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Abstract

The COVID-19 pandemic has brought to the fore the need for policy makers to receive timely and
ongoing scientific guidance in response to this recently emerged human infectious disease. Fitting
mathematical models of infectious disease transmission to the available epidemiological data provides
a key statistical tool for understanding the many quantities of interest that are not explicit in the
underlying epidemiological data streams. Of these, the effective reproduction number, R, has taken
on special significance in terms of the general understanding of whether the epidemic is under control
(R < 1). Unfortunately, none of the epidemiological data streams are designed for modelling, hence
assimilating information from multiple (often changing) sources of data is a major challenge that is
particularly stark in novel disease outbreaks.

Here, focusing on the dynamics of the first-wave (March-June 2020), we present in some detail the
inference scheme employed for calibrating the Warwick COVID-19 model to the available public health
data streams, which span hospitalisations, critical care occupancy, mortality and serological testing.
We then perform computational simulations, making use of the acquired parameter posterior distribu-
tions, to assess how the accuracy of short-term predictions varied over the timecourse of the outbreak.
To conclude, we compare how refinements to data streams and model structure impact estimates of
epidemiological measures, including the estimated growth rate and daily incidence.
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1 Introduction 1

In late 2019, accounts emerged from Wuhan city in China of a virus of unknown origin that was leading 2

to a cluster of pneumonia cases [1]. The virus was identified as a novel strain of coronavirus on 7th 3

January 2020 [2], subsequently named Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV- 4

2), causing the respiratory syndrome known as COVID-19. The outbreak has since developed into a 5

global pandemic. As of 3rd August 2020 the number of confirmed COVID-19 cases was approaching 6

18 million, with more than 685,000 deaths occurring worldwide [3]. Faced with these threats, there 7

is a need for robust predictive models that can help policy makers by quantifying the impact of a 8

range of potential responses. However, as is often stated, models are only as good as the data that 9

underpins them; it is therefore important to examine, in some detail, the parameter inference methods 10

and agreement between model predictions and data. 11

In the UK, the first cases of COVID-19 were reported on 31st January 2020 in the city of York. Cases 12

continued to be reported sporadically throughout February and by the end of the month guidance 13

was issued stating that travellers from the high-risk epidemic hotspots of Hubei province in China, 14

Iran and South Korea should self-isolate upon arrival in the UK. By mid-March, as the number of 15

cases began to rise, there was advice against all non-essential travel and, over the coming days, several 16

social-distancing measures were introduced including the closing of schools, non-essential shops, pubs 17

and restaurants. This culminated in the introduction of a UK lockdown, announced on the evening 18

of 23rd March 2020, whereby the public were instructed to remain at home with four exceptions: 19

shopping for essentials; any medical emergency; for one form of exercise per day; and to travel to work 20

if absolutely necessary. By mid-April 2020, these stringent mitigation strategies began to have an 21

effect, as the number of confirmed cases and deaths as a result of the disease began to decline. As the 22

number of daily confirmed cases continued to decline during April, May and into June, measures to 23

ease lockdown restrictions began, with the re-opening of some non-essential businesses and allowing 24

small groups of individuals from different households to meet up outdoors, whilst maintaining social 25

distancing. This was followed by gradually re-opening primary schools in England from 1st June 2020 26

and all non-essential retail outlets from 15th June 2020. Predictive models for the UK are therefore 27

faced with a changing set of behaviours against which historic data must be judged, and an uncertain 28

future of potential additional relaxations. 29

Throughout, a significant factor in the decision-making process was the value of the effective repro- 30

duction number, R, of the epidemic. The effective reproduction number is a time-varying measure of 31

the average number of secondary cases per infectious case in a population (made up of both suscep- 32

tible and non-susceptible hosts) and has been a quantity estimated by several modelling groups that 33

provided advice through the Scientific Pandemic Influenza Modelling Group (SPI-M) [4]. Note, the 34

effective reproduction number differs from the basic reproduction number, R0 (the average number of 35

secondary infections produced by a typical case of an infection in a population where everyone is sus- 36

ceptible). The Warwick COVID-19 model presented here provided one source of R estimates through 37

SPI-M. When R is estimated to be significantly below one, such that the epidemic is exponentially 38

declining, then there is scope for some relaxation of intervention measures. However, as R approaches 39

one, further relaxation of control may lead to cases starting to rise again. It is therefore crucial that 40

models continue to be fitted to the latest epidemiological data in order for them to provide the most 41

robust information regarding the impact of any relaxation policy and the effect upon the value of R. 42

It is crucial to note, however, that there will necessarily be a delay between any change in behaviour, 43

the epidemiological impact and the ability of a statistical method to detect this change. 44

The initial understanding of key epidemiological characteristics for a newly emergent infectious disease 45

is, by its very nature of being novel, extremely limited and often biased towards early severe cases. 46

Developing models of infectious disease dynamics enables us to challenge and improve our mechanistic 47
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understanding of the underlying epidemiological processes based on a variety of data sources. One way 48

such insights can be garnered is through model fitting / parameter inference, the process of estimating 49

the parameters of the mathematical model from data. The task of fitting a model to data is often 50

challenging, partly due to the necessary complexity of the model in use, but also because of data 51

limitations and the need to assimilate information from multiple sources of data [5]. 52

Throughout this work, the process of model fitting is performed under a Bayesian paradigm, where 53

knowledge of the parameters are modelled through random variables and have joint probability dis- 54

tributions [6]. In full, the posterior distribution of the parameters θ given the data, P (θ|D), describes 55

how our prior beliefs in the distributional properties of the parameters, P (θ), have updated as a 56

consequence of the information in the data, which is captured through the likelihood function (the 57

probability distribution of the data given the model and parameters, L(D|θ))). Through applying 58

Bayes’ theorem, the relationship between the posterior, the likelihood is encapsulated by, 59

P (θ|D) ∝ L(D|θ)P (θ).

