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Abstract

This paper reviews four commonly-used microwave radiative transfer models that take different 

electromagnetic approaches to simulate snow brightness temperature (TB): the Dense Media 

Radiative Transfer – Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer – 

Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki 

University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of 

Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack 

properties, we compared the simulated TB at 11, 19 and 37 GHz from these four models. The 

analysis focuses on the impact of using different types of measured snow microstructure metrics in 

the simulations. In addition to density, snow microstructure is defined for each snow layer by grain 

optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical 

maximum extent (Dmax) for HUT n-layers and the exponential correlation length for MEMLS. 

These metrics were derived from either in-situ measurements of snow specific surface area (SSA) 

or macrophotos of grain sizes (Dmax), assuming non-sticky spheres for the DMRT models. 

Simulated TB sensitivity analysis using the same inputs shows relatively consistent TB behavior as 

a function of Do and density variations for the vertical polarization (maximum deviation of 18 K 

and 27 K, respectively), while some divergences appear in simulated variations for the polarization 

ratio (PR). Comparisons with ground-based radiometric measurements show that the simulations 

based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to 

minimize the root mean square error (RMSE) between measured and simulated TB. Results using 

in-situ grain size measurements (SSA or Dmax, depending on the model) give a mean TB RMSE 

(19 and 37 GHz) of the order of 16–26 K, which is similar for all models when the snow 

microstructure metrics are scaled. However, the MEMLS model converges to better results when 
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driven by the correlation length estimated from in-situ SSA measurements rather than Dmax 

measurements. On a practical level, this paper shows that the SSA parameter, a snow property that 

is easy to retrieve in-situ, appears to be the most relevant parameter for characterizing snow 

microstructure, despite the need for a scaling factor.

Keywords

Snow microwave-emission model; Snow microstructure; Radiative transfer model; Canada; 
Ground-based measurements; Brightness temperature

1. Introduction

In snow remote sensing, a better parameterization of the radiative transfer models (RTM) for 

simulating snow microwave emission improves our ability to retrieve snowpack 

characteristics from space-borne observations. Snow microstructure metrics are the main 

input parameter of the microwave RTM (e.g. Rutter et al., 2009) and its characterization can 

strongly impact the retrievals from microwave emission measurements for snow monitoring 

(e.g. Mätzler, 1994; Armstrong and Brodzik, 2002; Kelly et al., 2003; Mätzler et al., 2006; 

Löwe and Picard, 2015). Thus, given that the available models that are well-defined in the 

literature and commonly used for snow remote sensing are defined by different snow 

microstructure parameterizations, a review appears essential. We consider here the following 

four models: the Dense Media Radiative Transfer– Multi layers (DMRT-ML) model (Picard 

et al., 2013), the Dense Radiative Transfer Model – Quasi-Crystalline Approximation (QCA) 

Mie scattering of Sticky spheres (DMRT-QMS) model (Chang et al., 2014), the multi-layer 

Helsinki University of Technology model (HUT-nlayers) (Lemmetyinen et al., 2010a), and 

the Microwave Emission Model of Layered Snowpacks (MEMLS) (Proksch et al., 2016; 

Wiesmann and Mätzler, 1999; Mätzler and Wiesmann, 1999). Several aspects of these 

models are based on different electromagnetic theories or semi-empirical approaches 

(multiple scattering and absorption coefficient computations, for example), and they are 

often driven by sets of different measured inputs for snow grain metrics, such as snow 

specific surface area (SSA), correlation length or snow grain geometrical extent obtained 

from visual analysis.

Tedesco and Kim (2006) compared earlier simplified single-layer versions of the DMRT, 

HUT and MEMLS models based on the snow grain metric given by visual inspection 

(average size over the snowpack depth of representative small, medium, and large grains in 

each layer measured using a microscope). MEMLS and HUT-nlayers were compared by 

Lemmetyinen et al. (2010b) and Pan et al. (2016). DMRT theory and IBA were also recently 

compared and analyzed (Löwe and Picard, 2015), while Roy et al. (2013) compared DMRT-

ML and HUT-nlayers. Sandells et al. (2016) compared DMRT-ML, HUT-nlayers and 

MEMLS models considering only the optical diameter generated by snow models. But the 

four multi-layer models considered were never compared together using coincident sets of 

measured snow properties. The main challenge in comparing these RTM models is that the 

input snow microstructure parameters differ in each model and are in some cases difficult or 

impossible to measure in the field. Three different snow microstructure representations are 
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considered in these models: optical diameter (Do) and stickiness for DMRT-ML and -QMS, 

correlation length (pc) for MEMLS and maximum geometrical extent (Dmax) for HUT-

nlayers. Consequently, some hypotheses are needed for their estimation allowing coherent 

intercomparison of models (Löwe and Picard, 2015). For example, it was previously shown 

that the optical diameter derived from the SSA needs to be scaled by a factor in order to be 

in agreement with measurements when considering DMRT-ML with non-sticky medium 

(Brucker et al. 2011; Roy et al., 2013; Montpetit et al., 2013; Picard et al. 2014; Dupont et 

al., 2014). As the physical aspects of each model had already been extensively analyzed, we 

put the emphasis in this paper on comparing the models with surface-based measured 

brightness temperature (TB). The objective is to compare the simulations using the same in-

situ measurements of improved snow parameterization, which had never been done.

This paper briefly recalls the main basic fundamentals of these four models and more 

specifically the different grain size definitions involved (Section 2). After presenting datasets 

and snow microstructure measurement methods (Section 3), we first compare the four 

models using a synthetic snowpack to perform a sensitivity analysis (Section 4.1), and we 

then compare the simulated TB using sets of measured snow properties against 

measurements of surface-based radiometric TB at 11, 19 and 37 GHz (Section 4.3).

2. Models and their respective snow microstructure metric

A synthesis matrix of the four models considered in this study is presented in Table 1. These 

models are all publicly available (thus specific details of their implementations can be 

known) and are extensively described in the references given in Table 1. Readers are invited 

to consult these references for detailed descriptions of the models, which are based on 

conceptually different approaches for computing snow electromagnetic properties and 

radiation transfer in the multi-layers of the snowpack. In this paper, all the simulations were 

performed using the recommended configuration for DMRT-ML and -QMS, the Improved 

Born Approximation (IBA) (option 12) for MEMLS and the original version of the 

extinction coefficient in HUT (see Table 1).

One of the main difficulties in snow radiative transfer is the parameterization of snow 

microstructure consisting of a high density of scatterers per unit of volume. DMRT-ML and 

– QMS consider the snow as a collection of sticky spherical ice particles defined by their 

radius and stickiness (Tsang and Kong, 2001; Tsang et al., 2007), while MEMLS 

parameterizes snow microstructural properties by a second order statistical function, the 

two-point correlation function, giving the mutual relationships between two scatterers within 

a given volume, such as the autocorrelation function (the exponential correlation length pex 

is generally used, see Section 2.2 below). HUT is based on empirical scattering and 

extinction coefficients fitted with the observed maximum dimension of snow grains (Dmax), 

or more recently an effective grain size radius (Kontu and Pulliainen, 2010). When using in-

situ ground-based measurements of snow microstructure parameterization, practical 

comparison of these models requires hypotheses to retrieve and link the different metrics. 

