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Abstract

This paper reviews four commonly-used microwave radiative transfer models that take different
electromagnetic approaches to simulate snow brightness temperature (Tg): the Dense Media
Radiative Transfer — Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer —
Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki
University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of
Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack
properties, we compared the simulated Tg at 11, 19 and 37 GHz from these four models. The
analysis focuses on the impact of using different types of measured snow microstructure metrics in
the simulations. In addition to density, snow microstructure is defined for each snow layer by grain
optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical
maximum extent (Dmax) for HUT n-layers and the exponential correlation length for MEMLS.
These metrics were derived from either in-situ measurements of snow specific surface area (SSA)
or macrophotos of grain sizes (Dmax), assuming non-sticky spheres for the DMRT models.
Simulated Tg sensitivity analysis using the same inputs shows relatively consistent Tg behavior as
a function of Do and density variations for the vertical polarization (maximum deviation of 18 K
and 27 K, respectively), while some divergences appear in simulated variations for the polarization
ratio (PR). Comparisons with ground-based radiometric measurements show that the simulations
based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to
minimize the root mean square error (RMSE) between measured and simulated Tg. Results using
in-situ grain size measurements (SSA or Dmax, depending on the model) give a mean Tg RMSE
(19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow
microstructure metrics are scaled. However, the MEMLS model converges to better results when
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driven by the correlation length estimated from in-situ SSA measurements rather than Dy ax
measurements. On a practical level, this paper shows that the SSA parameter, a snow property that
is easy to retrieve in-situ, appears to be the most relevant parameter for characterizing snow
microstructure, despite the need for a scaling factor.

Keywords

Snow microwave-emission model; Snow microstructure; Radiative transfer model; Canada;
Ground-based measurements; Brightness temperature

1. Introduction

In snow remote sensing, a better parameterization of the radiative transfer models (RTM) for
simulating snow microwave emission improves our ability to retrieve snowpack
characteristics from space-borne observations. Snow microstructure metrics are the main
input parameter of the microwave RTM (e.g. Rutter et al., 2009) and its characterization can
strongly impact the retrievals from microwave emission measurements for snow monitoring
(e.g. Métzler, 1994; Armstrong and Brodzik, 2002; Kelly et al., 2003; Matzler et al., 2006;
Léwe and Picard, 2015). Thus, given that the available models that are well-defined in the
literature and commonly used for snow remote sensing are defined by different snow
microstructure parameterizations, a review appears essential. We consider here the following
four models: the Dense Media Radiative Transfer— Multi layers (DMRT-ML) model (Picard
et al., 2013), the Dense Radiative Transfer Model — Quasi-Crystalline Approximation (QCA)
Mie scattering of Sticky spheres (DMRT-QMS) model (Chang et al., 2014), the multi-layer
Helsinki University of Technology model (HUT-nlayers) (Lemmetyinen et al., 2010a), and
the Microwave Emission Model of Layered Snowpacks (MEMLS) (Proksch et al., 2016;
Wiesmann and Matzler, 1999; Matzler and Wiesmann, 1999). Several aspects of these
models are based on different electromagnetic theories or semi-empirical approaches
(multiple scattering and absorption coefficient computations, for example), and they are
often driven by sets of different measured inputs for snow grain metrics, such as snow
specific surface area (SSA), correlation length or snow grain geometrical extent obtained
from visual analysis.

Tedesco and Kim (2006) compared earlier simplified single-layer versions of the DMRT,
HUT and MEMLS models based on the snow grain metric given by visual inspection
(average size over the snowpack depth of representative small, medium, and large grains in
each layer measured using a microscope). MEMLS and HUT-nlayers were compared by
Lemmetyinen et al. (2010b) and Pan et al. (2016). DMRT theory and IBA were also recently
compared and analyzed (Léwe and Picard, 2015), while Roy et al. (2013) compared DMRT-
ML and HUT-nlayers. Sandells et al. (2016) compared DMRT-ML, HUT-nlayers and
MEMLS models considering only the optical diameter generated by snow models. But the
four multi-layer models considered were never compared together using coincident sets of
measured snow properties. The main challenge in comparing these RTM models is that the
input snow microstructure parameters differ in each model and are in some cases difficult or
impossible to measure in the field. Three different snow microstructure representations are
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considered in these models: optical diameter (D,) and stickiness for DMRT-ML and -QMS,
correlation length (p.) for MEMLS and maximum geometrical extent (Dpay) for HUT-
nlayers. Consequently, some hypotheses are needed for their estimation allowing coherent
intercomparison of models (L6we and Picard, 2015). For example, it was previously shown
that the optical diameter derived from the SSA needs to be scaled by a factor in order to be
in agreement with measurements when considering DMRT-ML with non-sticky medium
(Brucker et al. 2011; Roy et al., 2013; Montpetit et al., 2013; Picard et al. 2014; Dupont et
al., 2014). As the physical aspects of each model had already been extensively analyzed, we
put the emphasis in this paper on comparing the models with surface-based measured
brightness temperature (Tg). The objective is to compare the simulations using the same in-
situ measurements of improved snow parameterization, which had never been done.

This paper briefly recalls the main basic fundamentals of these four models and more
specifically the different grain size definitions involved (Section 2). After presenting datasets
and snow microstructure measurement methods (Section 3), we first compare the four
models using a synthetic snowpack to perform a sensitivity analysis (Section 4.1), and we
then compare the simulated Tg using sets of measured snow properties against
measurements of surface-based radiometric Tg at 11, 19 and 37 GHz (Section 4.3).

2. Models and their respective snow microstructure metric

A synthesis matrix of the four models considered in this study is presented in Table 1. These
models are all publicly available (thus specific details of their implementations can be
known) and are extensively described in the references given in Table 1. Readers are invited
to consult these references for detailed descriptions of the models, which are based on
conceptually different approaches for computing snow electromagnetic properties and
radiation transfer in the multi-layers of the snowpack. In this paper, all the simulations were
performed using the recommended configuration for DMRT-ML and -QMS, the Improved
Born Approximation (IBA) (option 12) for MEMLS and the original version of the
extinction coefficient in HUT (see Table 1).

One of the main difficulties in snow radiative transfer is the parameterization of snow
microstructure consisting of a high density of scatterers per unit of volume. DMRT-ML and
— QMS consider the snow as a collection of sticky spherical ice particles defined by their
radius and stickiness (Tsang and Kong, 2001; Tsang et al., 2007), while MEMLS
parameterizes snow microstructural properties by a second order statistical function, the
two-point correlation function, giving the mutual relationships between two scatterers within
a given volume, such as the autocorrelation function (the exponential correlation length pey
is generally used, see Section 2.2 below). HUT is based on empirical scattering and
extinction coefficients fitted with the observed maximum dimension of snow grains (Dmax),
or more recently an effective grain size radius (Kontu and Pulliainen, 2010). When using in-
situ ground-based measurements of snow microstructure parameterization, practical
comparison of these models requires hypotheses to retrieve and link the different metrics.
The metrics used in this study are briefly defined below.
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2.1 DMRT snow microstructure metric

DMRT-ML considers snow grains as spherical particles of ice defined by their radius. Their
position (clustering) is controlled by stickiness. For snow having a wide range of grain
shape, the radius of equivalent spheres can be objectively defined by their optical radius
(Ro), which can always be derived from the SSA via the optical equivalent radius. The snow
SSA is the surface of the air/snow interface (S) per unit of mass: M=pgnon*Volume:
SSA=S/M = S/(pice*Volume) in m? kg~1, where pjce is the ice density (917 kg m=3). SSA
measurements are described in Section 3. For spheres or snow assimilated as sphere
equivalent (see the review paper by Domine et al., 2008), the optical radius (Ro) is expressed
as (Ro in mm, pjce in kg m=3 and SSA in m? kg™1):

Ro = 3.10°/(pice ® SSA) .