Whilst we would ideally seek an analytical expression for the target posterior distribution, in many 60

cases the solution for the posterior distribution is not mathematically tractable. As a consequence, 61

we revert to deriving empirical estimates of the desired probability distribution. In particular, we use 62

Markov Chain Monte Carlo (MCMC) schemes to find the posterior probability distribution of our 63

parameter set given the data and our prior beliefs. MCMC methods construct a Markov chain which 64

converges to the desired posterior parameter distribution at steady state [7]. Simulating this Markov 65

chain thus allows us to draw sets of parameters from the joint posterior distribution. 66

Adopting a Bayesian approach to parameter inference means parameter uncertainty may then be 67

propagated if using the model to make projections. This affords models with mechanistic aspects, 68

through computational simulation, the capability of providing an estimated range of predicted pos- 69

sibilities given the evidence presently available. Thus, models can demonstrate important principles 70

about outbreaks [8], with examples during the present pandemic including analyses of the effect of 71

non-pharmaceutical interventions on curbing the outbreak of COVID-19 in the UK [9]. 72

In this paper, we present the inference scheme, and its subsequent refinements, employed for calibrating 73

the Warwick SARS-CoV-2 transmission and COVID-19 disease model [10] to the available public health 74

data streams and estimating key epidemiological quantities such as R during the first wave of SARS- 75

CoV-2 infection in the UK (March-June 2020). In particular it is worth stressing that throughout 76

we present our approach as it evolved during the outbreak, rather than the optimal methods and 77

assumptions that would be made with hindsight. In addition, the paper was initially composed in 78

July-August 2020 and we have largely retained the contextual information as originally written. In 79

other words, we treat the manuscript as a record of the state of our modelling at that time. 80

We begin by describing our mechanistic transmission model for SARS-CoV-2 in Section 2, detailing 81

in Section 3 how the effects of social distancing are incorporated within the model framework. In 82

order to fit the model to data streams pertaining to critical care, such as hospital admissions and 83

bed occupancy, Section 4 expresses how epidemiological outcomes were mapped onto these quantities. 84

In Section 5, we outline how these components are incorporated into the likelihood function and 85

the adopted MCMC scheme. The estimated parameters are then used to measure epidemiological 86

measures of interest, such as the growth rate (r), with the approach detailed in Section 6. 87

The closing sections draw attention to how model frameworks may evolve during the course of a disease 88

outbreak as more data streams become available and we collectively gain a better understanding 89

of the epidemiology (Section 7). We explore how key epidemiological quantities, in particular the 90

reproduction number R and the growth rate r, depend on the data sources used to underpin the 91
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dynamics (Section 8). To finish, we outline the latest fits and model generated estimates using data 92

up to mid-June 2020 (Section 9). 93

2 Model description 94

Here we present the University of Warwick SEIR-type compartmental age-structured model, developed 95

to simulate the spread of SARS-CoV-2 within regions of the UK. Matched to a variety of epidemio- 96

logical data, the model operates and is fitted to data from the seven NHS regions in England (East 97

of England, London, Midlands, North East and Yorkshire, North West, South East, South West) and 98

the three devolved nations (Northern Ireland, Scotland and Wales). The model incorporates mul- 99

tiple layers of heterogeneity, through partitioning the population into five-year age classes, tracking 100

symptomatic and asymptomatic transmission, accounting for household saturation of transmission 101

and household quarantining. 102

Fig. 1: Model schematic of infection states and transitions. We stratified the population into susceptible,
exposed, detectable infectious, undetectable infectious, and removed states. Solid lines correspond to disease
state transitions, with dashed lines representing mapping from detectable cases to severe clinical cases that
require hospital treatment, critical care (ICU), or result in death. We stratified the population into five year
age brackets. See Tables 1 and 2 for a listing of model parameters. Note, we have not included quarantining or
household infection status on this depiction of the system.

The population is stratified into multiple compartments with respect to SARS-CoV-2 infection status 103

(Fig. 1): individuals may be susceptible (S), exposed (E), with detectable infection (symptomatic 104

D), or undetectable infection (asymptomatic, U). Undetectable infections are assumed to transmit 105

infection at a reduced rate given by τ . We let superscripts denote the first infection in a household 106

(F ), a subsequent infection from a detectable/symptomatic household member (SD) and a subsequent 107

infection from an asymptomatic household member (SU). A fraction (H) of the first detected case in 108

a household is quarantined (QF ), as are all their subsequent household infections (QS) - we ignore 109

the impact of household quarantining on the susceptible population as the number in quarantine 110

is assumed small compared with the rest of the population. The recovered class is not explicitly 111

modelled, although it may become important once we have a better understanding of the duration of 112
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immunity. Natural demography and disease-induced mortality are ignored in the formulation of the 113

epidemiological dynamics. 114

The model is deterministic in structure based on a large set of coupled ordinary differential equations 115

(ODEs). Obviously, the continuous results from these ODEs are never going to precisely match the 116

discrete integer-valued data, and hence we need a method of calculating the goodness of fit. We 117

achieve this through a likelihood approach, assuming the data is Poisson distributed (or Binomial for 118

quantities that have a relatively low upper bound) with a mean that is given by the results of the 119

ODE model. 120

Model equations 121

We provide a description of the model parameters in Tables 1 and 2. The full system of ordinary 122

differential equations (ODEs) for the model are given by: 123

dSa
dt

= −
(
λFa + λSDa + λSUa + λQa

) Sa
Na

,

dEF1,a
dt

= λFa
Sa
Na
−MεEF1,a,

dESD1,a
dt

= λSDa
Sa
Na
−MεESD1,a ,

dESU1,a
dt

= λSUa
Sa
Na
−MεESU1,a ,

dEQ1,a
dt

= λQa S −MεEQ1,a,

dEXm,a
dt

= MεEXm−1,a −MεEm,a X ∈ {F, SD, SU,Q}

dDF
a

dt
= da(1−H)MεEFM,a − γDF

a ,

dDSD
a

dt
= daMεESDM,a − γDSD

a ,

dDSU
a

dt
= da(1−H)MεESUM,a − γDSU

a ,

dDQF
a

dt
= daHMεEFM,a − γDQF

a ,

dDQS
a

dt
= daHMεESUM,a + daεE

Q
a − γDQS

a ,

dUFa
dt

= (1− da)MεEFM,a − γUFa ,

dUSa
dt

= (1− da)Mε(ESDM,a + ESUM,a)− γUSa ,

dUQa
dt

= (1− da)MεEQM,a − γU
Q
a ,

where a refers to each of the 21 5-year age groups (e.g. 0-4, 5-9 etc). We have included M latent 124