The metrics used in this study are briefly defined below.
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2.1 DMRT snow microstructure metric

DMRT-ML considers snow grains as spherical particles of ice defined by their radius. Their 

position (clustering) is controlled by stickiness. For snow having a wide range of grain 

shape, the radius of equivalent spheres can be objectively defined by their optical radius 

(Ro), which can always be derived from the SSA via the optical equivalent radius. The snow 

SSA is the surface of the air/snow interface (S) per unit of mass: M=ρsnow•Volume: 

SSA=S/M = S/(ρice•Volume) in m2 kg−1, where ρice is the ice density (917 kg m−3). SSA 

measurements are described in Section 3. For spheres or snow assimilated as sphere 

equivalent (see the review paper by Domine et al., 2008), the optical radius (Ro) is expressed 

as (Ro in mm, ρice in kg m−3 and SSA in m2 kg−1):

Ro = 3.103/ ρice • SSA (1).

Since any measurements can be used to estimate stickiness, Brucker et al. (2011), Roy et al. 

(2013), Dupont et al. (2014) and Picard et al. (2014), considering a non-sticky medium, have 

shown that Ro should be multiplied by the scaling factor ϕDMRT when Ro is derived from 

SSA measurements (R’o in mm):

R′o = ϕDMRTRo = 3.103ϕDMRT/ ρice • SSA (2).

This scaling factor is discussed in Section 4.2. Roy et al. (2013) also showed that the 

following relationship (inspired by Kontu and Pulliainen, 2010) can be used for an effective 

optical radius of snow grains derived from SSA measurements:

R′′o[mm] = 1.1 1 − exp −24.6.103/ ρice • SSA (3).

The stickiness parameter (τ), used by DMRT theory (Tsang and Kong, 2001), is inversely 

proportional to the contact adhesion between spheres. It can be linked to the cohesion or to a 

degree of connectivity between grains. Thus, for non-sticky spheres: τ = ∞; for snow with 

clusters (aggregates) or grains with high strength of adhesion, τ decreases (for example τ = 1 

to 0.2 or less). DMRT-ML uses the “short range” approximation (Tsang and Kong, 2001) 

which implies that grains and aggregates should remain small compared to the wavelength. 

Roy et al., (2013) hypothesized that the needed scaling factor (ϕDMRT) is related to the 

assumption of non-sticky spheres (τ = ∞) and to the assumption of monodisperse grain size 

distribution. This scaling factor is therefore a surrogate of the stickiness parameter which 

cannot practically be measured in the field (see Löwe and Picard, 2015).

2.2 MEMLS snow microstructure metric

MEMLS uses the correlation length (pc) for describing snow microstructure, which is the 

slope of the spatial autocorrelation function at the origin (i.e. the derivative of this function). 

This parameter might be derived from micro-computed tomography measurements (micro-

CT) (Löwe et al., 2013) or by high-quality stereological method (see Riche et al., 2012), but 

its rapid derivation from field measurements is still difficult. Recently, Proksch et al. (2015) 
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proposed a relationship between Snow-Micropen measurements and correlation length that 

has not yet been validated for microwave emission applications.

Here, we first estimate the correlation length from the equivalent sphere grain radius (Ro) as 

proposed by Mätzler (2002), following the Debye relationship:

pc = 4/3Ro(1 − ν) (4),

where ν is the ice volume fraction: ν = ρsnow/ρice.

While there is no experimental relationship between simultaneous measurements of pc (from 

micro-CT measurements) and SSA measurements, Montpetit et al. (2013) showed that the 

following relationship gives optimized simulated TB using MEMLS driven with SSA 

measurements (p′c in mm and SSA in m2 kg−1):

pc′[mm] = 4.103ϕMEMLS(1 − ν)/ ρice • SSA (5),

where ϕMEMLS is a scaling factor and SSA is measured in-situ.

If the autocorrelation function is approximated (fitted) by an exponential function of the 

form: exp(−x/pex), one can derive the exponential correlation length pex. According to the 

type of snow, pex is different from pc (Krol and Löwe, 2016; Matzler, 2002). For microwave 

measurements, pex is generally preferred to pc, and Mätzler (2002) found in general that pex 

≈ 0.75pc, giving from (1) and (4):

pex[mm] ≈ Ro(1 − ν) = 3.103(1 − ν)/ ρice • SSA (6).

On the other hand, previous studies from Mätzler (1997) have shown that pc is closer to the 

minimum characteristic extent of the grain than related to the maximum geometrical particle 

extent. Mätzler (2002) gives a series of measurements of pc, pex and visually estimated grain 

size Dmax (defined below) for 20 samples of different snow types showing the 

correspondence between these parameters. Using these data, pex (or pc) can be expressed as 

a logarithmic function of Dmax:

pex = a + bln Dmax forν > νth and Dmax > Dmax,th in mm
pex = Cstotherwise (7),

where νth and Dmax,th are thresholds delimitating the range of validity of the proposed 

model, and Cst is a constant for values below these thresholds.

Using the Mätzler (2002) data, Durand et al. (2008) found that a = 0.18 and b = 0.09 for ν > 

0.2 and Dmax > 0.125 mm , and that pex = 0.05 ± 0.017 otherwise.
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2.3 HUT snow microstructure metric

HUT input is based on individual grain size. There are many ways to describe the 

geometrical grain size of snow (Colbeck et al., 1990; Lesaffre et al., 1998; Fierz et al., 

2009). Among them, one can cite the circle (or ellipsoid) that better encompasses the snow 

grain; the equivalent radius given by the ratio between projected grain area and its perimeter; 

the mean convex radius of curvature; or the greatest extent of the prevailing or characteristic 

grains: Dmax. The latter corresponds to the maximum dimension of the “intermediate grain 

size” and has long been a classical parameter routinely used to visually characterize snow 

structure in the field (see Colbeck et al., 1990; Fierz et al., 2009). The HUT model can be 

driven either directly by Dmax, or by an effective grain diameter (Dmax,eff) derived from 

Dmax following the relationship that minimized the differences between measured and 

simulated TB, as proposed by Kontu and Pulliainen (2010) (see also Lemmetyinen et al., 

2010a and 2015; Pan et al., 2016):

Dmax,eff = 1.5 1 − exp −1.5Dmax (8),

where Dmax,eff and Dmax are in mm.

However, in this study, it appears that this relationship (Eq. 8) for estimating the Dmax,eff 

does not give a good agreement, due to the lack of convergence in the optimization. This 

results from the large digitized Dmax measurement values obtained in this study (see Section 

4.2), and Eq. 8 leads to a unique Dmax,eff. In the model comparison (Section 4.3), we thus 

consider Dmax,eff = 0.5 Dmax, derived from an optimization that reduces the difference 

between simulated and measured TB (method of Roy et al., 2013).

When SSA is measured, Roy et al. (2013) use Equation (2), with a different scaling factor 

(ϕHUT) relative to the effective grain size in HUT simulations:

Doeff[mm] = 6.103ϕHUT/ ρice • SSA (9).

