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Abstract

Cell-to-cell variation of protein expression in genetically homogeneous populations is a common 

biological trait often neglected during analysis of high throughput (HT) screens, and is rarely used 

as a metric to characterize chemicals. We have captured single cell distributions of androgen 

receptor (AR) nuclear levels after perturbations as a means to evaluate assay reproducibility and to 

characterize a small subset of chemicals. AR, a member of the nuclear receptor family of 

transcription factors, is the central regulator of male reproduction and is involved in many 

pathophysiological processes. AR protein levels and nuclear localization often increase following 

ligand binding, with dihydrotestosterone (DHT) being the natural agonist. HT AR 

immunofluorescence imaging was used in multiple cell lines to define single cell nuclear values 

extracted from thousands of cells per condition treated with DHT or DMSO (control). Analysis of 

numerous biological replicates led to a quality control metric that takes into account the 

distribution of single cell data, and how it changes upon treatments. Dose-response experiments 

across several cell lines showed a large range of sensitivity to DHT, prompting us to treat selected 

cell lines with 45 EPA-provided chemicals that include many endocrine disrupting chemicals 

(EDCs); data from six of the compounds were then integrated with orthogonal assays. Our 

comprehensive results indicate that quantitative single cell distribution analysis of AR protein 

levels is a valid method to detect potential androgenic and anti-androgenic action of 

environmentally relevant chemicals in a sensitive and reproducible manner.
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Introduction

The need for high throughput screening (HTS) assays in environmental toxicology has 

spurred worldwide efforts geared towards identification and quantification of potential 

toxicant effects of thousands of chemicals and, more recently, complex mixtures, in a variety 

of systems and pathways. One of the largest efforts to date has been the US Environmental 

Protection Agency’s (EPA) Endocrine Disruptor Screening Program (EDSP), which aimed 

to combine HTS with computational analyses to characterize chemicals that interfere with 

endocrine hormones, focusing on three nuclear receptors pathways: estrogen (ER), androgen 

(AR) and thyroid (TR) receptors1. Through the extensive efforts of the Tox21/ToxCast 

initiatives, via testing hundreds of chemicals in over a hundred HT assays, the NIEHS and 

EPA curated sets of reference chemicals for the ER, AR and TR pathways 2-4 that are 

relevant to in vivo animal studies, that have included development of computational models 

for quantifying activity on ER and AR3,5,6.

Many studies, including several from our group 7-11, have described the development of 

High Throughput (HT), High Content Assays (HCA) using the AR as a model system 

(reviewed in 12). However, the vast majority of efforts have been concentrated on non-native 

and/or cell-free assays that measured several characteristics of the AR pathway, including: 

ligand binding (NVS_NR_hAR in ToxCast for example), coregulator recruitment (via 

protein complementation assay, OT_AR_ARSRC1), reporter gene activation 

(Tox21_AR_Luc_MDAKB2 etc.), and nuclear translocation (GFP-AR, 8,9,13). More 

uniquely, we recently showed the novelty and usefulness of measuring endogenous AR 

levels across several 2D models, using HT microscopy (HTM) to characterize effects of 

EDCs, and identified BPAP as a cell-line specific AR down-regulator 11. In this study, we 

continued investigating the use of endogenous AR nuclear levels to analyze effects of 

chemicals with potential endocrine disruptor activity. When observing AR 

immunofluorescence images, the marked cell-to-cell variation in nuclear levels is obvious, 

especially following hormone treatment, a metric that was not considered in previous 

studies. Here, we use single cell analysis metrics for quality control to describe the 

distribution of AR nuclear levels, and to measure changes in such distribution by modulating 

time, dose and chemicals across several cell models.

Materials and Methods

Cell Culture and Treatments.

Cell lines (MCF-7, T47D, BT474, MDA-MB-453, UMUC3, A549) were obtained from 

BCM Cell Culture Core, which routinely validates their identity by genotyping, or directly 

acquired from ATCC. All cell lines were constantly tested for the absence of mycoplasma 

using DNA (DAPI) staining. Cell lines were routinely maintained in their standard media, as 

recommended by ATCC, except in phenol red-free conditions. Three days prior to 
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experiments, cells were plated in media containing 5% charcoal-dextran stripped and 

dialyzed FBS-containing media. For all experiments, cells were plated at 3000 cells/well in 

Aurora 384 well Microplates. Treatments were performed by adding a 2x solution of each 

chemical in media with final DMSO concentration <0.5%.