classes for individuals infected with the virus but not yet infectious. The rate of progression from each 125

latent class was εM , with the length of the total latent period being ε−1; in a stochastic framework this 126

would be equivalent to the time in the latent class being an Erlang distribution with shape parameter 127
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M and rate parameter εM . Throughout we have taken M = 3. The rate of leaving the infectious 128

class is γ; equivalent to an exponential distributed infectious period of length γ−1 in a stochastic 129

framework. 130

The forces of infection govern the non-linear transmission of infection. We partition the infectious 131

pressure exerted on a given age group a, λa, based on the category of infected case created: transmission 132

in non-household settings generating first infecteds in households (λFa ), subsequent household infections 133

caused by non-quarantined first infecteds in a household who are detectable/symptomatic (λSDa ), 134

subsequent household infections caused by non-quarantined first infecteds in a household who are 135

asymptomatic (λSUa ), and subsequent household infections caused by quarantined first infecteds (λQa ). 136

The collection of force of infection terms obey: 137

λFa = σa
∑
b

(
DF
b +DSD

b +DSU
b + τ(UFb + USb )

)
βNba,

λSDa = σa
∑
b

DF
b β

H
ba,

λSUa = σaτ
∑
b

UFa β
H
ba,

λQa = σa
∑
b

DQF
b βHba,

where βHba represents household transmission (with the subscript ba corresponding to transmission 138

from age group b against age group a) and βNba = βSba + βWba + βOba represents all other transmission 139

locations, comprising school-based transmission (βSba), work-place transmission (βWba ) and transmission 140

in all other locations (βOba). We took the setting specific age structured contact matrices from Prem 141

et al [11], although other sources such as POLYMOD [12] could be used, with the modification of 142

these contact patterns to model social distancing measures explained in Section 3. σa corresponds 143

to the age-dependent susceptibility of individuals to infection, da the age-dependent probability of 144

displaying symptoms (and hence being detected), and τ represents reduced transmission of infection 145

by undetectable individuals compared to detectable infections. 146

Amendments to within-household transmission 147

We wanted our model to be able to capture both individual level quarantining and isolation of house- 148

holds with identified cases. In a standard ODE framework the incorporation of household structure 149

increases the dimensionality of the system. Combined with the inclusion of other heterogeneities, such 150

as age structure, the result can be a system whose dimensionality results in model calibration and 151

simulation only being achievable at large computational expense [13, 14]. Therefore, we instead make 152

a number of approximations in our model to achieve a comparable effect. 153

We make the simplification that all within household transmission originates from the first infected 154

individual within the household (denoted with a superscript F or QF if they quarantine). This allows 155

us to assume that secondary infections within a household in isolation (denoted with a superscript 156

QS or Q) play no further role in the transmission dynamics. This means that high levels of household 157

isolation can drive the epidemic extinct, as only the first individual infected in each household can 158

generate infections outside the household. This methodology also helps to capture to some degree 159

household depletion of susceptibles (or saturation of infection), as secondary infections in the household 160

are not able to generate additional household infections. 161

Given the novelty of the additional household structure that is included in this model, we clarify 162

in more detail here the action of this formulation. We give a simpler set of equations (based on a 163
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standard SIR model) that contains a similar household structure; in particular, we take the standard 164

SIR model and split the infected class into those first infected within a household (IF ) and subsequent 165

infections (IS): 166

dS

dt
= −βHSIF − βOS(IF + IS)

dIF
dt

= βOS(IF + IS)− γIF
dIS
dt

= βHSIF − γIS
dR

dt
= γ(IF + IS)

where the transmission rate is also split into within household transmission βH and all other trans- 167

mission βO (i.e out-of-household transmission). Again, we make the assumption that only the first 168

infection in any household generates infections within the household. We compare this to the SIR 169

model without this additional structure: 170

dS

dt
= −β̂HSI − β̂OSI

dI

dt
= β̂HSI + β̂OSI − γI

dR

dt
= γI

where we retain the split in transmission type. 171

The early growth rate of the two models are r̂ = β̂H + β̂O − γ for the simple SIR model, and r = 172

1
2

[
βO − 2γ +

√
βO2 + 4βOβH

]
for the household structured version. From this simple comparison, 173

it is clear that for the simple model the growth rate can remain positive even when control measures 174

substantially reduce transmission outside the home (β̂O gets reduced), whereas in contrast for the 175

structured version there is always a threshold level of transmission outside the household (βOc = 176

γ2/(βH + γ)) that is needed to maintain positive growth. 177

For both the simple household-structured model given here and the full COVID-19 model, the inclusion 178

of additional household structure reduces the amount of within-household transmission compared to 179

a model without household-structure — as only the initial infection in each household (IF ) generates 180

secondary within-household cases. It is therefore necessary to rescale the household transmission rate 181

βH to obtain the appropriate average within-household attack rate. For the full COVID-19 model, 182

we found that a simple multiplicative scaling to the household transmission (βH → zβH , z ≈ 1.3) 183

generated a comparable match between the new model and a model without this household structure – 184

even when age structure was included. We therefore included this scaling within the full model. 185

Key Model Parameters 186

As with any model of this complexity, there are multiple parameters that determine the dynamics. 187

Some of these are global parameters and apply for all geographical regions, with others used to 188

capture the regional dynamics. Parameters that vary between regions are labelled with a superscript 189

R defining the region of interest; other parameters are age-dependent, in which case we use subscript 190

a to refer to the appropriate age-group. We separate two type of parameter that are required by 191

our model formation. Those parameters in (Table 1) are generally from external sources and take 192

fixed values (such as β or NR
a ), or are a fixed scaling of estimated values (such as γ or HR). In 193
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contrast a number of other parameters are inferred using the MCMC process (Table 2), some of which 194

directly impact transmission and therefore determine the infection dynamics while others control the 195

relationship between the infection dynamics and epidemiological observable quantities (such as the 196

expected number of hospitalisations). 197

Table 1: Description of key model parameters not fitted in the MCMC and their source

Parameter Description Source
β Age-dependent transmission, split into house-

hold, school, work and other
Matrices from Prem et al. [11]

γ Recovery rate, changes with τ , the relative level
of transmission from undetected asymptomatics
compared to detected symptomatics

Fitted from early age-stratified
UK case data to match growth
rate and R0

da Age-dependent probability of displaying symp-
toms (and hence being detected), changes with
α and τ

Fitted from early age-stratified
UK case data to capture the age
profile of infection.