Since any measurements can be used to estimate stickiness, Brucker et al. (2011), Roy et al.
(2013), Dupont et al. (2014) and Picard et al. (2014), considering a non-sticky medium, have
shown that Ro should be multiplied by the scaling factor ¢pprT When Ro is derived from
SSA measurements (R’0 in mm):

R'0 = ¢ppMRrTRO = 3.10°¢ppRT/ (Pice ® SSA) @.

This scaling factor is discussed in Section 4.2. Roy et al. (2013) also showed that the
following relationship (inspired by Kontu and Pulliainen, 2010) can be used for an effective
optical radius of snow grains derived from SSA measurements:

R”o[mm] = 1.1[1 - exp(—24.6.103/(pice . SSA)] @3).

The stickiness parameter (), used by DMRT theory (Tsang and Kong, 2001), is inversely
proportional to the contact adhesion between spheres. It can be linked to the cohesion or to a
degree of connectivity between grains. Thus, for non-sticky spheres: T = co; for snow with
clusters (aggregates) or grains with high strength of adhesion, t decreases (for example t =1
to 0.2 or less). DMRT-ML uses the “short range” approximation (Tsang and Kong, 2001)
which implies that grains and aggregates should remain small compared to the wavelength.
Roy et al., (2013) hypothesized that the needed scaling factor (¢pmrT) is related to the
assumption of non-sticky spheres (T = ©0) and to the assumption of monodisperse grain size
distribution. This scaling factor is therefore a surrogate of the stickiness parameter which
cannot practically be measured in the field (see Lowe and Picard, 2015).

2.2 MEMLS snow microstructure metric

MEMLS uses the correlation length (p;) for describing snow microstructure, which is the
slope of the spatial autocorrelation function at the origin (i.e. the derivative of this function).
This parameter might be derived from micro-computed tomography measurements (micro-
CT) (Ldwe et al., 2013) or by high-quality stereological method (see Riche et al., 2012), but
its rapid derivation from field measurements is still difficult. Recently, Proksch et al. (2015)
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proposed a relationship between Snow-Micropen measurements and correlation length that
has not yet been validated for microwave emission applications.

Here, we first estimate the correlation length from the equivalent sphere grain radius (Ro) as
proposed by Métzler (2002), following the Debye relationship:

pc =4/3Ro(1 —v) (4,

where v is the ice volume fraction: v = pgnow/Pice-

While there is no experimental relationship between simultaneous measurements of p¢ (from
micro-CT measurements) and SSA measurements, Montpetit et al. (2013) showed that the
following relationship gives optimized simulated Tg using MEMLS driven with SSA
measurements (p’¢ in mm and SSA in m2 kg™1):

pelmm] = 4.10*ppemrs(1 = v/ (pice ® SSA) ®),

where ¢pmemLs is a scaling factor and SSA is measured in-situ.

If the autocorrelation function is approximated (fitted) by an exponential function of the
form: exp(—x/pex), ONe can derive the exponential correlation length pey. According to the
type of snow, pey is different from p. (Krol and Léwe, 2016; Matzler, 2002). For microwave
measurements, pey is generally preferred to pc, and Métzler (2002) found in general that pey
~ 0.75pg, giving from (1) and (4):

PexImm] ~ Ro(1 — v) = 3.10°(1 = v)/(pice ® SSA) (©).

On the other hand, previous studies from Matzler (1997) have shown that p; is closer to the
minimum characteristic extent of the grain than related to the maximum geometrical particle
extent. Matzler (2002) gives a series of measurements of pc, pex and visually estimated grain
size Dpax (defined below) for 20 samples of different snow types showing the
correspondence between these parameters. Using these data, pex (Or pc) can be expressed as
a logarithmic function of Dyax:

Pex = a+ bIn(Dp,x)forv > vy, and Dy > Dipay n in mm -
7).

Pex = C*otherwise

where vy, and Dyax th are thresholds delimitating the range of validity of the proposed
model, and CSt is a constant for values below these thresholds.

Using the Matzler (2002) data, Durand et al. (2008) found that a = 0.18 and b = 0.09 for v >
0.2 and Dyax > 0.125 mm , and that pey = 0.05 + 0.017 otherwise.

Remote Sens Environ. Author manuscript; available in PMC 2020 August 17.



1duosnue Joyiny VSN 1duosnuey Joyiny YSYN

1duosnue Joyiny VSN

Royer et al. Page 6

2.3 HUT snow microstructure metric

HUT input is based on individual grain size. There are many ways to describe the
geometrical grain size of snow (Colbeck et al., 1990; Lesaffre et al., 1998; Fierz et al.,
2009). Among them, one can cite the circle (or ellipsoid) that better encompasses the snow
grain; the equivalent radius given by the ratio between projected grain area and its perimeter;
the mean convex radius of curvature; or the greatest extent of the prevailing or characteristic
grains: Dinax. The latter corresponds to the maximum dimension of the “intermediate grain
size” and has long been a classical parameter routinely used to visually characterize snow
structure in the field (see Colbeck et al., 1990; Fierz et al., 2009). The HUT model can be
driven either directly by Dpay, Or by an effective grain diameter (Dyay eff) derived from
Dnax following the relationship that minimized the differences between measured and
simulated Tg, as proposed by Kontu and Pulliainen (2010) (see also Lemmetyinen et al.,
2010a and 2015; Pan et al., 2016):

Dmax eff = 1.5(1 — exp(—1.5Dpax)) (8),

where Dmay eff and Dppay are in mm.

However, in this study, it appears that this relationship (Eq. 8) for estimating the Dy eff
does not give a good agreement, due to the lack of convergence in the optimization. This
results from the large digitized Dyax Mmeasurement values obtained in this study (see Section
4.2), and Eq. 8 leads to a unique Dpyax eff. IN the model comparison (Section 4.3), we thus
consider Dpmay eff = 0.5 Dmay, derived from an optimization that reduces the difference
between simulated and measured Tg (method of Roy et al., 2013).

When SSA is measured, Roy et al. (2013) use Equation (2), with a different scaling factor
(¢quT) relative to the effective grain size in HUT simulations:

Doggr{mm] = 6.10°gyur/(pice ® SSA) ©.