All the ϕ factors (ϕDMRT, ϕMEMLS and ϕHUT) are further discussed in the results section. 

Field measurement methods for SSA and Dmax estimates are presented in Section 3.

2.4 Scaling factors for the models driven by SSA measurements

The scaling factor ϕ depends upon the model considered and the type of snow. The change 

in this scaling factor is linked to other microstructure parameters such as stickiness and to 

the fact that we assume a monodisperse size distribution of snow grain (see the discussions 

in Brucker et al., 2011; Roy et al., 2013 and Löwe and Picard, 2015). It cannot be explained 

by measurement uncertainties (Roy et al., 2016). Löwe and Picard (2015) theoretically 

demonstrate the need of grain size scaling between the optical diameter and the equivalent 

sticky hard sphere diameter. For DMRT-ML with the assumption of non-sticky spheres, the 

ϕ factor obtained varies from 2.3 to 3.5 depending on the type of snow (Table 2). The 

amplitude of this factor may also partly be affected by errors in snow measurements and 

possibly in the soil parameters. Precise explanation of these differences in the ϕ factor needs 
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further study but is outside the scope of this paper. Here we used ϕ = 3.3, 1.3 and 3.7, 

respectively for DMRT-ML, MEMLS and HUT-nlayers (Table 2) in order to compare the 

known optimized models when driven by SSA measurements compared to simulations 

driven by Dmax measurements.

2.5 Radiative Transfer Model inputs

Apart from the snow microstructure parameterization, all other input parameters required by 

the four models are the same for each layer defined by its thickness, snow temperature and 

density. Here, we only considered dry snow. An important contribution to snowpack 

emission can emanate from the soil under the snowpack, in particular at low frequencies. For 

the intercomparison in this study, we thus used the same rough soil reflectivity model 

proposed by Wegmüller and Mätzler (1999) (see the review of Montpetit et al., 2015a). At a 

given frequency, the soil parameterization is defined by the soil/snow interface reflectivity in 

horizontal polarization (ΓH) and vertical polarization (ΓV) with the following equations for 

an incidence angle (θ) lower than 60°:

ΓH = ΓH
Fresnel exp −(kσ) −0.1cosθ

ΓH = ΓHcosθβ (10),

where k is the incident medium wave number (air or snow), ΓH
Fresnel  is the Fresnel 

reflectivity function which depends on the soil permittivity (εsoil), σ is the soil roughness 

parameter and β is a scaling factor for deriving the reflectivity at vertical polarization from 

the computed reflectivity at horizontal polarization. Following Montpetit et al. (2015b), we 

consider the optimized values of εsoil
eff, σeff and βeff parameters for each frequency given in 

Table 3.

For comparisons between simulated TB and measurements, the downwelling sky radiance 

reflected by the snowpack toward the radiometer has to be taken into account (Montpetit et 

al., 2013; Courtemanche et al., 2015; Roy et al., 2016). In each surface-based radiometric 

measurement, the atmospheric contribution was calculated using the atmospheric 

Millimeter-wave Propagation Model (MPM: Liebe, 1989) implemented in the HUT snow 

emission model (Pulliainen et al., 1999). The atmospheric model was driven with the air 

temperature and precipitable water of the atmospheric layers above the surface given by the 

29 atmospheric layers of the North American Regional Reanalysis (NARR) (Mesinger et al., 

2006) for the NARR pixel and time of measurements. Note that all the snowpits were 

located in open areas where no vegetation could contribute to the measured TB (see the 

discussion in Roy et al., 2016). We previously validated this procedure against sky 

microwave measurements (see Courtemanche et al., 2015).

3. Ground-based measurement dataset

3.1 Optical radius retrieved from SSA measurements using IRIS

A light short-wave infrared laser-based system measuring snow albedo through an 

integrating sphere (InfraRed Integrating Sphere, IRIS), similar to the system previously 
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proposed by Gallet et al. (2009), was used for SSA measurements (Montpetit et al., 2012). 

Relatively good accuracy (12–15%) and reproducibility in SSA measurements are obtained 

using the IRIS system on extracted samples. Gallet et al. (2009) and Montpetit et al. (2012) 

describe in detail these devices (Dual Frequency Integrating Sphere for Snow SSA: 

DUFISSS and IRIS, respectively). Lambertian targets with known reflectance values 

(Spectralon: 0.06, 0.25 0.60, 0.79, and 0.98 at 1.33 μm) were used to calibrate the device 

before and after each series of measurements at each site. From the reflectance, the SSA was 

calculated as described by Montpetit et al. (2012). SSA measurements allow us to estimate 

the mean optical radius of grain sizes of each layer (Eq.1), assuming that all grains have the 

same size (monodisperse size distribution).

3.2 Dmax measurements using multidirectional lighting macrophotos in the Shadow-box

Macrophotos of snow grain samples have been widely used in numerous studies (e.g. 

Colbeck, 1990; Fierz et al., 2009). In order to improve geometrical snow grain 

parameterization, we developed an optical system that uses, within an enclosed box 

(30×30×30 cm), five light-emitting diodes that provide five-direction (nadir, N, E, S and W) 

illumination of a gridded plate upon which snow grains are placed (Fig. 1). Five photographs 

are taken successively for each illuminated direction with a Nikon D40 fitted with a macro 

lens (Fig. 1). The projected area of the grain is extracted from a first photograph with the 

diode illuminating from nadir and the four other photographs allow the digitization of the 

projected shadows. Knowing the angles of illumination and the exact position of each grain 

on the gridded illuminated plate, it is possible to calculate the height of the grain envelope 

using the tangent illumination path corresponding to the projected shadow in each direction. 

We thus derived a numerical height model of each snow grain and reconstructed a 3D 

representation of the snow grain envelope (Fig. 1). From this elevation model, one can derive 

multiple size parameters: Dmax, minor and major axis of the envelope ellipsoid, projected 

area, mean height, maximum height and apparent volume and surface area. All of these 

parameters are then averaged for each sample. This device (called Shadow-box) is very easy 

to handle in the field, and improves the retrieval of a 3D representation of the snow grains. It 

is also useful to characterize snow grain shapes and types of extracted snow samples. Using 

calibrated spheres (steel balls from 0.8 to 4.8 mm), the retrieval error (bias) on Dmax was 

estimated of the order of 0.03 mm. The measurement protocol is as follows: we gently cover 

the plate with separated grains of a snow sample extracted from each snowpack layer 

(approximately every 3 cm over the snowpit), and take the five consecutive macrophotos, 

including identifications of the snowpit and layer. We then systematically manually digitize 

the contour of all the grains on the plate to estimate the mean Dmax (2D) values for each 

snowpack layer. The shadows help to discriminate individual grains in aggregates or when 

grains are stuck together.

3.3 Correlation length

Since no direct measurement of correlation length was carried out, the values of correlation 

length (pc or pex) used as inputs for MEMLS were estimated in three ways: (1) from the 

retrieved optical grain size radius (SSA measurements) and the fractional volume (Debye 

relationship, Eq. 5) (hereafter labeled MEMLS_Do); (2) from the measured values of mean 

Dmax grain size (2D Shadow-box) and fractional volume based on the Mätzler relationship 
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(Durand et al., 2008) (hereafter labeled MEMLS_Dmax_pex); and (3) from pex based on the 

observed linear relationship between pc and Dmax shown in the results section (see Fig. 5) 

(hereafter labeled MEMLS_Dmax_lin).