σa Age-dependent susceptibility, changes with α and
τ

Fitted from early age-stratified
UK case data to capture the age
profile of infection.

HR Household quarantine proportion (set equal to
0.8φRt )

Can be varied according to sce-
nario

NR
a Population size of a given age within each region ONS

Relationship between age-dependent susceptibility and detectability 198

We interlink age-dependent susceptibility, σa, and detectability, da, by a quantity Qa. Qa can be 199

viewed as the scaling between force of infection and symptomatic infection. 200

Further, in a population that may be divided into a finite number of discrete category according to 201

a specific trait or traits (symptomatic and asymptomatic infection, for example), a next-generation 202

approach can be used to relate the numbers of newly infected individuals in the various categories in 203

consecutive generations [15]. Applying the next-generation approach to the symptomatic and asymp- 204

tomatic infection states in our transmission model, the early dynamics would be specified by: 205

R0Da = daσaβ
N
ba (Da + τUa) /γ R0Ua = (1− da)σaβNba (Da + τUa) /γ

where Da measures those with detectable infections, which mirrors the early recorded age distribution 206

of symptomatic cases. Explicitly, we let da = 1
κQ

(1−α)
a and σa = 1

kQ
α
a . As a consequence, Qa = κkdaσa; 207

where the parameters κ and k are determined such that the oldest age groups have a 90% probability 208

of being symptomatic (d>90 = 0.90) and such that the basic reproductive ratio from these calculations 209

gives R0 = 2.7. 210

211

Throughout much of our work with this model, the values of α and τ are key in determining behaviour 212

- in particular the role of school children in transmission [16]. We argue that a low τ and a low α 213

are the only combination that are consistent with the growing body of data suggesting that levels 214

of seroprevalence show only moderate variation across age-ranges [17], yet children do not appear to 215

play a major role in transmission [18, 19]. To some extent, the separation into symptomatic (D) and 216

asymptomatic (U) within the model is somewhat artificial as there are a wide spectrum of symptom 217

severity that can be experienced. 218
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Table 2: Description of key model parameters fitted in the MCMC

Parameter Affects
transmission?

Description Prior

ε Yes Rate of progression to infectious disease (1/ε is the duration
in the exposed class).

U(0.1, 0.3)

α Yes Scales the degree to which age-structured heterogeneity is
due to age-dependent probability of symptoms (α = 0) or
age-dependent susceptibility (α = 1).

U(0.0, 1.0)

τ Yes Relative level of transmission from asymptomatic compared
to symptomatic infection.

U(0.0, 0.5)

φRt Yes Relative strength of the regional lockdown restrictions (and
the adherence of the population to these restrictions) at dif-
ferent time points; scales the transmission matrices. Can be
time-varying and also be varied according to scenario.

U(0.0, 1.0)

σR Yes Regional modifier of susceptibility to account for differences
in level of social mixing.

U(0.25, 4.0)

ER0 Yes Initial regional level of infection, rescaled from early age-
distribution of cases.

U(1.0, 30.0)

ST No Long term sensitivity of the serological test. U(0.8, 1.0)
DR
S No Regional scaling for the mortality probability PH→Death

a . U(0.5, 2.0)
HR
S No Regional scaling for the hospitalisation probability PD→Ha . U(0.5, 2.0)

IRS No Regional scaling for the ICU probability PD→Ia . U(0.5, 2.0)
HR
f No Regional stretch factor for the hospitalisation time distribu-

tion DD→H
q .

U(0.5, 2.0)

IRf No Regional stretch factor for the ICU admittance time distri-
bution DD→I

q .
U(0.5, 2.0)

Lag No Regional data reporting lag. U(0, 5)

Regional Heterogeneity in the Dynamics 219

Throughout the current epidemic, there has been noticeable heterogeneity between the different regions 220

of England and between the devolved nations. In particular, London is observed to have a large 221

proportion of early cases and a relatively steeper decline in the subsequent lockdown than the other 222

regions and the devolved nations. We capture this heterogeneity in our model through three estimated 223

regional parameters that act on the heterogeneous population pyramid of each region. 224

Firstly, the initial level of infection in the region is re-scaled from the early age-distribution of cases, 225

with the regional scaling factor ER0 estimated by the MCMC process. Secondly, we allow the age- 226

dependent susceptibility to be scaled between regions (scaling factor σR) to account for different levels 227

of social mixing and hence differences in the early R0 value. Finally, the relative strength of the 228

lockdown (which may be time-varying) is again regional (scaling factor φRt ) and also estimated by the 229

MCMC process. 230

3 Modelling social distancing 231

We obtained age-structured contact matrices for the United Kingdom from Prem et al. [11], which 232

we used to provide information on household transmission (βHab, with the subscript ab corresponding 233

to transmission from age group a against age group b), school-based transmission (βSab), work-place 234

transmission (βWab ) and transmission in all other locations (βOab). 235
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We assumed that the suite of social-distancing and lockdown measures acted in concert to reduce the 236

work, school and other matrices while increasing the strength of household contacts. Two additional 237

parameters that acted to modulate the contact structure were the relative strength of lockdown in- 238

terventions, φt, and the proportion of work interactions that occur in public-facing ‘industries’, θ (we 239

provide further details on both parameters later in this section). 240

We first capture the impact of social-distancing by defining new transmission matrices (Ba,b), which 241

represent the potential transmission in the presence of extreme lockdown. In particular, we assume 242

that: 243

BS
ab = qSβSab, BW

ab = qWβWab , BO
ab = qOβOab,

while household mixing BH is increased by up to a quarter to account for the greater time spent at 244

home. We set qS = 0.05, qW = 0.2 and qO = 0.05 to approximate the reduction in attendance at 245

school, attendance at workplaces and engagement with shopping and leisure activities in a maximum 246

lockdown situation, respectively. Note that the parameterisation of the q parameters was subjective, 247

with a higher value for the workplace setting used (corresponding to a lesser reduction in contacts) 248

compared to all other settings on the basis of essential businesses maintaining a semblance of in-person 249

staff attendance. 250

We used the assumed transmission matrices for a maximum lockdown scenario (Ba,b) to generate new 251

transmission matrices in each setting (β̂ab) for a given strength of interventions and adherence level, 252