Chemicals.

The EPA 45 reference plate 2 was kindly provided by Dr Keith Houck (NIEHS).

Immunofluorescence.

Immunofluorescence experiments were completed as previously described 11. Briefly, cells 

were fixed in 4% formaldehyde in PBS, and permeabilized with 0.5% Triton X-100 for 30 

min. Cells were incubated at room temperature in blotto for 1 hour, and then primary 

antibody (mouse monoclonal AR-441, 1:500, obtained from the Protein and Monoclonal 

Antibody Production Core, Baylor College of Medicine; or AR (N-20), 1:500, from Santa 

Cruz Biotechnologies) was added overnight at 4C prior to 1h of secondary antibody 

(AlexaFluor conjugates; Molecular Probes) and DAPI staining. The AR N-20 antibody was 

used to create all the figures, while AR-441 was used in a third of the experiments, in Figure 

1 and 2, to determine if results obtained were antibody specific, which was not the case.

High Throughput Microscopy.

Imaging (four fields per well) was performed on a Vala Sciences IC-200 (Vala Sciences, San 

Diego, CA) automated HT image cytometer with a 20x/0.75 objective and a standard filter 

set (DAPI/HTC/TRITC/Cy5). 10μm z-stack was acquired at 2μm z-steps and max projected. 

The IC-200 is equipped with solid state light engine and a sCMOS camera. Excitation light 

intensity and exposure times were set in each experiment to fill ~70% of the dynamic range 

of the camera and were set based on the DHT-treated control wells, which are expected to be 

the brightest in the plate.

Image Analysis.

16-bit greyscale TIFFs were imported into our custom, PipelinePilot-based software mIA14 

for automated image analysis. Briefly, background subtraction was performed using a rolling 

ball algorithm, nuclei segmented off the DAPI channel and filtered based on size and 

intensity to eliminate mitotic and dead cells, and cellular debris. Mean pixel intensity values 

for the AR channel were then extracted and used for subsequent analysis (labeled as 

“Nuclear AR levels” in the figures).

Data Analysis and Statistics.

Single cell data were first median and MAD (median absolute deviation) normalized based 

on DHT 100nM samples (selected as positive control treatment), as the AR distribution is 

non-normal. For histogram and calculation of the Shannon Index27, the data was divided 

into 25 bins, based on the square root of the smallest number of experimental observations. 

To measure the distance between experimental distributions across replicates, a two sample 

Kolmogorov-Smirnov test was applied. Heatmaps were generated in Python and Orange15. 

Graphs and curve fitting were created in GraphPad Prism. ToxPi16 was used to calculate 

Stossi et al. Page 3

SLAS Discov. Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ToxPi scores, after range normalization, and to generate pie charts. We performed a 

minimum of two biological replicates (i.e., for the EPA 45 compounds screen) with at least 

four technical replicates per treatment.

Results

Analysis of AR non-genetic heterogeneity by HT imaging.

Based on our previous study11, AR immunofluorescence of MCF-7 cells revealed 

dihydrotestosterone (DHT) treatment for 24 hours resulted in a marked increase of the mean 

nuclear levels of AR; moreover, the cell-to-cell variation was very high (up to two logs), 

representing a good example of non-genetic or phenotypic heterogeneity in the steroid 

hormone field (Figure 1A shows random images of DHT-treated MCF-7 cells). A key 

question from these results was whether or not the distribution of single cell data from 

vehicle vs. DHT-treated cells was reproducible and, if so, could a quality control metric be 

generated for a new experiment and/or to assess quantitative changes exerted by known/

unknown chemicals. With this objective in mind, we repeated the same experiment 12 

independent times, collecting over 600,000 single cell values, represented as a box plot in 

Figure 1B. Remarkably, the DHT response appeared to be quite constant, measured, for 

example, as an interquartile range (Figure 1C) and when visualized as a continuous 

distribution where every bin represents mean +/− standard deviation of all 12 experiments 

(Figure 1D). Not surprisingly, the highest variations were evident in the vehicle treated 

samples, as AR expression in MCF-7 is very low, with minimal signal-to-noise ratio, making 

it quite sensitive to experimental conditions. As an alternative measure of phenotypic 

heterogeneity, we used the Shannon Index (Figure 1E), a common diversity index, that also 

showed a large difference between vehicle and DHT-treated cells (3.6-fold), but only a small 

variation between experiments, especially in DHT-treated cells (standard deviation 0.07 vs. 