3.4 TB measurements

TB measurements were taken for every snowpit at 10.67 (hereafter noted 11), 19 and 37 GHz 

in vertical polarization (V-pol) and horizontal polarization (H-pol) at a height of 

approximately 2 m above the surface using PR-series field radiometers (Radiometrics 

Corporation, Boulder, CO, USA) at an incidence angle of 54°–55°, which is close to the 

measurement incidence angle of the Advanced Microwave Scanning Radiometer – Earth 

Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) space-based 

sensors. The ellipsoidal footprint of measurements at the snow surface was approximately 

0.5 m × 0.65 m. The radiometer calibration was based on two measurements taken with the 

absorbing foam Eccosorb© (Cuming Microwave Corporation, MA, USA) at the ambient 

temperature (i.e. warm reference) and another taken over a surface of liquid nitrogen (i.e. 

cold reference) (Asmus and Grant, 1999; Langlois, 2015). In the worst case, measurement 

error for the calibration target was estimated at ±2 K. Ambient and cold point measurements 

from before and after the field campaign periods (typically separated by five to ten days) 

were used to produce a final calibrated TB data set.

3.5 In-situ snow data

The snow data needed by the models were derived from in-situ measurements in three 

northern Canadian regions. Table 4 provides the data from the Arctic: Churchill (MB), the 

Subarctic region: James Bay (QC), and southern regions of Québec: Sherbrooke (QC) and 

St-Romain (QC). All sites were already well-described in the references given in the Table 

4. This database of 32 snowpits encompasses a wide range of snow types (i.e. metamorphic 

processes and stratigraphy), typical of North American environments. For each site, profiles 

of snow temperature, snow density, and snow microstructure were taken at a vertical 

resolution of 3 or 5 cm in the footprint of the microwave radiometers. The density was 

measured with a 185 cm3 density cutter, and the samples were weighed with a 100 g Pesola 

light series scale with an accuracy value of 1 g. The temperature was measured with a 

Traceable 2000 digital temperature probe (±0.1°C). The microstructure of each layer was 

defined with both SSA (optical radius) and Dmax measurements, the latter using 

macrophotos (Shadow-box). In Table 4, we give the vertically averaged values of density, 

optical radius and Dmax, weighted by the snow layer thicknesses and the derived bulk p′c 

(from Eq. 5) were also estimated (9th column). The stratigraphy was examined at each site, 

and all ice lenses (or crusts), when present, were identified and measured. Their density was 

not measured as this is very difficult to properly sample. All the microwave and snow 

measurements were always synchronised in time. All these 32 sites (Table 4) were used for 

model comparison.

4. Results

A sensitivity analysis is first performed to compare the four models considered with the 

same inputs considering a synthetic snowpack (Section 4.1). We then discuss the consistency 
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between the grain size measurements (Section 4.2), and we compare the simulations with 

ground-based measurements (Section 4.3).

4.1 Sensitivity analysis of the three models

Based on an identical synthetic snowpack, we seek to illustrate model sensitivity to three 

parameters: - grain size (Fig. 2); - density (Fig. 3); - and ice lens in the snowpack (Fig. 4). 

Fig. 2 shows the comparison between the 37 GHz brightness temperature variations as a 

function of Do, using the four models in a very simple synthetic case defined by one layer of 

1 m thickness with a mean uniform density of 250 kg m−3. The incidence angle of TB 

simulations is 55°. All input parameters were the same for the four models and the different 

microstructure metrics were derived from the same initial grain parameter (Do) using 

equations (2), (5) and (9). To define the optical diameter of each model, we used the scaled 

factors defined in previous analysis (see discussion in Section 4.2). These factors optimize 

the simulations compared to in-situ radiometric measurements for real snowpacks. The 

relationships defining the microstructure metrics were derived from Equations (2), (5) and 

(9), respectively for DMRT-ML (assuming non-sticky spheres) (Roy at al., 2013), MEMLS-

IBA (Montpetit et al., 2013) and HUT (Roy et al., 2013). For DMRT-QMS, we used the 

same relationship as for DMRT-ML, and also assuming non-sticky spheres. The comparison 

in Fig. 2 is thus performed using the following equations:

DMRT‐ML/ − QMS:D′o = 3.3Do
MEMLS: p′c = 1.3 (2/3) Do (1 − ν)
HUT:Doeff = 3.7Do

(11)

The results show that the TB simulated by the four models similarly decrease with the grain 

size, as expected due to the high sensitivity of microwave attenuation to grain size at 37 

GHz. Using the scaling factors for the input grain size metrics given in Eq. 11, the simulated 

TB V-pol are close for Do around 0.5 mm and for Do<0.2 (Fig. 2, top). However, MEMLS 

TB values appear underestimated by 18 K compared to DMRT-ML/-QMS around Do = 0.3 

mm. Note that DMRT-ML is identical to DMRT-QMS over the whole analyzed range of Do, 

as we stay in the Rayleigh range (see Picard et al., 2013), and despite the different 

formulation of the scattering coefficient. When the grain size becomes larger (Do > 0.6 mm, 

SSA < 11 m2 kg−1), the HUT-nlayers TB significantly decreases, because this model 

empirically considers multiple scattering and is based on the 1-flux RT simplification, 

leading to underestimate downward-propagated TB and then upward reflected and 

backscattered signal. Multiple scattering increasing with grain size tends to increase the 

upward radiation, compensating for the TB attenuation.

The main polarization effects arise from reflections at layer interfaces, and are at their 

maximum near the Brewster angle (around 55° at 37 GHz), leading to a significant decrease 

of the TB (H-pol) with incidence angle, while TB V-pol is weakly independent of the 

incidence angle. Fig. 2 (bottom) shows the Polarization Ratio (PR = TB H-pol/TB V-pol) 

variations for the four models as a function of the optical grain size simulated for a fixed 

incidence angle of 55°. DMRT-ML and DMRT-QMS are also identical in this case. The 

HUT model practically neglects the scattering polarization variations with growing grain 
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size, while DMRT-ML/-QMS and MEMLS models show different trends in PR variations 

with grain size. The MEMLS volume scattering in snow is slightly sensitive to polarization 

(Wiesmann et al., 1998) with a weak PR increase of 2% when the grain size increases 

between Do = 0.1 to 0.6 mm, while DMRT-ML/-QMS decreases by 4%, leading to a 

difference of about 7% compared to MEMLS for grain sizes above 0.6 mm (Fig. 2, bottom).