φt, as follows: 253

β̂Hab = (1− φt)βHab + φtB
H
ab

β̂Sab = (1− φt)βSab + φtB
S
ab

β̂Wab = (1− θ)
[
(1− φt)βWab + φtB

W
ab

]
+ . . .

θ
(
(1− φt) + φtq

W
)

((1− φt) + φtq
O)βWab

β̂Oab = βOab((1− φt) + φtq
O)2

As such, home and school interactions are scaled between their pre-lockdown values (β) and post- 254

lockdown limits (B) by the intervention and adherence parameter φt. Work interactions that are not 255

in public-facing ‘industries’ (a proportion 1 - θ) were also assumed to scale in this manner; while those 256

that interact with the general populations (such as shop-workers) were assumed to scale as both a 257

function of their reduction and the reduction of others. We have assumed θ = 0.3 throughout, which 258

we subjectively chose, with us acknowledging that the use of an alternative parameterisation could 259

alter the outcomes. Similarly, the reduction in transmission in other settings (generally shopping and 260

leisure) has been assumed to scale with the reduction in activity of both members of any interaction, 261

giving rise to a squared term. 262

4 Public Health Measurable Quantities 263

The main model equations focus on the epidemiological dynamics, allowing us to compute the number 264

of symptomatic and asymptomatic infectious individuals over time. However, these quantities are not 265

measured - and even the number of confirmed cases (the closest measure to symptomatic infections) is 266

highly biased by the testing protocols at any given point in time. It is therefore necessary to convert 267

infection estimates into quantities of interest that can be compared to data. We considered six such 268

quantities which we calculated from the number of newly detectable symptomatic infections on a given 269

day nDd. 270
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1. Hospital Admissions: We assume that a fraction PD→Ha of detectable cases will be admitted 271

into hospital after a delay q from the onset of symptoms. The delay, q, is drawn from a distri- 272

bution DD→H
q (note that

∑
qD

D→H
q = 1.) Hospital admissions on day d of age a are therefore 273

given by 274

Ha(d) = PD→Ha

∑
q

DD→H
q nDd−q

2. ICU Admissions: Similarly, a fraction PD→Ia of detectable cases will be admitted into ICU 275

after a delay, drawn from a distribution DD→I
q which determines the time between the onset of 276

symptoms and admission to ICU. ICU admissions on day d of age a are therefore given by 277

ICUa(d) = PD→Ia

∑
q

DD→I
q nDd−q

3. Hospital Beds Occupied: Individuals admitted to hospital spend a variable number of days in 278

hospital. We therefore define two weightings, which determine if someone admitted to hospital 279

still occupies a hospital bed q days later (THq ) and if someone admitted to ICU occupies a 280

hospital bed on a normal ward q days later (T I→Hq ). Hospital beds occupied on day d of age a 281

are therefore given by 282

Ho
a(d) =

∑
q

Ha(d− q)THq +
∑
q

ICUa(d− q)T I→Hq

4. ICU Beds Occupied: We similarly define T Iq as the probability that someone admitted to ICU 283

is still occupying a bed in ICU q days later. ICU beds occupied on day d of age a are therefore 284

given by 285

ICUoa (d) =
∑
q

ICUa(d− q)T Iq

5. Number of Deaths: The mortality ratio PH→Death
a determines the probability that a hospi- 286

talised case of a given age, a, dies after a delay, q drawn from a distribution, DH→Death
d between 287

hospitalisation and death. The number of deaths on day d of age a are therefore given by 288

Deathsa(d) = PH→Death
a

∑
q

Ha(d− q)DH→Death
d

We note that while in the early stages of the epidemic only deaths from hospitalised individuals 289

were initially registered as a death due to COVID, here we use all COVID deaths irrespective of 290

where they occur. This measure has since been superseded by deaths within 28 days of a positive 291

COVID test as a standardised measure in the UK. Therefore, PH→Death
a should be viewed as a 292

relative scaling rather than an absolute probability that a hospitalised individual dies. 293

6. Proportion testing seropositive: Seropositivity is a function of time since the onset of symp- 294

toms; we therefore define an increasing sigmoidal function which determines the probability that 295

someone who first displayed symptoms q days ago would generate a positive serology test from 296

a blood sample. We matched the shape of this sigmoidal function to data from PHE (estimated 297

independently, not within our MCMC scheme), while the asymptote (the long-term sensitivity 298

of the test, ST ) is a free parameter determined by the MCMC. We match our age-dependent pre- 299

diction against antibody seroprevalence from weekly blood donor samples from different regions 300

of England (approximately 1000 samples per region) [20]. 301
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These nine distributions are all parameterised from individual patient data as recorded by the COVID- 302

19 Hospitalisation in England Surveillance System (CHESS) [21], the ISARIC WHO Clinical Charac- 303

terisation Protocol UK (CCP-UK) database sourced from the COVID-19 Clinical Information Network 304

(CO-CIN) [22, 23], and the PHE sero-surveillance of blood donors [20]. CHESS data is used to de- 305

fine the probabilities of different outcomes (PD→Ha , PD→Ia , PH→Death
a ) due to its greater number of 306

records, while CCP-UK is used to generate the distribution of times (DD→H
q , DD→I

q , DH→Death
q ,THq , 307

T Iq , TD→Iq ) due to its greater detail (Fig. S1). 308

However, these distributions all represent a national average and do not therefore reflect regional 309

differences. We therefore define regional scalings of the three key probabilities (PD→Ha , PD→Ia and 310