0.27 in vehicle treated cells).

To directly compare and to quantify the distance between distributions of DHT-treated AR 

cells across multiple experiments (thirteen independent biological replicates, each with a 

minimum of four technical replicates per treatment), we employed a pairwise two-sample 

Kolmogorov-Smirnov (KS) test (Figure 2A). When the KS statistic (“distance”) was 

represented as a heatmap, clustering analysis identified two groups of experiments of almost 

equal size; however, the absolute distance between the two groups was small (Figure 2C), 

indicating that the DHT treatments were overall comparable across experiments. This was 

also evident when we used the KS test to quantify the pairwise differences between vehicle 

and DHT-treated samples (Figure 2B) that indicated the difference between distributions is 

also quite stable during repetitive assays. As expected, the KS distance between vehicle and 

DHT distributions was much larger compared to the distance between DHT treatments 

across multiple experiments (Figure 2C).

The KS test metric thus can then be used as a quality control method to classify whether or 

not experiments/wells/treatments are good or bad; for example, when the KS value exceeds 

three times the standard deviation of the mean value from good experiments. Alternative QC 

methods could also be employed, as shown by17-19, and by other novel pipelines in 

development (Stossi et al., manuscript in preparation).
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AR single cell distribution across multiple cell models.

As AR is expressed in many models from different tissues of origin, we performed AR 

immunofluorescence in 384 well plates on 5 additional cell lines: three from breast cancer 

subtypes (T47D, BT474 and MDA-MB-453), one from lung cancer (A549), and one from 

bladder cancer (UMUC3). Images from 24h DHT-treated cells AR immunofluorescence are 

shown in Figure 3A, along with DAPI staining for reference, and distribution of AR levels 

across the population of vehicle vs. DHT-treated cells (100nM) is shown in Figure 3B. Apart 

from MCF-7 cells (Figure 1D), BT474 and MDA-MB-453 showed the largest response to 

DHT, while the others had a lesser shift in the population. To ensure that time of treatment 

was not a main factor in the observed responses, we performed a time-course analysis of 

100nM DHT treatment (Figure 3C). All cell lines showed a time-dependent increase in AR 

nuclear levels, typically starting around three to six hours; with MDA-MB-453 being a 

notable exception, as it showed a response at only one-hour of agonist. Next, we wanted to 

determine the sensitivity of the different cell lines to DHT. We treated cells with seven doses 

of DHT, ranging from 1pM to 1μM, for 24 hours. Figure 4A shows box-plots of the dose-

response analysis after median and MAD normalization using DHT 100nM as the 

normalizing sample. We compared three metrics in repeated biological replicates to calculate 

EC50 values: 1) AR median level (Figure 4B); 2) interquartile range (IQR, Figure 4C); and, 

3) Shannon Index (Figure 4D). The calculated logEC50 values are shown in Supplementary 

Table 1. Interestingly, sensitivity to DHT covered almost three logs across the different cell 

lines, ranging from a low pM to a low nM range, indicating that investigating multiple 

models is important in characterizing chemical responses. Overall, Shannon Index, a 

phenotypic heterogeneity measure, when examined across all cell models, had a tendency of 

being slightly more sensitive (logEC50: −10.4+/−1.2) as compared to IQR (logEC50: −9.9+/

−1.6) and median AR (logEC50: −9.5+/−1.1), indicating that measuring single cell indexes 

can be relevant and provide additional information, however, several more observations will 

be needed to determine significance of this analysis.

AR changes upon a set of potential endocrine disruptor chemicals.