All the ¢ factors (¢pmrT, PMEMLS and ¢yyT) are further discussed in the results section.
Field measurement methods for SSA and Dyax eStimates are presented in Section 3.

2.4 Scaling factors for the models driven by SSA measurements

The scaling factor ¢ depends upon the model considered and the type of snow. The change
in this scaling factor is linked to other microstructure parameters such as stickiness and to
the fact that we assume a monodisperse size distribution of snow grain (see the discussions
in Brucker et al., 2011; Roy et al., 2013 and Léwe and Picard, 2015). It cannot be explained
by measurement uncertainties (Roy et al., 2016). Léwe and Picard (2015) theoretically
demonstrate the need of grain size scaling between the optical diameter and the equivalent
sticky hard sphere diameter. For DMRT-ML with the assumption of non-sticky spheres, the
¢ factor obtained varies from 2.3 to 3.5 depending on the type of snow (Table 2). The
amplitude of this factor may also partly be affected by errors in snow measurements and
possibly in the soil parameters. Precise explanation of these differences in the ¢ factor needs
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further study but is outside the scope of this paper. Here we used ¢ = 3.3, 1.3 and 3.7,
respectively for DMRT-ML, MEMLS and HUT-nlayers (Table 2) in order to compare the
known optimized models when driven by SSA measurements compared to simulations
driven by Dyax measurements.

2.5 Radiative Transfer Model inputs

Apart from the snow microstructure parameterization, all other input parameters required by
the four models are the same for each layer defined by its thickness, snow temperature and
density. Here, we only considered dry snow. An important contribution to snowpack
emission can emanate from the soil under the snowpack, in particular at low frequencies. For
the intercomparison in this study, we thus used the same rough soil reflectivity model
proposed by Wegmiiller and Matzler (1999) (see the review of Montpetit et al., 2015a). At a
given frequency, the soil parameterization is defined by the soil/snow interface reflectivity in
horizontal polarization (I'yy) and vertical polarization (I'y/) with the following equations for
an incidence angle (8) lower than 60°:

rH — r][;resnel exp(_(ko_)\/—o.lcosé') )
I'g=T HcosHﬂ Y

where kis the incident medium wave number (air or snow), I'57¢*"¢’ is the Fresnel

reflectivity function which depends on the soil permittivity (esoif), o is the soil roughness
parameter and B is a scaling factor for deriving the reflectivity at vertical polarization from
the computed reflectivity at horizontal polarization. Following Montpetit et al. (2015b), we
consider the optimized values of e, o¢f and BEf parameters for each frequency given in
Table 3.

For comparisons between simulated Tg and measurements, the downwelling sky radiance
reflected by the snowpack toward the radiometer has to be taken into account (Montpetit et
al., 2013; Courtemanche et al., 2015; Roy et al., 2016). In each surface-based radiometric
measurement, the atmospheric contribution was calculated using the atmospheric
Millimeter-wave Propagation Model (MPM: Liebe, 1989) implemented in the HUT snow
emission model (Pulliainen et al., 1999). The atmospheric model was driven with the air
temperature and precipitable water of the atmospheric layers above the surface given by the
29 atmospheric layers of the North American Regional Reanalysis (NARR) (Mesinger et al.,
2006) for the NARR pixel and time of measurements. Note that all the snowpits were
located in open areas where no vegetation could contribute to the measured Tg (see the
discussion in Roy et al., 2016). We previously validated this procedure against sky
microwave measurements (see Courtemanche et al., 2015).

3. Ground-based measurement dataset

3.1 Optical radius retrieved from SSA measurements using IRIS

A light short-wave infrared laser-based system measuring snow albedo through an
integrating sphere (InfraRed Integrating Sphere, IRIS), similar to the system previously
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proposed by Gallet et al. (2009), was used for SSA measurements (Montpetit et al., 2012).
Relatively good accuracy (12-15%) and reproducibility in SSA measurements are obtained
using the IRIS system on extracted samples. Gallet et al. (2009) and Montpetit et al. (2012)
describe in detail these devices (Dual Frequency Integrating Sphere for Snow SSA:
DUFISSS and IRIS, respectively). Lambertian targets with known reflectance values
(Spectralon: 0.06, 0.25 0.60, 0.79, and 0.98 at 1.33 pm) were used to calibrate the device
before and after each series of measurements at each site. From the reflectance, the SSA was
calculated as described by Montpetit et al. (2012). SSA measurements allow us to estimate
the mean optical radius of grain sizes of each layer (Eq.1), assuming that all grains have the
same size (monodisperse size distribution).

3.2 Dpax measurements using multidirectional lighting macrophotos in the Shadow-box

Macrophotos of snow grain samples have been widely used in numerous studies (e.g.
Colbeck, 1990; Fierz et al., 2009). In order to improve geometrical snow grain
parameterization, we developed an optical system that uses, within an enclosed box
(30x30%30 cm), five light-emitting diodes that provide five-direction (nadir, N, E, S and W)
illumination of a gridded plate upon which snow grains are placed (Fig. 1). Five photographs
are taken successively for each illuminated direction with a Nikon D40 fitted with a macro
lens (Fig. 1). The projected area of the grain is extracted from a first photograph with the
diode illuminating from nadir and the four other photographs allow the digitization of the
projected shadows. Knowing the angles of illumination and the exact position of each grain
on the gridded illuminated plate, it is possible to calculate the height of the grain envelope
using the tangent illumination path corresponding to the projected shadow in each direction.
We thus derived a numerical height model of each snow grain and reconstructed a 3D
representation of the snow grain envelope (Fig. 1). From this elevation model, one can derive
multiple size parameters: Dyax, Minor and major axis of the envelope ellipsoid, projected
area, mean height, maximum height and apparent volume and surface area. All of these
parameters are then averaged for each sample. This device (called Shadow-box) is very easy
to handle in the field, and improves the retrieval of a 3D representation of the snow grains. It
is also useful to characterize snow grain shapes and types of extracted snow samples. Using
calibrated spheres (steel balls from 0.8 to 4.8 mm), the retrieval error (bias) on Dpyax Was
estimated of the order of 0.03 mm. The measurement protocol is as follows: we gently cover
the plate with separated grains of a snow sample extracted from each snowpack layer
(approximately every 3 cm over the snowpit), and take the five consecutive macrophotos,
including identifications of the snowpit and layer. We then systematically manually digitize
the contour of all the grains on the plate to estimate the mean Dy« (2D) values for each
snowpack layer. The shadows help to discriminate individual grains in aggregates or when
grains are stuck together.

3.3 Correlation length

Since no direct measurement of correlation length was carried out, the values of correlation
length (p. or pey) used as inputs for MEMLS were estimated in three ways: (1) from the
retrieved optical grain size radius (SSA measurements) and the fractional volume (Debye
relationship, Eq. 5) (hereafter labeled MEMLS_Do); (2) from the measured values of mean
Dmax grain size (2D Shadow-box) and fractional volume based on the Matzler relationship
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(Durand et al., 2008) (hereafter labeled MEMLS_Dmax_pex); and (3) from pey based on the
observed linear relationship between p. and Dyax Shown in the results section (see Fig. 5)
(hereafter labeled MEMLS_Dpax_lin).