PH→Death
a ) and two additional parameters that can stretch (or contract) the distribution of times spent 311

in hospital and ICU. We infer these five regional parameters (Table 2), which are necessary to get good 312

agreement between key observations in all regions and may reflect both differences in risk groups (in 313

addition to age) between regions or differences in how the data are recorded between devolved nations. 314

We stress that these parameters do not (of themselves) influence the epidemiological dynamics, but 315

do strongly influence how we fit to the evolving dynamics. 316

5 Likelihood Function and the MCMC process 317

Multiple components form the likelihood function; most of which are based on a Poisson-likelihood. 318

For brevity we define LP (n|x) = (n ln(x)− x) − log(n!) as the log of the probability of observing i 319

given a Poisson distribution with mean x. Similarly LB(n|N, p) = nlog(p) + (N − n)log(1− p) is the 320

log of the binomial probability function. The log-likelihood function is then: 321

LLR(θ) =∑
d

LP (
∑
a

Observed hospitalisations on day d|
∑
a

Predicted hospitalisations on day d)

+
∑
d

LP (
∑
a

Observed ICU admissions on day d|
∑
a

Predicted ICU admissions on day d)

+
∑
d

LP (
∑
a

Observed bed occupancy on day d|
∑
a

Predicted bed occupancy on day d)

+
∑
d

LP (
∑
a

Observed ICU occupancy on day d|
∑
a

Predicted ICU occupancy on day d)

+
∑
d

LP (
∑
a

Observed Deaths on day d|
∑
a

Predicted Deaths on day d)

+
∑
d

∑
a

LB(Observed +ve serology tests on day d|Number of tests,Predicted proportion +ve).

This log-likelihood is the key component of the MCMC scheme. In the MCMC process, we apply mul- 322

tiple updates of the parameters using normal or log-normal proposal distributions about the current 323

values. Some parameters (the scaling of age-structure α, the relative transmission rate τ , the latent 324

period 1/ε and the test sensitivity ST ) are global and apply to all regions; new values of these are 325

proposed and the log-likelihood calculated over all 10 regions. Other parameters are regional (such 326

as the relative strength of lockdown restrictions φRt ) and can be updated for each region in turn, the 327

ODEs simulated and stored. Finally, another set of regional parameters govern how the ODE output 328

is translated into public health measurable quantities (Section 4). These can be rapidly applied to 329

the solution to the ODEs and the likelihood calculated. Given the speed of this last set, multiple 330

proposals are tested for each ODE replicate. We remark that the observation processes for the dif- 331

ferent public health measurable quantities are conditionally independent given the mechanistic model 332

predictions. 333

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2021. ; https://doi.org/10.1101/2020.08.04.20163782doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.04.20163782
http://creativecommons.org/licenses/by/4.0/


New data are available on a daily time-scale, and therefore inference needs to be repeated on a similar 334

time-scale. We can take advantage of this sequential refitting, taking random draws from the posteriors 335

of the previous inference process to set the initial conditions for each chain, thus reducing the need 336

for a long burn-in period. 337

6 Measuring the Growth Rate, r 338

The growth rate, r, is defined as the rate of exponential growth (r > 0) or decay (r < 0); and can be 339

visualised as the gradient when plotting observables on a logarithmic scale. Figure 2 shows a simple 340

example, whereby linear trends are fitted to the number of daily hospital admissions (per 100,000 341

people) in London. In this figure, three trend lines are plotted: one before lock-down; one during 342

intense lock-down; and one after partial relaxation on 11th May 2020. This plot clearly highlights the 343

very different speeds between the initial rise and the long-term decline. 344

Fig. 2: Daily hospital admissions per 100,000 individuals in London. Points show the number of daily
admissions to hospital (both in-patients testing positive and patients entering hospital following a positive test);
results are plotted on a log scale. We show three simple fits to the data are shown for pre-lockdown (red),
strict-lockdown (blue) and relaxed-lockdown phases (green). Lines are linear fits to the logged data together
with 95% confidence intervals, returning average growth rates of 0.21 (doubling every 3.4 days), −0.06 (halving
every 11.5 days) and −0.02 (halving every 34 days).

While such statistically simple approaches are intuitively appealing, there are three main drawbacks. 345

Firstly, they are not easily able to cope with the distributed delay between a change in policy (such as 346

the introduction of the lockdown) and the impact of observable quantities (with the delay to deaths 347

being multiple weeks). Secondly, they cannot readily utilise multiple data streams. Finally, they can 348

only be used to extrapolate into the future - extending the period of exponential behaviour - they 349

cannot predict the impact of further changes to policy. Our approach is to instead fit the ODE model 350

to multiple data streams, and then use the daily incidence to calculate the growth rate. Since we use 351

a deterministic set of ODEs, the instantaneous growth rate r can be calculated on a daily basis. 352

There has been a strong emphasis (especially in the UK) on the value of the reproductive number (R) 353

which measures the expected number of secondary cases from an infectious individual in an evolving 354

outbreak. R brings together both the observed epidemic dynamics and the time-frame of the infection, 355
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and is thus subject to uncertainties in the latent and infectious periods as well as in their distribution 356

- although the growth rate and the reproductive number have to agree at the point r = 0 and R = 1. 357

We have two separate methods for calculating R which have been found to be in very close numerical 358

agreement. The first is to calculate R from the next generation matrix βba/γ using the current 359

distribution of infection across age-classes and states. The second (and numerically simpler method) 360

is to use the relationship between R and r for an SEIR-type model with multiple latent classes, which 361

gives 362

R =
(

1 +
r

εM

)M (
1 +

r

γ

)
.

7 An Evolving Model Framework 363

Unsurprisingly, the model framework has evolved during the epidemic as more data streams have 364

become available and as we have gained a better understanding of the epidemiology. Early models 365

were largely based on the data from Wuhan, and made relatively crude assumptions about the times 366

from symptoms to hospitalisation and death. Later models incorporated more regional variation, while 367

the PHE serology data in early May 2020 had a profound impact on model parameters. 368

Fig. 3: Sequential comparison of model results and data. For all daily hospital admissions with COVID-
19 in London, we show the raw data (black dots) and a set of short-term predictions generated at different points
during the outbreak. Changes to model fit reflect both improvements in model structure as well as increased
amounts of data. The intervals represent our confidence in the fitted ODE model, and do not account for
either stochastic dynamics nor the observational distribution about the deterministic predictions - which would
generate far wider intervals.