For a given fixed density, the polarization is modulated by 2 mechanisms: snow scattering 

and interface reflection. As snow-air interface reflections are similarly treated in each model 

(assuming Fresnel’s reflection) and because the density remains constant in these 

simulations, the differences between the three types of models (DMRT-ML/-QMS; HUT-

nlayers and MEMLS) result from the differences in the radiative transfer solution. As a 

matter of fact, polarization effects are generated by volume scattering driven by the granular 

structure of the medium, i.e. by a combined effect of snow grain size and density (see 

Mätzler, 1997) and also of stickiness for DMRT-ML/-QMS (see Picard et al., 2013). The 

observed differences in PR variations in Fig. 2 (bottom) could thus likely governed by 

differences between the radiative transfer processing of the diffuse scattering component of 

the signal. The results for lower incidence angles (i.e. not Brewster) are similar.

We performed simulations (not shown) using a new model (in progress, unpublished) using 

the same N-flux solver used in DMRT-ML but which can compute scattering coefficients 

with either the DMRT theory (as in DMRT-ML and DMRT-QMS) or IBA (as in MEMLS). 

In both cases, assuming the same scattering theory, the results show a decrease of the PR 

with increasing Do, while the MEMLS-IBA (6-flux) shows an increase of the PR. This 

suggests that the radiative transfer processing, specifically 6-flux versus N-flux, could be the 

cause of the different behaviors observed in Figure 2 (bottom), but further exploration of the 

role of the solver is needed,

The patterns of TB variation with snow density show similar behaviors between models but 

at different amplitudes (Fig. 3). Here, Do is considered constant and equal to 0.25 mm. Over 

the range of density variation shown, below 400 kg m−3 (i.e. below 44% fractional volume), 

at vertical polarization, DMRT-ML/-QMS shows a greater sensitivity, ΔTB V-pol of 40 K for 

density from 150 to 300 kg.m−3, than MEMLS and HUT which vary slightly. For low snow 

density between 150 and 200 kg m−3 the four models are similar, but at a high snow density 

of 400 kg m−3, the TB(V-pol) difference between DMRT-ML/-QMS and MEMLS is 28.5 K. 

(and 21.3 K at H polarization) (Fig. 3, top). For coarser grain size (not shown), the 

differences in TB V-pol versus density variations between models are amplified, due to the 

difference in scattering processing in each model.

PR variations in relation to density show parallel trends (Fig. 3, bottom), but the decrease in 

PR when density increases shows significant differences in slope values for each model 

(more than 2% difference at low density for MEMLS and HUT compared to both DMRT 

models). For high densities (near 400 kg/m3), this decrease is greater with DMRT-ML than 

DMRT-QMS.

TB H-pol varies as a function of density change between interface layers, mainly from 

reflection at the snow-air interface, and of snow scattering (grain size). Since Fresnel 
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reflection is considered here, surface reflection depends on the snow dielectric constant and 

thus the density. Assuming a constant grain size (as in Fig. 3), as density increases, the 

reflection coefficient increases and TB H-pol decreases, leading to the decrease in PR (as TB 

V-pol is relatively constant at the Brewster angle). In other words, where snowpack 

evolution features slow metamorphism as is observed in Antarctica, PR clearly decreases 

with density. This was shown by Picard et al. (2014) from surface-based measurements at 

Dome Concordia (East Antarctica). Champollion et al. (2013) also showed that the observed 

2000–2010 AMSR-E PR increase was in agreement with the observed decreasing surface 

snow density, also at Dome Concordia.

However, when the snowpack evolves during the winter through various metamorphic 

processes (increasing grain size), increasing layering (alternation of high- and low-density 

layers) and increasing density processes, PR direction changes over time appear less clear. 

Moreover, the surface roughness would produce a more diffuse scattering distribution, 

leading to weaker polarization, while ice layers or wind-slab snow crusts lead to a significant 

degree of polarization (e.g. Mätzler, 1982, 1994; Grenfell and Putkonen, 2008; Dolant et al., 

2016). In general, since surface density and state are the most important characteristics 

influencing polarization, one expects a decrease in PR with time from snowfall. The DMRT 

simulations showed a PR decrease for both increasing grain size and density processes in the 

synthetic cases considered here (Fig. 2 and 3), while MEMLS and HUT show a PR decrease 

only as a function of increasing density.

The third sensitivity analysis (Fig. 4) shows the effect of a thin ice layer put at the top of the 

snowpack for the four models. At V-pol, there are almost no TB variations due to ice lens 

while TB H-pol is reduced by up to 65 K when an ice lens is introduced. The stronger 

decrease in H-pol (ice lens vs. no ice) compared to the one at V-pol comes from the higher 

sensitivity to layer interface reflectivity at H-pol. Note that, in Fig. 4, the differences in TB 

V-pol amplitudes between models result from the configuration (Do and density) used for 

the simulations (see Fig. 2 and 3). Moreover, ice layer thickness variations have no impact 

on TB variation, except when using the MEMLS model for thin ice layers. Around Dice = 

0.125 mm, MEMLS is as much as 43 K lower at H-pol than the DMRT and HUT models. 

This significant TB decrease simulated by MEMLS for H polarization that appears for ice 

thickness under λ/2 is due to the coherent reflection that dominates the microwave behavior 

for layers of the size λ/4 (Weismann and Mätzler, 1999). The DMRT-ML and HUT-nlayers 

models do not take into account this attenuation effect of the quarter-wavelength resonance. 

In practice, as the ice layer thickness spatially varies in the footprint of the sensor (Rutter et 

al., 2014), such effects are generally less pronounced than in simulations, but can be clearly 

observed for thin ice lenses on or in the snowpack (see Montpetit et al., 2013; Roy et al., 

2016).

4.2 Snow grain database comparison analysis

We analyzed 159 photographed plates from the 32 studied snowpits, corresponding to a total 

of 36,384 digitized grains with an average of 229 grains per plate. For each plate, we 

considered the mean maximum dimension of all the grains on the plate (Dmax). For each 

corresponding layer, we also measured the snow SSA and density. It is well known that the 

Royer et al. Page 12

Remote Sens Environ. Author manuscript; available in PMC 2020 August 17.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



relationship between Do and Dmax is not one-to-one (see Langlois et al., 2010; Leppänen et 

al., 2015). However, in order to evaluate the consistency of the datasets, Fig. 5 shows the 

relationship between the calculated correlation length derived from SSA and density 

measurements (Eq. 5, ϕ = 1) and the corresponding mean Dmax for all the samples. The 

results show that this relationship appears somewhat scattered as expected, and more linear 

rather than the logarithmic relationship suggested by Mätzler (2002). But note that, for the 

latter case (for 20 samples), Dmax values were visually determined, whereas, in our case, 

Dmax were derived from digitized contours. The digitization, the very large number of data 

and also the computation of the mean values (over hundreds of grains) could explain that our 

Dmax values are different than those visually determined. The digitization of grain size is 

considered as a more reproducible and more precise approach. We also considered (not 

shown) median values instead of arithmetic means that did not give significant differences. 

On the other hand, the correlation lengths in the Mätzler (2002) database were measured 

(micro-CT) whereas we derived this parameter from SSA and density measurements. The 

reason for the differences between these micro-structure metrics (Dmax, SSA, correlation 

length), discussed for example by Löwe and Picard (2015), and which may also result from 

differences in snow types (alpine, boreal, arctic), is beyond the scope of this paper. This 

unique database (coincident values of Do, pc and Dmax) was used to provide specific inputs 

to drive each model considered in order to simulate the brightness temperatures.

