually HPV16 from the 
young adult population can occur respectively within 20 and 
30  years with a feasible 75% vaccination coverage when ap-
plying existing cross-reactive or multitype hrHPV vaccines and 
gender-neutral vaccination strategy.

The variable vaccination coverage was accounted for with the a 
priori designed outlier-free analysis. Arm A had a higher number 
of outlier communities, reflecting uneven distribution of vaccina-
tion coverage between the study arms. However, differences be-
tween current outlier-free estimates and earlier estimates [15, 16] 
were small, which warrant that our earlier observations about HEs 
were not materially biased by the variable coverage of vaccination.

Due to the assortative sexual behavior, the HE induced by 
gender-neutral HPV vaccination limits circulating oncogenic 
genital HPV types in the general population [24]. Eradication of 
an infectious agent from a population by means of vaccination 
is related to the agent’s basic R0, which depends on its clear-
ance rate and pertinent contact structure of the population [25]. 
The R0 determines immunity thresholds for the eradication of 
a given pathogen from a population. After country-wise erad-
ication, imported infections due to contacts to other societies 
are possible, but they are unlikely to cause major outbreaks. The 
combined evidence from our CRT and mathematical modeling 
clearly indicates that for the genital hrHPV types, the immunity 

Table 3.  Model-Based Reproduction Numbers, Immunity Thresholds for Eradication of Vaccine-Covered Oncogenic Human Papillomaviruses (HPVs), 
and Corresponding Critical Coverage of Vaccination by Vaccine Efficacy for Gender-Neutral (Girls and Boys) and Girls-Only (Girls) Vaccination Strategies

 Reproduction Numbera Immunity Threshold

Critical Coverage of Vaccination

VE 95% VE 80% VE 50%

HPV Type Girls and Boys Girls Girls and Boys Girls Girls and Boys Girls Girls and Boys Girls Girls and Boys Girls

HPV16 3.3 10 70% 90% 74% 95% 88% NEb NEb NEb

HPV18 2.2 4.5 55% 78% 58% 82% 69% 98% NEb NEb

HPV31/33 1.7 2.9 40% 65% 42% 68% 50% 81% 80% NEb

HPV45 1.7 2.9 40% 65% 42% 68% 50% 81% 80% NEb

HPV35 1.3 1.5 20% 35% 21% 37% 25% 44% 40% 70%

Abbreviations: NE, no eradication; VE, vaccine efficacy.
aReproduction number (R0) is calculated by determining the immunity threshold using the transmission model with a computational vaccine with 100% efficacy. In the gender-neutral vacci-
nation strategy (girls and boys), R0 is from girls/boys to boys/girls. In the girls-only vaccination strategy (girls) R0 is from girls to girls (via boys, heterosexual model).
bNE = no eradication even with a 100% coverage of vaccination.



954  •  jid  2020:222  (15 September)  •  Vänskä et al

threshold, ie, the critical vaccination coverage for the eradica-
tion of hrHPV types, are within reach when exploiting gen-
der-neutral vaccination derived HEs.

HPV16 is notorious for its ability to persist, is widely circu-
lated, and has a uniquely high R0 [26, 27]. This explains why gen-
der-neutral vaccination with approximately 25% male and 50% 
female vaccination coverage failed to induce HE against HPV16 
observable with transient PCR positivity. However, in a recent 
work [28], we report on observed HPV16 HE from the low to 
moderate coverage gender-neutral vaccination based on HPV16 
pseudovirion-serology, a measure of persistent infection rather 
than all (transient and persistent) HPV infections by PCR. The 
transmission model predicted even 90+% critical coverage of 
vaccination for HPV16 elimination with the girls-only strategy. 
In addition, in real-life, the reduction of HPV16 PCR prevalence 

among nonvaccinated females with girls-only vaccination has re-
quired exceptionally high (90%) coverage [7]. In contrast, with a 
feasible 75% coverage of the gender-neutral vaccination strategy, 
which is just above HPV16 critical coverage of vaccination, 
HPV16 eradication is predicted in 30 years among young adults.

The critical girls-only vaccination coverage for HPV18 was 
82% according to our model, but HPV18 eradication with this 
strategy would take several decades. On the contrary, with vacci-
nation coverage of 75% among girls and 50%–75% among boys, 
HPV18 is already predicted to be eradicated in 20–25 years. For 
HPV types with lower R0 such as HPV31, HPV33 or HPV45, 
the critical vaccination coverage would naturally be lower for 
a high efficacy vaccine. Even when cross-protective vaccine 
efficacies are suboptimal, the gender-neutral vaccination with 
75% coverage is predicted to result in the eradication of HPV31, 
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Figure 3.  Modeled eradication of human papillomavirus (HPV) types 16 [■], 18 [■], and oncogenic HPV types with moderate (31 of 33) [■] or fast (35) [■] clearance 
rates by vaccine efficacy ([VE] 95%/80%/50%), with 75% girls-only vaccination coverage, with 50% boys and 75% girls vaccination coverage, and with 75% gender-neutral 
vaccination coverage.
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HPV33, or HPV45 also in 20 years. It is very important to note 
that these model predictions for the HEs under vaccination 
with moderate coverage were in line with our CRT results.

The main strength of this study is its unique trial setting 
of applying vaccination strategy in a vaccination-naive pop-
ulation, with a large number of study communities, covering 
practically the entire country. Taking into account that the 
study was a population-based randomized trial, the achieved 
vaccination coverage of 47% to 49% among females was at least 
moderate. The achieved coverage of 23% among boys was not 
quite satisfactory, and it resulted in only partial herd protec-
tion, which, however, revealed differences between HPV types. 
Another strength is combination of CRT with modeling. The 
models suggested that we consider the youngest birth co-
horts separately when analyzing the trial outcomes for HEs. 
These proved to be in accordance with the model predictions. 
Naturally, different model parameters (eg, sexual behavior) 
would potentially imply differences in the predicted timelines. 
Analyses of model variation are left out from the current work, 
but they can be found for eventual eradication, including our 
model described in [11].

To achieve high HPV vaccination coverage, the proportion 
of control-vaccinated individuals among study participants in 
intervention arms was allocated to 10% only, which was going 
to lead to high statistical uncertainty in analyzing HEs. To 
increase the number of non-HPV-vaccinated participants, ini-
tial nonparticipants were also invited to the follow-up visits. As 
a result, statistically significant HE estimates were observed for 
groups of HPV types.

Current girls-only vaccination programs vary by country and 
their coverage is often low. However, even moderate (50%–75%) 
girls-only vaccination coverage would not result in HPV erad-
ication, and later HPV-disease elimination. Imminent subop-
timal girls-only vaccination coverage and HE threaten to leave 
marginalized females unjustly unprotected [29, 30]. Moreover, 
compared to gender-neutral vaccination, girls-only vaccination 
may fail to provide a resilient HE able to withstand temporary 
changes in the vaccination coverage [31].

CONCLUSIONS

In conclusion, the ultimate gains of gender-neutral prophylactic 
HPV vaccination are realistic. Country-wise eradication of on-
cogenic HPVs and HPV-disease elimination are within reach 
already in the foreseeable future by applying the gender-neutral 
HPV vaccination strategy, even with only moderate coverage.
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