Figure 3 shows how our short-term predictions (each of three-weeks duration) changed over time, 369

focusing on hospital admissions in London. It is clear that the early predictions were pessimistic 370

about the reduction that would be generated by lockdown, although in part the higher values from 371

early predictions is due to having identical parameters across all regions in the earliest models. In 372

general later predictions, especially after the peak, are in far better agreement although the early 373

inclusion of a step-change in the strength of the lockdown restrictions from 13th May 2020 (orange) 374
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led to substantial over-estimation of future hospital admissions. Across all regions we found some 375

anomalous fits, which are due to changes in the way data were reported (Figs. S3 and S4). 376

The comparison of models and data over time can be made more formal by considering the mean 377

squared error across the three-week prediction period for each region (Fig. 4). We compare three 378

time varying quantities: (i) the mean value of the public health observable (in this case hospital 379

deaths) in each region; (ii) the mean error between this data and the posterior set of ODE model 380

predictions predicting forwards for three weeks; (iii) the mean error between the data and a simple 381

moving average across the three time points before and after the data point. In each panel, the solid 382

line corresponds to where the presented error statistic is equal to the mean, which is to be expected 383

if the error originates from a Poisson distribution. The top left hand graph in Fig. 4 shows a clear 384

linear relationship and correspondence in magnitude between the mean value and the error from the 385

moving average, implying similarity between the variance and mean, giving support to our assumption 386

(in the likelihood function) that the data are reasonably approximated as Poisson distributed. The 387

other two graphs show how the error in the prediction has dropped over time from very high values 388

for simulations in early April 2020 (when the impact of the lockdown was uncertain) to values in late 389

May and June 2020 that are comparable with the error from the moving average. 390

Fig. 4: Improvement in fit over time for the number of hospital deaths. Each dot represents an
analysis date (colour-coded) and region. For a data stream xt and model replicates yit (where i accounts

for sampling across the posterior parameter values) we compute the mean 1
21

∑t+20
T=t xT ; the prediction error

1
21N

∑N
i=1

∑t+20
T=t (xT − yiT )2; the moving average Xt = 1

6 (xt−3 + xt−2 + xt−1 + xt+1 + xt+2 + xt+3); and the

moving average error 1
21

∑t+20
T=t (xT − XT )2. In each panel, the solid line corresponds to the path where the

presented error statistic is equal to the mean.
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8 Choice of Data Streams to Inform the Likelihood 391

The likelihood expression given above is an idealised measure, and depends on all the observed data 392

streams being available and unbiased. Unfortunately, ICU admission data had not been available and 393

there were subtle differences in data streams between the devolved nations. An important question is 394

therefore how key epidemiological quantities (and in particular the reproduction number R and the 395

growth rate r) depend on the data sources used to underpin the dynamics. 396

In a high dimensional systems with different temporal lags (see Fig. S1), there are inevitably different 397

time-scales from when a change in policy or adherence occurs and when its impact is observed in key 398

quantities. We briefly assess this problem in Figure 5, by considering the model output as surrogate 399

data and examining how long a change in policy would take to impact the growth rate of key quantities. 400

At time t = 0 we introduce a step-change in the strength of lockdown restrictions (φt) within the model 401

and recording the subsequent growth rates (r) associated with five key model outputs (infections, 402

symptomatic cases, hospitalisations, admission to ICU and Deaths). Unsurprisingly, the impact of 403

this change in restrictions takes the longest time to resolve in the mortality, taking around seven 404

weeks for the estimate of the growth rate to stabilise to the asymptotic value. Even measures which 405

should be more immediate, such as the growth of symptomatic cases, take some time to settle to 406

the theoretical value (or r ≈ 0.01) given the high dimensionality of the age-structured model. This 407

all strongly suggests that at best our estimates of r and hence R may not be able to rapidly detect 408

changes to the underlying behaviour. 409

Fig. 5: Impact of a change in underlying restrictions on the growth rate of modelled data streams.
A change in the underlying restrictions occurs at time zero, taking the asymptotic growth rate r from ≈ −0.026
to ≈ +0.01. This change is reflected in an increase in growth rate of five key epidemiological quantities, which
reach the true theoretical growth rate at different times.
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Figure 6 (left panel) shows the impact of using different observables for London (other regions are 410

shown in Fig. S5). This is achieved by only retaining a limited number of elements in the log- 411

likelihood function, such that the model is matched to different combinations of data streams. Five 412

different choices are shown: matching to recorded deaths only (using the date of death); matching to 413

hospital admissions (both in-patients testing positive and admissions of individuals who have already 414

tested positive); matching to bed occupancy, both hospital wards and ICU; matching to a combina- 415

tion of deaths and admissions; and finally matching to all data. Each of these different likelihood 416

functions required an independent set of MCMC chains to be generated; from the associated posteri- 417

ors we consider an estimate of the instantaneous growth rate as the most important epidemiological 418

characteristic. 419

In general we find that just using reported deaths produces the greatest spread of growth rates (r) 420

presumably because deaths represent a small fraction of the total outbreak and therefore naturally 421

introduce more uncertainty, and because deaths are slow to respond to dynamic changes. When 422

hospital admissions (with or without deaths) are included in the likelihood, this generates similar 423

predictions of the growth rate and similar levels of uncertainty in predictions. One could therefore 424

postulate that an accurate measure of hospital admissions is the key epidemiological observable that 425

best captures the recent growth of the epidemic. 426

Fig. 6: Impact of data streams and model structure on estimated growth rate. The growth rates are
estimated using the predicted rate of change of new infections for London on 10th June 2020, with parameters
inferred using data until 9th June 2020. The panels display posterior predictive distributions for the growth rate,
where each data point corresponds to an estimate produced from a model simulation using a single parameter
set sampled from the posterior distribution. To aid visualisation, we have applied a horizontal jitter to the data
points. (a) The impact of restricting the inference to different data streams (deaths only, hospital admissions,
hospital bed occupancy, deaths and admissions or all data); serology data was included in all inference. (b)
The impact of having different numbers of lockdown phases (while using all the data); the default is three (as
in Fig. 2).