4.3 Model comparison using measured inputs

As DMRT-QMS is very similar to DMRT-ML, only three models are considered in the 

following: DMRT-ML, HUT-nlayers and MEMLS. For all the sites described in the Table 4, 

Fig. 6 compares the 3 model simulations against surface-based measured brightness 

temperatures with exactly the same soil parameters (Table 3), and for the snow 

microstructure metrics derived either from SSA or Dmax measurements. DMRT-ML (Fig. 

6a), HUT_Do (Fig. 6b) and MEMLS_Do (Fig. 6c) were driven by the scaled optical 

diameter of snow grain derived from SSA measurements. The HUT_Dmax simulations (Fig. 

6d) were driven by Dmax measurements using an optimized scaling factor (see Section 2). 

Using Dmax measurements, two inputs were also considered for MEMLS simulations: 1) 

MEMLS_Dmax_pex (Fig. 6e) based on the Mätzler relationship (Durand et al., 2008, Eq. 7, 

see Fig. 5); and 2) MEMLS_Dmax_lin (Fig. 6f) based on the correlation length estimated by 

the observed linear relationship shown in Fig. 5. These model inputs are summarized in 

Table 5.

The root mean square errors (RMSE) and the biases are compared in Table 6 and shown in 

Fig. 7 for the three frequencies (11, 19 and 37 GHz) and each polarization. Note that the full 

set of input snow properties and 11 GHz radiometer measurements are only available for two 

sites, hence, the analysis focuses on 19 and 37 GHz.

For the 32 analyzed snowpits, the overall results at 19 and 37 GHz for the 6 model 

configurations show mean bias values of the order of 6 K, ranging from −10.8 to 16 K 

depending on the model, configuration and frequency considered. The mean RMSE value is 

of the order of 20 K (19 GHz) and 24 K (37 GHz), ranging from 11.4 to 32.4 K. Large 

differences in bias appear between models (MEMLS with negative biases), and no 
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significant differences in bias or RMSE can be seen between polarizations. Note that except 

for HUT_Dmax (0.5 • Dmax), the models were not specifically optimized for the new cases 

considered in this study, since the used scaling factors were derived from previous 

publications over different sites.

MEMLS_Do seems to give slightly better results (mean RMSE of 14 K and 19 K, 

respectively at 19 and 37 GHz, for both polarizations) relative to other configurations and 

models (Fig. 6, 7 and Table 6). DMRT-ML results show a mean RMSE of 21 K (19 GHz) 

and 23 K (37 GHz) in this study, although we obtained better results for 45 other Arctic and 

Subarctic snowpits with the same parameterization (mean RMSE of 10 K (19 GHz) and 12 

K (at 37 GHz), see Roy et al., 2016). The HUT model shows a lesser agreement at 37 GHz 

(mean RMSE of 30 K and 27 K respectively for the Do and Dmax configuration).

MEMLS tends to underestimate the TB at 37 GHz V-pol (negative bias), while the other 

models tend to overestimate the simulated TB (positive bias). This is in accordance with the 

comparison using synthetic snowpacks (see Fig. 2, top), showing lower MEMLS TB 

compared to DMRT and HUT for a large range of grain sizes.

Among the three analyzed MEMLS versions, it appears that MEMLS_Do performs best, 

compared to the Dmax-based simulations (an average RMSE at 19 and 37 GHz of 16.6 K, 20 

K and 22 K for respectively the MEMLS_Do, _Dmax_lin and _Dmax_pex configurations). As 

expected, the HUT model provides a slightly lower RMSE when using Dmax (23.6 K) 

compared to HUT_Do (26.5 K). Moreover, at 37 GHz, DMRT using SSA appears better 

than the HUT model based on Dmax. This confirms that the scaled SSA parameter is, in 

general, clearly better than the Dmax parameter for describing snow grain size for microwave 

radiometry no matter the MEMLS or DMRT-ML model.

We showed (Fig. 4) that, for the synthetic snowpack, ice lens thickness within the snowpack 

could lead to significant differences in TB among the models. Here, we accounted for the ice 

layer effects when they were observed in the snowpack, and the comparison shown in Fig. 6 

does not exhibit systematic differences between snowpits with ice layers (10 sites/32, see 

Table 4) and those without ice layers. This first shows that ice layers can be adequately 

corrected for when their presence and particularly their position within the snowpit is known 

(see Montpetit et al., 2013; Roy et al, 2016), and secondly that ice layers cannot explain the 

differences in RMSE between models.

In terms of linear regression between simulated and measured TB (coefficient of 

determination R2 and slope of the regression), the model comparison (Table 7) also 

highlights the differences between models and configurations. Best results are obtained with 

DMRT-ML and MEMLS_Do, with a mean R2 of the order of 0.75 – 0.79 for the 4 channels 

(TB at 19 and 37 GHz and both polarizations). Results for these models are better at 37 GHz 

and with a slope slightly greater than 1, meaning that the models underestimate low TB 

values at this frequency (TB < ~170 K). Even if MEMLS_Dmax_lin is really better than 

MEMLS_Dmax_pex for both R2 and slope parameters, MEMLS_Dmax_lin performs less 

well than MEMLS based on Do. The HUT model gives here the worst agreement against 

measurements. Note that, in all cases (Table 7), the TB H-pol values at 19 GHz show the 
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lowest correlations, likely due to non-optimized processing of stratification between the 

snow layer interfaces, assumed specular, and for the soil-snow interface (roughness, for 

example). The statistics at 11 GHz are not included because there are only 2 measurements, 

but are included in the overall linear regression.

At least, we compared the simulated Polar Ratio (PR H/V) at 37 GHz to the measured PR. 

The results show similar performance between the models (mean RMSE of 0.055). Also, we 

cannot conclude about the effect of the grain size on the PR trend (as simulated in Fig. 2). 

This relates to the fact that the sites integrate a large range of density and Do values, while 

Fig. 2 assumes a constant density when Do varies.

5. Discussion and conclusion

Over a large set of Arctic, Subarctic and boreal snow datasets, we derived a unique 

comprehensive snow grain size metrics database. These metrics were defined, on the one 

hand, by their specific surface area (SSA, from IR reflectometry measurements), and, on the 

other hand, for the same snow samples, by their mean maximum geometrical extent, called 

Dmax, obtained from digitized macrophotos of snow samples at each layer. Here, we did not 

estimate Dmax size by visual inspection as is generally done, because of the subjectivity of 

that approach. The digitization of each snow grain distributed on a photographed plate is 

thought to be a more robust and objective approach. This dataset allowed us to compare 

ground-based measurements of brightness temperatures (TB) to the simulated TB using four 

models driven by their specific metrics: DMRT-ML and -QMS with the optical diameter 

(Do) derived from SSA measurements; the HUT model with Dmax; and the MEMLS model 

driven by the correlation length which can be estimated using both parameters (Do and 

Dmax). We also tested the HUT model with Do, and we compared MEMLS simulations 

based on 2 different relationships for correlation length estimation. A total of six model 

configurations (Table 5) were thus analyzed (Fig. 6, 7 and Table 6).