3.4 Tg measurements

Tg measurements were taken for every snowpit at 10.67 (hereafter noted 11), 19 and 37 GHz
in vertical polarization (V-pol) and horizontal polarization (H-pol) at a height of
approximately 2 m above the surface using PR-series field radiometers (Radiometrics
Corporation, Boulder, CO, USA) at an incidence angle of 54°-55°, which is close to the
measurement incidence angle of the Advanced Microwave Scanning Radiometer — Earth
Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) space-based
sensors. The ellipsoidal footprint of measurements at the snow surface was approximately
0.5 m x 0.65 m. The radiometer calibration was based on two measurements taken with the
absorbing foam Eccosorb© (Cuming Microwave Corporation, MA, USA) at the ambient
temperature (i.e. warm reference) and another taken over a surface of liquid nitrogen (i.e.
cold reference) (Asmus and Grant, 1999; Langlois, 2015). In the worst case, measurement
error for the calibration target was estimated at £2 K. Ambient and cold point measurements
from before and after the field campaign periods (typically separated by five to ten days)
were used to produce a final calibrated Tg data set.

3.5 In-situ snow data

The snow data needed by the models were derived from in-situ measurements in three
northern Canadian regions. Table 4 provides the data from the Arctic: Churchill (MB), the
Subarctic region: James Bay (QC), and southern regions of Québec: Sherbrooke (QC) and
St-Romain (QC). All sites were already well-described in the references given in the Table
4. This database of 32 snowpits encompasses a wide range of snow types (i.e. metamorphic
processes and stratigraphy), typical of North American environments. For each site, profiles
of snow temperature, snow density, and snow microstructure were taken at a vertical
resolution of 3 or 5 cm in the footprint of the microwave radiometers. The density was
measured with a 185 cm3 density cutter, and the samples were weighed with a 100 g Pesola
light series scale with an accuracy value of 1 g. The temperature was measured with a
Traceable 2000 digital temperature probe (+0.1°C). The microstructure of each layer was
defined with both SSA (optical radius) and Dy, Mmeasurements, the latter using
macrophotos (Shadow-box). In Table 4, we give the vertically averaged values of density,
optical radius and Dyay, Weighted by the snow layer thicknesses and the derived bulk p’,
(from Eq. 5) were also estimated (9" column). The stratigraphy was examined at each site,
and all ice lenses (or crusts), when present, were identified and measured. Their density was
not measured as this is very difficult to properly sample. All the microwave and snow
measurements were always synchronised in time. All these 32 sites (Table 4) were used for
model comparison.

4. Results

A sensitivity analysis is first performed to compare the four models considered with the
same inputs considering a synthetic snowpack (Section 4.1). We then discuss the consistency
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between the grain size measurements (Section 4.2), and we compare the simulations with
ground-based measurements (Section 4.3).

4.1 Sensitivity analysis of the three models

Based on an identical synthetic snowpack, we seek to illustrate model sensitivity to three
parameters: - grain size (Fig. 2); - density (Fig. 3); - and ice lens in the snowpack (Fig. 4).
Fig. 2 shows the comparison between the 37 GHz brightness temperature variations as a
function of Do, using the four models in a very simple synthetic case defined by one layer of
1 m thickness with a mean uniform density of 250 kg m~3. The incidence angle of Tg
simulations is 55°. All input parameters were the same for the four models and the different
microstructure metrics were derived from the same initial grain parameter (Do) using
equations (2), (5) and (9). To define the optical diameter of each model, we used the scaled
factors defined in previous analysis (see discussion in Section 4.2). These factors optimize
the simulations compared to in-situ radiometric measurements for real snowpacks. The
relationships defining the microstructure metrics were derived from Equations (2), (5) and
(9), respectively for DMRT-ML (assuming non-sticky spheres) (Roy at al., 2013), MEMLS-
IBA (Montpetit et al., 2013) and HUT (Roy et al., 2013). For DMRT-QMS, we used the
same relationship as for DMRT-ML, and also assuming non-sticky spheres. The comparison
in Fig. 2 is thus performed using the following equations:

DMRT-ML/ — QMS:D’o = 3.3Do
MEMLS: p’. =1.3(2/3) Do (1 —v) 11)
HUT: Dogss = 3.7Do

The results show that the Tg simulated by the four models similarly decrease with the grain
size, as expected due to the high sensitivity of microwave attenuation to grain size at 37
GHz. Using the scaling factors for the input grain size metrics given in Eq. 11, the simulated
Tg V-pol are close for Do around 0.5 mm and for Do<0.2 (Fig. 2, top). However, MEMLS
Tg values appear underestimated by 18 K compared to DMRT-ML/-QMS around Do = 0.3
mm. Note that DMRT-ML is identical to DMRT-QMS over the whole analyzed range of Do,
as we stay in the Rayleigh range (see Picard et al., 2013), and despite the different
formulation of the scattering coefficient. When the grain size becomes larger (Do > 0.6 mm,
SSA < 11 m? kg™1), the HUT-nlayers Tg significantly decreases, because this model
empirically considers multiple scattering and is based on the 1-flux RT simplification,
leading to underestimate downward-propagated Tg and then upward reflected and
backscattered signal. Multiple scattering increasing with grain size tends to increase the
upward radiation, compensating for the Tg attenuation.

The main polarization effects arise from reflections at layer interfaces, and are at their
maximum near the Brewster angle (around 55° at 37 GHz), leading to a significant decrease
of the Tg (H-pol) with incidence angle, while Tg V-pol is weakly independent of the
incidence angle. Fig. 2 (bottom) shows the Polarization Ratio (PR = Tg H-pol/Tg V-pol)
variations for the four models as a function of the optical grain size simulated for a fixed
incidence angle of 55°. DMRT-ML and DMRT-QMS are also identical in this case. The
HUT model practically neglects the scattering polarization variations with growing grain
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size, while DMRT-ML/-QMS and MEMLS models show different trends in PR variations
with grain size. The MEMLS volume scattering in snow is slightly sensitive to polarization
(Wiesmann et al., 1998) with a weak PR increase of 2% when the grain size increases
between Do = 0.1 to 0.6 mm, while DMRT-ML/-QMS decreases by 4%, leading to a
difference of about 7% compared to MEMLS for grain sizes above 0.6 mm (Fig. 2, bottom).

For a given fixed density, the polarization is modulated by 2 mechanisms: snow scattering
and interface reflection. As snow-air interface reflections are similarly treated in each model
(assuming Fresnel’s reflection) and because the density remains constant in these
simulations, the differences between the three types of models (DMRT-ML/-QMS; HUT-
nlayers and MEMLYS) result from the differences in the radiative transfer solution. As a
matter of fact, polarization effects are generated by volume scattering driven by the granular
structure of the medium, i.e. by a combined effect of snow grain size and density (see
Matzler, 1997) and also of stickiness for DMRT-ML/-QMS (see Picard et al., 2013). The
observed differences in PR variations in Fig. 2 (bottom) could thus likely governed by
differences between the radiative transfer processing of the diffuse scattering component of
the signal. The results for lower incidence angles (i.e. not Brewster) are similar.