To determine if the described pipeline can be used to identify and quantify the effects of 

potential endocrine disruptor chemicals on the AR system, we tested a battery of 45 

chemicals obtained from the EPA, and previously used as a benchmarking test for the 

estrogen receptor (Supplementary Table 22). We treated MCF-7 and MDA-MB-453 cells for 

24 hours with 10μM of each compound, both individually (“agonist mode”) or in 

combination with DHT (100nM, “antagonist mode”). Average well data measuring changes 

in AR levels (where DHT wells are set as 1) are presented as heatmaps (Figure 5A-B), with 

numbers indicating control treatments (DMSO, DHT), and selected compounds. Some of the 

hits are known androgenic and anti-androgenic drugs (e.g., 17-methyltestosterone and 

hydroxyflutamide); others are steroids that lose receptor specificity at high concentration 

(e.g., progesterone, corticosterone and estrogens), and EDCs (e.g., benzylbutylphtalate). As 

expected for studies involving endogenous systems, assay interference, a common issue for 

any high throughput assays, is also present, as exemplified here by cycloheximide, a protein 

translation inhibitor, that is of course non-specific for AR. Data from MCF-7 and MDA-

MB-453 correlated fairly well, especially in the plates treated in agonist mode (Spearman r: 

0.77, Figure 5C) as compared to antagonist mode (r: 0.62, Figure 5D). In previous ToxCast 
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results20, one of the assays is an ARE (androgen response element)-based luciferase 

transcriptional reporter in MDA-MB-453 cells, that was performed in both agonist and 

antagonist mode; allowing us to compare changes in single cell AR levels with an activity 

assay (Figure 5E-F). Based on the luciferase assay results, we divided the 45 compounds 

into active (defined as having an AC50<10μM) or inactive categories, and determined if there 

was a correlation between AR levels in the nucleus and activity. Although AR levels were 

not a good indicator of responses to antagonists, the approach was quite accurate with 

agonists, with only three active compounds in the ARE assay (genistein, daidzein and 17α-

ethynilestradiol; red dots) that did not affect AR levels, and two inactive compounds 

(benzylbutylphtalate and 4-hydroxytamoxifen; blue dots) that only slightly increased AR 

levels.

We then selected six of the potential hits (progesterone, 17 methyl testosterone, 17 alpha 

estradiol, benzylbutylphtalate, procymidone and hydroxyflutamide) out of the 45 

compounds for a more detailed dose-response analysis in MDA-MB-453. Figure 6A shows 

the dose-response curves for the three indexes used above (median AR level, IQR and 

Shannon Index) for the compounds treated either alone (blue dots) or together with DHT 

100nM (red dots) for 24 hours. Four out of the six increased AR nuclear levels: 17-methyl-

testosterone reached similar effects as DHT, even when used at nanomolar levels, while 

other compounds had smaller effects (micromolar range). Perhaps interestingly, all six 

compounds showed antagonism of 100 nM DHT; some not effectively (e.g., 17β-estradiol 

and progesterone), and others being more active (e.g., hydroxyflutamide, procymidone). 

Supplementary Tables 3 and 4 list the log EC50 for all the compounds and the measured 

indexes. Although the AR single cell analysis assay is not directly measuring compound 

activity and can be influenced by more complex cellular noise when as compared to pure in 
vitro assays, we correlated the data obtained for the six compounds plus a DHT control 

across all the AR ToxCast assays20 in both agonist and antagonist modes. Figure 6B-C show 

heatmaps of the pairwise Spearman’s r coefficient of correlation between each pair of 

assays, including the three metrics of the heterogeneity assay. Overall, the correlation 

between all assays in agonist mode was good (>0.6), with the only exception being 

ATG_AR_Trans vs. Shannon index which reached 0.497. Also, the correlation in antagonist 

mode was much worse, being high only in assay-specific readouts (i.e., luciferase assays) 

indicating that for antagonism there is a stronger need for activity based and orthogonal 

assays as compared to compound only treatments.

We then used the ToxPi approach (toxpi.org,16) to represent and cluster effects of the 6 

compounds, as determined by the logEC50. ToxPi was developed for data integration and 

visualization of complex toxicological end points. Here we used it to integrate the data from 

the ToxCast initiative, which contains the indicated disparate assays, with our single cell 

data. Figure 6D shows the clustering of the compounds when treated alone, which separates 

them into three groups: 1) compounds strongly active in all assays (DHT and 17 

methyltestosterone); less active compounds across most assays (hydroxyflutamide, 17α E2 

and progesterone); and, 3) largely inactive compounds (procymidone and BBP). The same 

was true in antagonism mode (Figure 6E) where three compounds were antagonistic across 

the assays (17α-estradiol, hydroxyflutamide, and procymidone) and three compounds (17-

methyltestosterone, BBP and progresterone) were uniquely active in the AR heterogeneity 
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assay, which might be due to assay interference (e.g., completely unrelated to AR) and/or 

specific pathways/conditions that are only present when working in an endogenous setting. 