Whatever the model considered, the scatterplots between simulated and measured TB show 

somewhat large scatters (Fig. 6) due to the inherent uncertainties on all the parameters that 

affect the emitted signal, i.e. soil (temperature, dielectric permittivity and roughness), snow 

density stratification, snow temperature profile and snow grain size stratification (Roy et al., 

2016; Durand et al., 2008). The obtained root mean square error between simulated and 

measured TB are in the same range of values shown in previous studies that considered the 

same models (Roy et al., 2016; Pan et al., 2016; Löwe and Picard, 2015; Roy et al. 2013; 

Lemmetyinen et al., 2010b). The results analyzed here are thus representative of errors 

commonly obtained for Arctic and Subarctic snows with these models. But this is the first 

time that these models were compared with their specific snow microstructure input data for 

which they were defined. These results confirm first that each metric, Do as well as pc and 

Dmax, must be scaled in order to minimize the RMSE between simulated and measured TB. 

This aspect was discussed and partly explained in previous papers (Löwe and Picard, 2015; 

Roy et al. 2013; Kontu and Pulliainen, 2010). Secondly, the results show that the snow 

microstructure metric based on Do appears to give better results than the metric defined by 

Dmax (Table 6). This may be due to the fact that microwave scattering is more directly 

related to Do than to Dmax. Also, even if the shadow box used to measure Dmax, is more 
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accurate than visual estimates, the Do value, derived from snow SSA measurements, could 

give a better estimate of the effective mean size over the grain size distribution per layer than 

the mean value of Dmax measurements.

It is difficult to conclude on the performance of DMRT-ML, HUT and MEMLS due to the 

large observed scatter on simulations, although the MEMLS model appears here slightly 

better for the snowpits analyzed in this study. We found a mean RMSE at high frequencies 

(19 and 37 GHz) of 16.6 K, 22.0 K and 23 K respectively for MEMLS_Do, DMRT-ML and 

HUT_Dmax. However, as mentioned above, a specific optimization could have been made on 

the input parameters for each model (on the ϕ scaling factors) that would have a different 

effect on the models and change the results comparison. This scaling factor may also depend 

on the types of snow, i.e. on metamorphism processes and shape (see Löwe and Picard, 

2015; Krol and Löwe, 2016). However, the comparison shown here between the four models 

using a synthetic snowpack (Fig. 2, 3 and 4) clearly shows the intrinsic difference in 

radiative transfer behavior as a function of grain size, density and ice lens variations within 

the snowpack, in particular for the polarization ratio (TB H-pol / TB V-pol).

In conclusion, to date, from a practical point of view using in-situ measurements of snow 

properties, this paper shows that the SSA parameter appears to be the most relevant 

parameter for characterizing snow microstructure, even if it must be scaled to be used for 

microwave simulations. Snow tomography could give more precise microstructure 

characterization but requires significant processing time. When suitably scaled for each 

model (MEMLS and DMRT-ML), the SSA parameter produces the same order of error 

magnitude in simulated brightness temperature. From a physical perspective, Löwe and 

Picard (2015) showed that MEMLS and DMRT-ML are in fact very similar.
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Fig. 1. 
Shadow-box. Snow grains placed on the plate are successively illuminated from four 

directions by four LEDs and by one LED from the nadir, producing five macrophotos 

(right), from which a 3D envelope model of the grain can be retrieved after manual 

digitization of the shadows. The size of the grain shown is 7 mm.
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Fig. 2. 
TB variation at 37 GHz as a function of the optical diameter (Do) of grain size for the four 

models. Top: TB at the Vertical polarization; Bottom: Polarization ratio (H-pol/V-pol). 

Simulations performed using Eq. 11 for the snow grain size definitions and the Wegmüller 

and Mätzler (1999) soil model (Table 1); Soil temperature = 273 K; soil roughness = 0.19 

cm, dielectric permittivity = 4.53 and the polarization reflectivity factor beta = 1.1 

(Montpetit et al., 2015a); snow density = 250 kg.m−3; snow depth = 1 m; Snow temperature 

= 263 K; no stickiness and no ice lens. The incidence angle of TB simulations is 55°.
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Fig. 3. 
Same as Fig. 2, but for density (Do = 0.25 mm).
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Fig. 4. 
TB variation at 37 GHz as a function of an ice layer thickness (Dice) put on the top of the 

snowpack for the four models (full lines: V-pol; dotted lines: H-pol). Snowpack and soil 

properties are the same as in Fig. 2 and 3 (Do = 0.25 mm and density = 250 kg.m−3). Ice 

lens density = 917 kg m−3 and ice lens temperature is the same as snow temperature.
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Fig. 5. 
Relationship between the correlation length derived from SSA and density measurements 

(pc, calculated with Eq. 5, ϕ = 1) and the mean maximum geometrical extent of the grains 

(Dmax) measured by digitized photographs of snow grains (each point of this graph 

corresponds in average to 229 digitized grains per sample). The dotted curve corresponds to 

the logarithmic relationship observed by Mätzler (2002).
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Fig. 6. 
Scatterplot comparing simulated brightness temperatures against measurements for each 

frequency and polarization for all the sites (described in Table 4). Circled symbols represent 

sites that included ice lenses. a: DMRT, b: HUT_Do (right); c: MEMLS_Do; d: 

HUT_Dmax; e: MEMLS_Dmax_pex; f: MEMLS_Dmax_lin. Input parameters are listed in 

Table 5. Values given in the figures correspond to the RMSE in Kelvin (reported in Table 6).
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Fig. 7. 
Comparison between the RMSE and biases for the 6 model configurations. The 

corresponding values are given in Table 6.
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Table 2.

Scaling factor ϕ to be applied on the snow microstructure metric derived from in-situ SSA measurements, as a 

function of the RTM considered and the type of snow. All SSA measurements were derived from the 

DUFISSS’s type approach (see Section 3.1), except *: the values depend upon the method used for retrieving 

SSA; and **: SSA retrieved from ASSAP device (see details in the given references, last column).

Radiative Transfer 
Models Snow μstructure Metrics Sites ϕ References

MEMLS pc′ = 4.103ϕ(1 − ν)/ ρice ⋅ SSA  Eq. 5

Canada:
Arctic,

Subarctic,
South Quebec

1.3 Montpetit et al., 2013

DMRT-ML (no stickiness) R′o = 3.103ϕ/ ρice ⋅ SSA  Eq. 2

Dome C Antarctica
1.89,
2.5,

2.85*
Brucker et al., 2011

Dome C Antarctica 2.3** Picard et al., 2014

Barnes Ice Cap Canada Arctic 3.5 Dupont et al., 2014

Canada:
Arctic,

Subarctic,
South Quebec

3.3 Roy et al., 2013

HUT-nlayers Roeff = 3.103ϕ/ ρice ⋅ SSA  Eq. 9

Canada:
Arctic,

Subarctic,
South Quebec

3.7 Roy et al., 2013

Remote Sens Environ. Author manuscript; available in PMC 2020 August 17.



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Royer et al. Page 31

Table 3.

Soil parameters considered for the three models (see Eq. 10).