We performed simulations (not shown) using a new model (in progress, unpublished) using
the same N-flux solver used in DMRT-ML but which can compute scattering coefficients
with either the DMRT theory (as in DMRT-ML and DMRT-QMS) or IBA (as in MEMLYS).
In both cases, assuming the same scattering theory, the results show a decrease of the PR
with increasing Do, while the MEMLS-IBA (6-flux) shows an increase of the PR. This
suggests that the radiative transfer processing, specifically 6-flux versus N-flux, could be the
cause of the different behaviors observed in Figure 2 (bottom), but further exploration of the
role of the solver is needed,

The patterns of Tg variation with snow density show similar behaviors between models but
at different amplitudes (Fig. 3). Here, Do is considered constant and equal to 0.25 mm. Over
the range of density variation shown, below 400 kg m=2 (i.e. below 44% fractional volume),
at vertical polarization, DMRT-ML/-QMS shows a greater sensitivity, ATg V-pol of 40 K for
density from 150 to 300 kg.m™3, than MEMLS and HUT which vary slightly. For low snow
density between 150 and 200 kg m~3 the four models are similar, but at a high snow density
of 400 kg m~3, the Tg(V-pol) difference between DMRT-ML/-QMS and MEMLS is 28.5 K.
(and 21.3 K at H polarization) (Fig. 3, top). For coarser grain size (not shown), the
differences in Tg V-pol versus density variations between models are amplified, due to the
difference in scattering processing in each model.

PR variations in relation to density show parallel trends (Fig. 3, bottom), but the decrease in
PR when density increases shows significant differences in slope values for each model
(more than 2% difference at low density for MEMLS and HUT compared to both DMRT
models). For high densities (near 400 kg/m3), this decrease is greater with DMRT-ML than
DMRT-QMS.

Tg H-pol varies as a function of density change between interface layers, mainly from
reflection at the snow-air interface, and of snow scattering (grain size). Since Fresnel
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reflection is considered here, surface reflection depends on the snow dielectric constant and
thus the density. Assuming a constant grain size (as in Fig. 3), as density increases, the
reflection coefficient increases and Tg H-pol decreases, leading to the decrease in PR (as Tg
V-pol is relatively constant at the Brewster angle). In other words, where snowpack
evolution features slow metamorphism as is observed in Antarctica, PR clearly decreases
with density. This was shown by Picard et al. (2014) from surface-based measurements at
Dome Concordia (East Antarctica). Champollion et al. (2013) also showed that the observed
2000-2010 AMSR-E PR increase was in agreement with the observed decreasing surface
snow density, also at Dome Concordia.

However, when the snowpack evolves during the winter through various metamorphic
processes (increasing grain size), increasing layering (alternation of high- and low-density
layers) and increasing density processes, PR direction changes over time appear less clear.
Moreover, the surface roughness would produce a more diffuse scattering distribution,
leading to weaker polarization, while ice layers or wind-slab snow crusts lead to a significant
degree of polarization (e.g. Matzler, 1982, 1994; Grenfell and Putkonen, 2008; Dolant et al.,
2016). In general, since surface density and state are the most important characteristics
influencing polarization, one expects a decrease in PR with time from snowfall. The DMRT
simulations showed a PR decrease for both increasing grain size and density processes in the
synthetic cases considered here (Fig. 2 and 3), while MEMLS and HUT show a PR decrease
only as a function of increasing density.

The third sensitivity analysis (Fig. 4) shows the effect of a thin ice layer put at the top of the
snowpack for the four models. At V-pol, there are almost no Tg variations due to ice lens
while TB H-pol is reduced by up to 65 K when an ice lens is introduced. The stronger
decrease in H-pol (ice lens vs. no ice) compared to the one at VV-pol comes from the higher
sensitivity to layer interface reflectivity at H-pol. Note that, in Fig. 4, the differences in TB
V-pol amplitudes between models result from the configuration (Do and density) used for
the simulations (see Fig. 2 and 3). Moreover, ice layer thickness variations have no impact
on Tg variation, except when using the MEMLS model for thin ice layers. Around Djge =
0.125 mm, MEMLS is as much as 43 K lower at H-pol than the DMRT and HUT models.
This significant Tg decrease simulated by MEMLS for H polarization that appears for ice
thickness under A/2 is due to the coherent reflection that dominates the microwave behavior
for layers of the size A/4 (Weismann and Métzler, 1999). The DMRT-ML and HUT-nlayers
models do not take into account this attenuation effect of the quarter-wavelength resonance.
In practice, as the ice layer thickness spatially varies in the footprint of the sensor (Rutter et
al., 2014), such effects are generally less pronounced than in simulations, but can be clearly
observed for thin ice lenses on or in the snowpack (see Montpetit et al., 2013; Roy et al.,
2016).

4.2 Snow grain database comparison analysis

We analyzed 159 photographed plates from the 32 studied snowpits, corresponding to a total
of 36,384 digitized grains with an average of 229 grains per plate. For each plate, we
considered the mean maximum dimension of all the grains on the plate (Dpyay). For each
corresponding layer, we also measured the snow SSA and density. It is well known that the
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relationship between Do and Dy, iS not one-to-one (see Langlois et al., 2010; Leppénen et
al., 2015). However, in order to evaluate the consistency of the datasets, Fig. 5 shows the
relationship between the calculated correlation length derived from SSA and density
measurements (Eq. 5, ¢ = 1) and the corresponding mean Dy« for all the samples. The
results show that this relationship appears somewhat scattered as expected, and more linear
rather than the logarithmic relationship suggested by Matzler (2002). But note that, for the
latter case (for 20 samples), Dmax Values were visually determined, whereas, in our case,
Dmax Were derived from digitized contours. The digitization, the very large number of data
and also the computation of the mean values (over hundreds of grains) could explain that our
Dmax Values are different than those visually determined. The digitization of grain size is
considered as a more reproducible and more precise approach. We also considered (not
shown) median values instead of arithmetic means that did not give significant differences.
On the other hand, the correlation lengths in the Matzler (2002) database were measured
(micro-CT) whereas we derived this parameter from SSA and density measurements. The
reason for the differences between these micro-structure metrics (Dmax, SSA, correlation
length), discussed for example by Léwe and Picard (2015), and which may also result from
differences in snow types (alpine, boreal, arctic), is beyond the scope of this paper. This
unique database (coincident values of Do, pc and D) Was used to provide specific inputs
to drive each model considered in order to simulate the brightness temperatures.