This last possibility is likely at least for progesterone, which is known to bind AR at high 

concentration; while 17 methyltestosterone, being a strong agonist, will compete with DHT 

at moderate concentrations, having ~50% RBA21 (DHT=100%). Surprisingly, BBP was 

completely inactive in the ToxCast assays, although it is known as an anti-androgen in vivo, 

and is active as an antagonist in our assay22. Overall, even sampling a small set of 

compounds highlights how relevant and informative HT single cell analysis of AR nuclear 

levels is and how it can augment more classical HT assays.

Discussion

Endocrine disrupting chemicals (EDCs) are a subclass of toxicants present in the 

environment that interfere with the action of endogenous hormones affecting central 

physiological pathways that can cause defects in, for example, reproduction and metabolism. 

While many efforts are in progress to define and classify potential EDCs, both 

computationally and experimentally, the universe of chemicals, their metabolites and 

mixtures remain a vast and untested black box. The ToxCast and Tox21 efforts, for example, 

spearheaded by the Environmental Protection Agency (EPA) and the National Toxicology 

Program (NTP), were designed to develop and qualify a large number of HT assays to test 

chemicals that cover a large set of biological pathways1,23-26. One focus in particular has 

been to study three hormone nuclear receptors, estrogen (ER), androgen (AR) and thyroid 

(TR) receptors, which participate as transcription regulators in many essential physiological 

and pathological roles. Recently, computational frameworks obtained from the ToxCast 

datasets have been built for all three receptors and the in vitro to in vivo data revealed, at 

least for ER, that a set of in vitro assays can substitute more expensive and time-taking in 
vivo assays2,4,20. Perhaps one of the drawbacks of most current efforts is that the HT assays 

are largely out-of-context, meaning they are performed in test tubes (i.e., ligand binding 

assays), or using engineered cell models (i.e., luciferase assays or GFP-tagged proteins) that, 

inarguably, do not fully recapitulate the inherent complexity of endogenous systems. One 

such complexity, often ignored, is the intrinsic cell-to-cell variation in genetically-

homogeneous populations (phenotypic heterogeneity), a metric that is rarely used in HT 

assays17-19, and, to our knowledge, has never been used to assess EDC effects on nuclear 

receptors. In this study, we used the AR as a test case, following our previous observation 

that mean levels of AR per well were useful in identifying active agonists and antagonists;11 

here, however, we elected to extract and analyze single cell data. First, we focused on 

MCF-7 breast cancer cells, were DHT treatment causes a large response in terms of 

increased nuclear AR levels, to determine whether or not single cell distributions were 

reproducible across multiple experiments to the degree that we could use them as a metric 

when monitoring the effects of perturbagens. Indeed, using KS statistics, we showed that the 

distribution of AR levels in a cell population is quite reproducible across many biological 

replicates and distribution metrics can be described using the interquartile range (IQR) and 

Shannon index. We then expanded our HT single cell analysis to five additional cell lines of 

different origin, and evaluated their DHT time- and dose-dependent changes in AR levels 

within the population. Perhaps not surprisingly, we found that the magnitude and sensitivity 
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of response to DHT was cell line specific, spanning two orders of magnitude, highlighting 

how model choice and testing multiple models might prove beneficial to characterize 

perturbagens by single cell analyses. We further tested this notion by treating two cell lines 

with a small library of 45 EPA-curated perturbagens that have been used in ToxCast analysis 

to build nuclear receptor models, which included several validated chemicals that are 

agonists and antagonists to many NRs2. We performed experiments in both agonist 

(compounds alone) and antagonist (compounds plus DHT) modes and identified several 

known androgens and anti-androgens. Because one of the cell lines we used (MDA-

MB-453) was also part of the ToxCast effort20,13, where it was engineered to contain an 