Frequency (GHz) εsoil
eff, βeff σeff (cm)

11 3.18–0.006134j 1.08

0.1919 3.42–0.00508j 0.72

37 4.47–0.32643j 0.42
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Table 4.

Summary of the snow parameters of all sites analyzed in this study. Site name: CHxx corresponds to 

Churchill, MB sites (Roy et al., 2013; Montpetit et al., 2013); SIRSP4 and RoSP1 correspond to the southern 

Québec sites, respectively to the SIRENE site at Sherbrooke, QC and to the St-Romain, QC site (Roy et al., 

2013); BJxx sites corresponds to the James Bay, Nunavik, QC sites (Subarctic sites) (Roy et al., 2016). The 

snowpits where an ice lens was observed are identified (last column).

Site Name Snow depth 
(m) Tsnow (K)

Density 
(kg/m3)

Tsoil (K) Optical 
radius (mm) Dmax (mm)

Bulk p’c 
(Eq. 5)

Ice 
lens

1 CH42 0.37 259.4 289.4 267.9 0.22 4.43 0.267

2 CH43 0.70 257.3 311.4 270.3 0.20 2.68 0.231

3 CH83 1.18 269.4 372.6 272.7 0.19 2.83 0.199

4 CH90 0.82 265.3 284.0 271.8 0.18 3.43 0.213

5 CH91 0.91 267.1 324.7 272.5 0.19 4.16 0.210

6 CH92 0.83 268.3 292.8 272.9 0.22 3.10 0.262

7 CH95 1.74 266.0 380.3 272.8 0.15 1.89 0.150

8 CH96 1.80 266.8 367.8 272.9 0.17 2.20 0.172

9 CH97 1.50 266.4 380.9 272.7 0.18 2.07 0.178

10 CH98 1.19 265.8 351.4 272.5 0.16 2.04 0.166

11 CH104 0.48 255.2 261.4 269.6 0.32 4.90 0.393

12 CH105 0.45 258.7 229.7 270.3 0.32 6.11 0.419

13 CH111 0.44 252.5 284.6 269.8 0.25 4.54 0.303

14 CH55 0.51 258.5 308.4 269.7 0.19 3.54 0.214

15 CH56 0.35 254.9 314.6 267.2 0.20 3.15 0.231

16 CH99 0.57 259.3 328.0 270.1 0.23 4.02 0.255

17 CH101 0.19 259.1 263.2 264.6 0.33 4.88 0.403

18 CH54 0.48 257.1 345.0 269.5 0.20 4.51 0.215 x

19 CH57 0.25 260.2 321.9 266.1 0.20 3.50 0.224

20 CH58 0.35 256.5 304.6 267.9 0.16 4.84 0.189 x

21 CH59 0.65 260.2 276.6 271.7 0.23 3.71 0.274 x

22 CH60 0.14 270.4 288.3 262.2 0.27 3.83 0.325 x

23 CH61 1.03 260.5 400.8 272.5 0.19 2.68 0.187

24 CH82 0.35 266.5 285.4 270.8 0.37 4.08 0.446

25 CH93 0.82 279.6 311.9 271.9 0.28 4.43 0.325 x

26 CH100 0.43 259.8 295.8 269.2 0.28 4.78 0.328 x

27 CH114 0.72 283.2 323.0 272.8 0.33 3.19 0.373 x

28 CH115 0.31 271.4 313.6 272.2 0.33 5.11 0.382

29 SIRSP4 0.33 271.5 245.9 273.0 0.14 3.07 0.173

30 RoSP1 0.47 269.4 179.2 273.5 0.08 1.05 0.107 x

31 BJjan1 0.51 266.8 284.9 271.5 0.16 3.07 0.191 x

32 BJfev2 0.66 265.8 245.1 273.1 0.18 2.01 0.229 x
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Table 5

Summary of the inputs used for the model simulations. The corresponding equations (Eq.) are explained in 

Section 2.

Model configuration Grain size measurements Input parameters Eq. Fig.

DMRT-ML SSA D’o = 6.103 3.3/(ρice⋅SSA) 2 6a

MEMLS_Do SSA p’c=4.103 1.3(1 - v)/(ρice⋅SSA) 6 6c

MEMLS_Dmax_pex Dmax

- pex = 0.18 + 0.09 ln(Dmax) for
v > 0.2 and Dmax > 0.125 mm
- pex = 0.05 ± 0.017 otherwise

7 6e

MEMLS_Dmax_lin Dmax pc = 0.1069 Dmax Fig. 5 6f

HUT_Do SSA Doeff = 6.103 3.7/(ρice •SSA) 9 6b

HUT_Dmax Dmax Dmax,eff = 0.5 Dmax - 6d
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Table 6

Bias (B) and RMSE (R) (K) between simulated and measured TBs for each frequency and polarization and for 

each model driven by specific inputs (described in Table 5). Bold: minimum bias and RMSE values of each 

line respectively (but not necessarily statistically significant).

Model DMRT-ML MEMLS HUT

Inputs Do
ϕ=3.3

Do
ϕ=1.3

Dmax_lin
(Fig. 5)

Dmax_pex
Eq.7

Do
ϕ=3.7

Dmax
ϕ=0.5

B R B R B R B R B R B R

11V 2.1 2.5 5.5 5.8 5.5 5.5 7.8 7.8 −2.1 2.4 −1.1 1.7

11H −7.3 7.5 −4.1 4.5 −3.9 4.9 −2.6 4.1 −10.0 10.3 −9.1 9.4

19V 16.0 19.4 0.1 11.4 6.2 14.5 15.0 18.2 13.8 18.7 13.6 17.8

19H 14.7 23.0 2.9 17.0 7.8 18.8 15.0 23.7 8.5 27.5 13.4 22.4

37V 11.0 25.3 −10.8 21.6 −10.8 26.7 −10.8 24.4 11.3 32.4 9.6 30.8

37H 7.5 20.1 −4.9 16.4 −3.3 19.9 9.0 21.4 8.5 27.5 6.7 23.4

All 7.3 16.3 −3.1 12.8 0.3 15.0 5.6 16.6 5.9 19.1 5.5 17.6
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Table 7

Comparison of linear regression parameters (coefficient of determination R2 and slope of the regression) for 

simulated and measured TB for the models shown in Fig. 6. All*: including 11 GHz at H-pol and V- pol.

Model DMRT-ML MEMLS HUT

Inputs Do
ϕ=3.3

Do
ϕ=1.3

Dmax_lin
(Fig. 5)

Dmax
pex Eq.7

Do
ϕ=3.7

Dmax
ϕ=0.5

R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope

19V 0.30 0.53 0.52 0.95 0.29 0.64 0.46 0.20 0.14 0.24 0.11 0.19

19H 0.13 0.33 0.23 0.47 0.17 0.39 0.03 0.12 0.05 0.18 0.05 0.17

37V 0.63 1.07 0.72 1.04 0.45 0.78 0.31 0.29 0.13 0.34 0.19 0.43

37H 0.73 1.19 0.78 1.10 0.58 0.88 0.48 0.36 0.22 0.45 0.34 0.58

All* 0.75 1.10 0.79 1.06 0.69 0.98 0.63 0.70 0.51 0.73 0.55 0.76
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