4.3 Model comparison using measured inputs

As DMRT-QMS is very similar to DMRT-ML, only three models are considered in the
following: DMRT-ML, HUT-nlayers and MEMLS. For all the sites described in the Table 4,
Fig. 6 compares the 3 model simulations against surface-based measured brightness
temperatures with exactly the same soil parameters (Table 3), and for the snow
microstructure metrics derived either from SSA or Dax measurements. DMRT-ML (Fig.
6a), HUT Do (Fig. 6b) and MEMLS_Do (Fig. 6¢) were driven by the scaled optical
diameter of snow grain derived from SSA measurements. The HUT D,y Simulations (Fig.
6d) were driven by Dpax measurements using an optimized scaling factor (see Section 2).
Using Dmax measurements, two inputs were also considered for MEMLS simulations: 1)
MEMLS_Dpax_Pex (Fig. 6€) based on the Matzler relationship (Durand et al., 2008, Eq. 7,
see Fig. 5); and 2) MEMLS_Dmax_lin (Fig. 6f) based on the correlation length estimated by
the observed linear relationship shown in Fig. 5. These model inputs are summarized in
Table 5.

The root mean square errors (RMSE) and the biases are compared in Table 6 and shown in
Fig. 7 for the three frequencies (11, 19 and 37 GHz) and each polarization. Note that the full
set of input snow properties and 11 GHz radiometer measurements are only available for two
sites, hence, the analysis focuses on 19 and 37 GHz.

For the 32 analyzed snowpits, the overall results at 19 and 37 GHz for the 6 model
configurations show mean bias values of the order of 6 K, ranging from -10.8 to 16 K
depending on the model, configuration and frequency considered. The mean RMSE value is
of the order of 20 K (19 GHz) and 24 K (37 GHz), ranging from 11.4 to 32.4 K. Large
differences in bias appear between models (MEMLS with negative biases), and no

Remote Sens Environ. Author manuscript; available in PMC 2020 August 17.



1duosnue Joyiny VSN 1duosnuey Joyiny YSYN

1duosnue Joyiny VSN

Royer et al.

Page 14

significant differences in bias or RMSE can be seen between polarizations. Note that except
for HUT_Dmax (0.5 « Dmax), the models were not specifically optimized for the new cases
considered in this study, since the used scaling factors were derived from previous
publications over different sites.

MEMLS_Do seems to give slightly better results (mean RMSE of 14 K and 19 K,
respectively at 19 and 37 GHz, for both polarizations) relative to other configurations and
models (Fig. 6, 7 and Table 6). DMRT-ML results show a mean RMSE of 21 K (19 GHz)
and 23 K (37 GHz) in this study, although we obtained better results for 45 other Arctic and
Subarctic snowpits with the same parameterization (mean RMSE of 10 K (19 GHz) and 12
K (at 37 GHz), see Roy et al., 2016). The HUT model shows a lesser agreement at 37 GHz
(mean RMSE of 30 K and 27 K respectively for the Do and Dpy,ax configuration).

MEMLS tends to underestimate the Tg at 37 GHz V-pol (negative bias), while the other
models tend to overestimate the simulated Tg (positive bias). This is in accordance with the
comparison using synthetic snowpacks (see Fig. 2, top), showing lower MEMLS Tg
compared to DMRT and HUT for a large range of grain sizes.

Among the three analyzed MEMLS versions, it appears that MEMLS_Do performs best,
compared to the D,y -based simulations (an average RMSE at 19 and 37 GHz of 16.6 K, 20
K and 22 K for respectively the MEMLS_Do, Dypax_lin and _Dax_Pex configurations). As
expected, the HUT model provides a slightly lower RMSE when using Dpax (23.6 K)
compared to HUT_Do (26.5 K). Moreover, at 37 GHz, DMRT using SSA appears better
than the HUT model based on Dpax. This confirms that the scaled SSA parameter is, in
general, clearly better than the Dy« parameter for describing snow grain size for microwave
radiometry no matter the MEMLS or DMRT-ML model.

We showed (Fig. 4) that, for the synthetic snowpack, ice lens thickness within the snowpack
could lead to significant differences in Tg among the models. Here, we accounted for the ice
layer effects when they were observed in the snowpack, and the comparison shown in Fig. 6
does not exhibit systematic differences between snowpits with ice layers (10 sites/32, see
Table 4) and those without ice layers. This first shows that ice layers can be adequately
corrected for when their presence and particularly their position within the snowpit is known
(see Montpetit et al., 2013; Roy et al, 2016), and secondly that ice layers cannot explain the
differences in RMSE between models.

In terms of linear regression between simulated and measured Tg (coefficient of
determination R2 and slope of the regression), the model comparison (Table 7) also
highlights the differences between models and configurations. Best results are obtained with
DMRT-ML and MEMLS_Do, with a mean R? of the order of 0.75 — 0.79 for the 4 channels
(Tg at 19 and 37 GHz and both polarizations). Results for these models are better at 37 GHz
and with a slope slightly greater than 1, meaning that the models underestimate low Tg
values at this frequency (Tg < ~170 K). Even if MEMLS_Dmax_lin is really better than
MEMLS_Dmax_pey for both RZ and slope parameters, MEMLS_Dmax_lin performs less
well than MEMLS based on Do. The HUT model gives here the worst agreement against
measurements. Note that, in all cases (Table 7), the Tg H-pol values at 19 GHz show the
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lowest correlations, likely due to non-optimized processing of stratification between the
snow layer interfaces, assumed specular, and for the soil-snow interface (roughness, for
example). The statistics at 11 GHz are not included because there are only 2 measurements,
but are included in the overall linear regression.

At least, we compared the simulated Polar Ratio (PR H/V) at 37 GHz to the measured PR.
The results show similar performance between the models (mean RMSE of 0.055). Also, we
cannot conclude about the effect of the grain size on the PR trend (as simulated in Fig. 2).
This relates to the fact that the sites integrate a large range of density and Do values, while
Fig. 2 assumes a constant density when Do varies.

5. Discussion and conclusion

Over a large set of Arctic, Subarctic and boreal snow datasets, we derived a unique
comprehensive snow grain size metrics database. These metrics were defined, on the one
hand, by their specific surface area (SSA, from IR reflectometry measurements), and, on the
other hand, for the same snow samples, by their mean maximum geometrical extent, called
Dpax, Obtained from digitized macrophotos of snow samples at each layer. Here, we did not
estimate Dy, Size by visual inspection as is generally done, because of the subjectivity of
that approach. The digitization of each snow grain distributed on a photographed plate is
thought to be a more robust and objective approach. This dataset allowed us to compare
ground-based measurements of brightness temperatures (Tg) to the simulated Tg using four
models driven by their specific metrics: DMRT-ML and -QMS with the optical diameter
(Do) derived from SSA measurements; the HUT model with Dyax; and the MEMLS model
driven by the correlation length which can be estimated using both parameters (Do and
Dmax)- We also tested the HUT model with Do, and we compared MEMLS simulations
based on 2 different relationships for correlation length estimation. A total of six model
configurations (Table 5) were thus analyzed (Fig. 6, 7 and Table 6).