Androgen Response Element (ARE) driven luciferase reporter gene, we could compare AR 

levels with an activity metric (e.g., gene expression). Overall, we found AR levels are quite 

well-correlated with agonist responses, although they are not informative in terms of 

antagonism. Another important point, as in all HT screens, assay interference is a problem 

that is likely exacerbated in endogenous systems where more confounding events can, and 

do, experimentally occur – i.e., modulating receptor levels due to stimulation of unrelated 

pathways (e.g., protein translation, gene transcription, protein degradation, intracellular 

pathways, etc). A clear example in this study is cycloheximide, a universal inhibitor of 

protein translation. While this can be seen as a drawback, it is also a more integrated way to 

identify effects of the target protein, and assay interference hits can be easily filtered out by 

combining endogenous with orthogonal assays, including those in ToxCast. In fact, we have 

shown here how the integration of single cell metrics with orthogonal assays can be used to 

improve clustering of AR perturbagens. While this approach has been specific to an AR 

model, we anticipate that the quality control metrics of this approach have wide applicability 

to other single cell-oriented HT high content assays designed to in measure the effects of 

many types of perturbagens (ligands, small molecule inhibitors, RNAi, etc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Variation in AR nuclear levels in MCF-7 cells.
A) Random fields (20x/0.75) showing AR immunofluorescence (top) and DAPI staining 

(bottom) in MCF-7 cells treated with DHT 100nM. Scale bar: 100μm. B) Box plot 

representing single cell nuclear AR levels (median and MAD normalized) in vehicle (veh) or 

DHT-treated MCF-7 cells across multiple independent biological replicates. C) Interquartile 

range variability across the experiments in panel B. D) AR nuclear level distribution in 

vehicle and DHT-treated cells represented as mean + standard deviation per each bin. E) 

Shannon index variability across the experiments in panel B.
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Figure 2. KS test as a metric of quality control for nuclear AR distributions across independent 
experiments.
A) Pairwise Kolmogorov-Smirnov distance between DHT-treated samples across the 

indicated experiments. B) Pairwise Kolmogorov-Smirnov distance between vehicle and 

DHT-treated samples across the indicated experiments. C) Summary of the distances in 

panels A and B shown as box-plots.
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Figure 3. Single cell AR distribution in other cell models.
A) Representative images of AR immunofluorescence (left column) and DAPI (right 

column) in the indicated cell lines, after 24h of treatment with DHT 100nM. Scale bar: 

100μm. B) AR distribution curves in vehicle vs DHT 100nM treatments in the indicated cell 

lines. For each bin, mean + stdev from a minimum of three biological replicates is 

represented. C) Time course analysis of AR nuclear level increase in all cell lines, 

represented as box plots. Kruskal-Wallis test with Dunn’s post test was performed for 

statistical significance (* p<0.05)
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Figure 4. Various cell lines sensitivity to DHT as measured by single cell AR levels.
Seven-point DHT dose-response was performed in all cell lines at the 24h time point. Data is 

shown as box plots (A), median AR level (B), IQR (C), and Shannon index (D).
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Figure 5. Changes in AR levels upon treatment with a panel of reference compounds.
A) MCF-7 cells were treated with 45 compounds at 10μM +/− DHT 100nM. Average well 

results are shown as heatmap where the left-hand side is compounds alone and the right-

hand side is compounds + DHT. DHT is set as 1. B) Same as panel A but in MDA-MB-453 

cells. On the right-hand side, a legend links the numbers on the heatmaps to the 

corresponding compounds. C-D) Correlation analysis (Spearman rho) between AR level 

changes from the 45 chemicals in MCF-7 and MDA-MB-435. Compounds alone are in 

panel C, plus DHT 100nM in panel D. E-F) compounds were stratified as active or inactive 

based on ToxCast ARE luciferase data and plotted according to their AR level changes in 

MDA-MB-453 cells. Red dots represent compounds that were active in the ARE assay but 

did not change AR levels; blue dots are compounds with an opposite profile. Compounds 

alone are in panel E, plus DHT 100nM in panel F. *p<0.0001 using Mann-Whitney test.
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Figure 6. Characterization of six compounds affecting AR levels.
A) Six-point dose response analysis in MDA-MB-435 cells for the indicated compounds, 

alone (blue line) or with DHT 100nM (red line). Data are shown for median AR level, IQR 

and Shannon index. B-C) Correlation between activity of the six compounds across the AR 

assays in ToxCast and the indexes presented in this study. Panel B is for compounds alone, 

while C is for compounds plus DHT 100nM. D-E) Hierarchical clustering for the six 

compounds using ToxPi, combining the ToxCast results plus the ones from this study. Panel 

D is for compounds alone, while E is for compounds plus DHT 100nM.
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