Whatever the model considered, the scatterplots between simulated and measured Tg show
somewhat large scatters (Fig. 6) due to the inherent uncertainties on all the parameters that
affect the emitted signal, i.e. soil (temperature, dielectric permittivity and roughness), snow
density stratification, snow temperature profile and snow grain size stratification (Roy et al.,
2016; Durand et al., 2008). The obtained root mean square error between simulated and
measured Tg are in the same range of values shown in previous studies that considered the
same models (Roy et al., 2016; Pan et al., 2016; Léwe and Picard, 2015; Roy et al. 2013;
Lemmetyinen et al., 2010b). The results analyzed here are thus representative of errors
commonly obtained for Arctic and Subarctic snows with these models. But this is the first
time that these models were compared with their specific snow microstructure input data for
which they were defined. These results confirm first that each metric, Do as well as pc and
Dmax, must be scaled in order to minimize the RMSE between simulated and measured Tg.
This aspect was discussed and partly explained in previous papers (L6we and Picard, 2015;
Roy et al. 2013; Kontu and Pulliainen, 2010). Secondly, the results show that the snow
microstructure metric based on Do appears to give better results than the metric defined by
Dmax (Table 6). This may be due to the fact that microwave scattering is more directly
related to Do than to Dpyax. Also, even if the shadow box used to measure Dpax, iS more
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accurate than visual estimates, the Do value, derived from snow SSA measurements, could
give a better estimate of the effective mean size over the grain size distribution per layer than
the mean value of Dy« measurements.

It is difficult to conclude on the performance of DMRT-ML, HUT and MEMLS due to the
large observed scatter on simulations, although the MEMLS model appears here slightly
better for the snowpits analyzed in this study. We found a mean RMSE at high frequencies
(19 and 37 GHz) of 16.6 K, 22.0 K and 23 K respectively for MEMLS_Do, DMRT-ML and
HUT_Dmax. However, as mentioned above, a specific optimization could have been made on
the input parameters for each model (on the ¢ scaling factors) that would have a different
effect on the models and change the results comparison. This scaling factor may also depend
on the types of snow, i.e. on metamorphism processes and shape (see Léwe and Picard,
2015; Krol and Loéwe, 2016). However, the comparison shown here between the four models
using a synthetic snowpack (Fig. 2, 3 and 4) clearly shows the intrinsic difference in
radiative transfer behavior as a function of grain size, density and ice lens variations within
the snowpack, in particular for the polarization ratio (Tg H-pol / Tg V-pol).

In conclusion, to date, from a practical point of view using in-situ measurements of snow
properties, this paper shows that the SSA parameter appears to be the most relevant
parameter for characterizing snow microstructure, even if it must be scaled to be used for
microwave simulations. Snow tomography could give more precise microstructure
characterization but requires significant processing time. When suitably scaled for each
model (MEMLS and DMRT-ML), the SSA parameter produces the same order of error
magnitude in simulated brightness temperature. From a physical perspective, Léwe and
Picard (2015) showed that MEMLS and DMRT-ML are in fact very similar.
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Shadow-box. Snow grains placed on the plate are successively illuminated from four
directions by four LEDs and by one LED from the nadir, producing five macrophotos
(right), from which a 3D envelope model of the grain can be retrieved after manual
digitization of the shadows. The size of the grain shown is 7 mm.
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Fig. 2.
Tpg variation at 37 GHz as a function of the optical diameter (Do) of grain size for the four

models. Top: Tg at the Vertical polarization; Bottom: Polarization ratio (H-pol/V-pol).
Simulations performed using Eq. 11 for the snow grain size definitions and the Wegmdiller
and Matzler (1999) soil model (Table 1); Soil temperature = 273 K; soil roughness = 0.19
cm, dielectric permittivity = 4.53 and the polarization reflectivity factor beta = 1.1
(Montpetit et al., 2015a); snow density = 250 kg.m~3; snow depth = 1 m; Snow temperature
= 263 K; no stickiness and no ice lens. The incidence angle of Tg simulations is 55°.
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Same as Fig. 2, but for density (Do = 0.25 mm).
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Fig. 4.

Tg variation at 37 GHz as a function of an ice layer thickness (Djce) put on the top of the
snowpack for the four models (full lines: VV-pol; dotted lines: H-pol). Snowpack and soil

properties are the same as in Fig. 2 and 3 (Do = 0.25 mm and density = 250 kg.m=3). Ice
lens density = 917 kg m~3 and ice lens temperature is the same as snow temperature.
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Fig. 5.

Reglationship between the correlation length derived from SSA and density measurements
(pc, calculated with Eq. 5, ¢ = 1) and the mean maximum geometrical extent of the grains
(Dmax) measured by digitized photographs of snow grains (each point of this graph
corresponds in average to 229 digitized grains per sample). The dotted curve corresponds to
the logarithmic relationship observed by Matzler (2002).
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Scatterplot comparing simulated brightness temperatures against measurements for each
frequency and polarization for all the sites (described in Table 4). Circled symbols represent
sites that included ice lenses. a: DMRT, b: HUT_Do (right); c: MEMLS_Do; d:
HUT_Dmax; e: MEMLS_Dmax_pey; f: MEMLS_Dmax_lin. Input parameters are listed in
Table 5. Values given in the figures correspond to the RMSE in Kelvin (reported in Table 6).
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Fig. 7.
Comparison between the RMSE and biases for the 6 model configurations. The

corresponding values are given in Table 6.
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Scaling factor ¢ to be applied on the snow microstructure metric derived from in-situ SSA measurements, as a
function of the RTM considered and the type of snow. All SSA measurements were derived from the
DUFISSS’s type approach (see Section 3.1), except *: the values depend upon the method used for retrieving
SSA,; and **: SSA retrieved from ASSAP device (see details in the given references, last column).

Radiative Transfer

South Quebec

Models Snow pstructure Metrics Sites ¢ References
Canada:
/ 3 Aurctic, .
MEMLS pe = 4.10°¢(1 — v)/(pice - SSA) Eq. 5 Subarctic 1.3 | Montpetitetal., 2013
South Quebec
1.89,
Dome C Antarctica 2.5, Brucker et al., 2011
2.85*
Dome C Antarctica 2.3%* Picard et al., 2014
P [ 3 :
DMRT-ML (no stickiness) R'0 = 3.10°/(pice - SSA) Eq. 2 Barnes Ice Cap Canada Arctic | 3.5 Dupont et al., 2014
Cana_da:
Slﬁ)rgrtégic, 33 Roy etal., 2013
South Quebec
Canada:
_ 3 . Acrctic,
HUT-nlayers Rogfr = 3.10°¢/(pice - SSA) Eq. 9 Subarctic 37 Roy et al., 2013
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Table 3.

Soil parameters considered for the three models (see Eqg. 10).

Frequency (GHz) 5ol gt | o°ff (cm)
11 3.18-0.006134j | 1.08
19 3.42-0.00508j 0.72 0.19
37 4.47-0.32643) 0.42

Remote Sens Environ. Author manuscript; available in PMC 2020 August 17.

Page 31



Royer et al. Page 32

Table 4.

Summary of the snow parameters of all sites analyzed in this study. Site name: CHxx corresponds to
Churchill, MB sites (Roy et al., 2013; Montpetit et al., 2013); SIRSP4 and RoSP1 correspond to the southern
Québec sites, respectively to the SIRENE site at Sherbrooke, QC and to the St-Romain, QC site (Roy et al.,
2013); BJxx sites corresponds to the James Bay, Nunavik, QC sites (Subarctic sites) (Roy et al., 2016). The

1duasnueln JoyIny YSYN yduosnuely JoyINy YSYN

1duosnue Joyiny VSN

snowpits where an ice lens was observed are identified (last column).

Site Name Snov(vn?)epth Tsnow (K) (Dlg;i?)/ Tsoil (K) ra(?iﬁgigr?:m) Dmax (mm) F‘:El!‘( g)c IIe%es
1 CH42 0.37 259.4 289.4 267.9 0.22 4.43 0.267
2 CH43 0.70 257.3 311.4 270.3 0.20 2.68 0.231
3 CH83 1.18 269.4 372.6 272.7 0.19 2.83 0.199
4 CH90 0.82 265.3 284.0 271.8 0.18 3.43 0.213
5 CH91 0.91 267.1 324.7 272.5 0.19 4.16 0.210
6 CH92 0.83 268.3 292.8 272.9 0.22 3.10 0.262
7 CH95 1.74 266.0 380.3 272.8 0.15 1.89 0.150
8 CH96 1.80 266.8 367.8 272.9 0.17 2.20 0.172
9 CH97 1.50 266.4 380.9 272.7 0.18 2.07 0.178
10 CH98 1.19 265.8 351.4 272.5 0.16 2.04 0.166
11 CH104 0.48 255.2 261.4 269.6 0.32 4.90 0.393
12 CH105 0.45 258.7 229.7 270.3 0.32 6.11 0.419
13 CH111 0.44 252.5 284.6 269.8 0.25 4.54 0.303
14 CH55 0.51 258.5 308.4 269.7 0.19 3.54 0.214
15 CH56 0.35 254.9 314.6 267.2 0.20 3.15 0.231
16 CH99 0.57 259.3 328.0 270.1 0.23 4.02 0.255
17 CH101 0.19 259.1 263.2 264.6 0.33 4.88 0.403
18 CH54 0.48 257.1 345.0 269.5 0.20 451 0.215 X
19 CH57 0.25 260.2 321.9 266.1 0.20 3.50 0.224
20 CH58 0.35 256.5 304.6 267.9 0.16 4.84 0.189 X
21 CH59 0.65 260.2 276.6 271.7 0.23 371 0.274 X
22 CH60 0.14 270.4 288.3 262.2 0.27 3.83 0.325 X
23 CH61 1.03 260.5 400.8 272.5 0.19 2.68 0.187
24 CH82 0.35 266.5 285.4 270.8 0.37 4.08 0.446
25 CH93 0.82 279.6 311.9 271.9 0.28 4.43 0.325 X
26 CH100 0.43 259.8 295.8 269.2 0.28 4.78 0.328 X
27 CH114 0.72 283.2 323.0 272.8 0.33 3.19 0.373 X
28 CH115 0.31 271.4 313.6 272.2 0.33 511 0.382
29 SIRSP4 0.33 2715 2459 273.0 0.14 3.07 0.173
30 RoSP1 0.47 269.4 179.2 273.5 0.08 1.05 0.107 X
31 BJjanl 0.51 266.8 284.9 2715 0.16 3.07 0.191 X
32 BJfev2 0.66 265.8 245.1 273.1 0.18 2.01 0.229 X

Remote Sens Environ. Author manuscript; available in PMC 2020 August 17.




1duasnueln JoyIny YSYN yduosnuely JoyINy YSYN

1duosnue Joyiny VSN

Royer et al.

Summary of the inputs used for the model simulations. The corresponding equations (Eq.) are explained in

Table 5

Section 2.

Model configuration | Grain size measurements Input parameters Eq. Fig.
DMRT-ML SSA D’0 = 6.103 3.3/(pjce"SSA) 2 6a
MEMLS_Do SSA p’c=4.10% 1.3(1 - V)/(pice'SSA) 6 6C

- Pex = 0.18 + 0.09 In(Dypax) for
MEMLS_Dynax_Pex Dinax v > 0.2 and Dy, > 0.125 mm 7 6e

- Pex = 0.05 £ 0.017 otherwise
MEMLS_Djnay_lin Drnax pe = 0.1069 Dmax Fig.5 | 6f
HUT Do SSA DOgsr = 6.103 3.7/(pice *SSA) 9 6b
HUT_Dpmax Dmax Dmaxeff = 0.5 Dmax - 6d
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Table 6

Bias (B) and RMSE (R) (K) between simulated and measured Tgs for each frequency and polarization and for
each model driven by specific inputs (described in Table 5). Bold: minimum bias and RMSE values of each
line respectively (but not necessarily statistically significant).

Model | DMRT-ML MEMLS HUT
Inputs Do Do DmaX,Iin Dmaxﬁpex Do Drax
¢=3.3 ¢=1.3 (Fig. 5) Eq.7 ¢=37 ¢=0.5
B R B R B R B R B R B R

11v 2.1 2.5 55 5.8 55 55 7.8 7.8 -2.1 24 | 11| 17

11H -73 |1 75 -4.1 45 -39 4.9 -2.6 41 | -10.0 | 103 | -9.1 | 94

19v 16.0 | 19.4 0.1 11.4 6.2 145 | 150 | 182 | 138 | 187 | 136 | 17.8

19H 147 | 23.0 29 17.0 7.8 188 | 15.0 | 23.7 8.5 275 | 134 | 224

37V 11.0 | 253 | -10.8 | 21.6 | -10.8 | 26.7 | -10.8 | 244 | 113 | 324 | 9.6 | 30.8

37H 75 | 201 | -49 | 164 | -33 | 19.9 9.0 21.4 8.5 275 | 6.7 | 234

All 73 | 163 | -31 | 128 0.3 15.0 5.6 16.6 59 191 | 55 | 176
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Table 7

Page 35

Comparison of linear regression parameters (coefficient of determination R? and slope of the regression) for

simulated and measured Tg for the models shown in Fig. 6. All*: including 11 GHz at H-pol and V- pol.

Model DMRT-ML MEMLS HUT
Inputs Do Do Drma_lin Drmax Do D_max
$=3.3 $=1.3 (Fig. 5) Pex EQ.7 $=3.7 $=0.5
RZ | Slope | R?2 | Slope | RZ | Slope | RZ | Slope | RZ | Slope | R? | Slope
19v 0.30 | 0.53 | 0.52 0.95 029 | 064 | 046 | 020 | 0.14 | 0.24 | 0.11 | 0.19
19H 0.13 | 033 | 0.23 | 0.47 0.17 | 0.39 | 0.03 | 0.12 0.05 0.18 | 0.05 | 0.17
37V 0.63 1.07 | 0.72 1.04 | 045 | 0.78 | 031 | 0.29 0.13 034 | 0.19 | 043
37H 0.73 119 | 0.78 110 | 058 | 0.88 | 0.48 | 0.36 0.22 0.45 | 0.34 | 0.58
All* 0.75 1.10 | 0.79 1.06 069 | 098 | 063 | 070 | 051 0.73 | 055 | 0.76
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