As mentioned in Section 7, the number of phases used to describe the reduction in transmission due 427

to lockdown has changed as the situation, model and data evolved. The model began with just two 428

phases; before and after lockdown. However, in late May 2020, following the policy changes on 13th 429

May 2020, we explored having three phases. Having three phases is equivalent to assuming the same 430

level of adherence to the lockdown and social-distancing measures throughout the epidemic, with 431

changes in transmission occurring only due to the changing policy on 23rd March 2020 and 13th May 432

2020. However, different number of phases can be explored (Fig. 6, right panel). Moving to four 433

phases (with two equally spaced within the more relaxed lockdown) increases the variation, but does 434

not have a substantial impact on the mean. Allowing eight phases (spaced every two weeks throughout 435
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lockdown) dramatically changes our estimation of the growth rate as the parameter inference responds 436

more quickly to minor changes in observable quantities. 437

Lastly, it was noted in late May 2020 that one of the quantities used throughout the outbreak (number 438

of daily hospital admissions) could lead to biased results. Hospital admissions for COVID-19 are 439

comprised of two measures: 440

(i) In-patients that test positive; this includes both individuals entering hospital with COVID-19 441

symptoms who subsequently test positive, and hospital acquired infections. Given that both of 442

these elements feature in the hospital death data, it is difficult to separate them. 443

(ii) Patients arriving at hospital who have previously tested positive. In the early days of the 444

outbreak, these were individuals who had been swabbed just prior to admission; however in the 445

latter stages there are many patients being admitted for non-COVID related problems that have 446

previously tested positive. 447

It seems prudent to remove this second element from our fitting procedure, although we note that for 448

the devolved nations this separation into in-patients and new admissions is less clear. Removing this 449

component of admissions also means that we cannot use the number of occupied beds as part of the 450

likelihood, as these cannot be separated by the nature of admission. In Fig. 7 we therefore compare the 451

default fitting (used throughout this paper) with an updated method that uses in-patient admissions 452

(together with deaths, ICU occupancy and serology when available). We observe that restricting the 453

definition of hospital admission leads to a slight reduction in the growth rate r but a more pronounced 454

reduction in the incidence. 455

456

Fig. 7: Impact of including different types of hospital admission in parameter inference. Growth
rates and total incidence (asymptomatic and symptomatic) estimated from the ODE model for June 10th 2020
in London. The panels display posterior predictive distributions for the stated statistic, where each data point
corresponds to an estimate produced from a model simulation using a single parameter set sampled from the
posterior distribution. To aid visualisation, we have applied a horizontal jitter to the data points. In each
panel, blue dots (on the left-hand side) give estimates when using all hospital admissions in the parameter
inference (together with deaths, ICU occupancy and serology when available); red dots (on the right-hand
side) represent estimates obtained using an alternative inference method that restricted to fitting to in-patient
hospital admission data (together with deaths, ICU occupancy and serology when available). Parameters were
inferred using data until 9th June 2020, while the growth rate r comes from the predicted rate of change of new
infections.
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9 Fits and Results at mid-June 2020 457

We now wish to compare how the fits made weekly (or more frequently) from late March to early 458

June 2020 compare to later results. We note that this period also saw considerable development of 459

the model structure as more data streams became available. 460

We used a fit to the data performed on 14th June 2020 (which matched to in-patient data, ICU 461

occupancy, date of death records and serological results) to infer the change in NPIs and adherence, 462

φRt , across two main intervals since lockdown: 23rd March to 13th May, and 14th May to 14th June 463

(Fig. 8 top panels green line and shaded interval). When fed through the ODE model, the inferred 464

distribution of parameters generate a distribution of growth rates over time (Fig. 8 bottom panels 465

green line and shaded interval). These estimates can be compared to the estimates made at different 466

time points for the NPI adherence and associated growth rate at that time (Fig. 8 dots and intervals). 467

We focus on London and the North East and Yorkshire region in the main text, with other regions 468

given in the Supplementary Material. 469

Fig. 8: Evolution of strength of interventions and adherence values (φt), and associated growth
rate predictions (r) together with later model estimates. For two regions, (left) London, and (right)
North East & Yorkshire, we show estimated values of the strength of interventions (comprising intervention
stringency and adherence to measures, φt), inferred from the MCMC scheme, which are translated through the
model into predictions of r. The dots (and 95% credible intervals) show how these values have evolved over time,
and are plotted for the date the MCMC inference is performed. The solid green and blue lines (together with
50% and 95% credible intervals) show our estimate of φt and r through time using a fit to the data performed
on 14th June 2020 (restricting hospital data to in-patient data only). Vertical dashed lines show the two dates
of main changes in policy (imposition of lockdown on 23rd March 2020, easing of restrictions on 13th May
2020), reflected in different regional φt values. Early changes in advice, such as social distancing, self isolation
and working from home were also included in the model and their impact can be seen as early declines in the
estimated growth rate r before 23rd March 2020.
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The time profile of predicted growth rate illustrates how the imposition of lockdown measures on 23rd 470

March 2020 led to r decreasing below 0. The predicted growth rate is not a step function as changes 471

to policy precipitate changes to the age-distribution of cases which has second-order effects on r. The 472

second change in φt (the relative strength of lockdown restrictions) on 13th May 2020 leads to an 473

increase in r in all regions, although London shows one of the more pronounced increases. Despite 474

this increase in mid-May 2020, models estimates suggest r remained below 0 across all regions as of 475

14th June 2020 (Fig. 8). 476

The relative strength of lockdown restrictions parameter, φt, also captured early changes in preven- 477

tative transmission behaviour that resulted from advice issued prior to the introduction of lockdown 478

measures, such as social distancing, encouragement to work from home (from 16th March 2020) and 479

the closure of all restaurants, pubs, cafes and schools on 20th March 2020. For all regions, we observe 480

minor declines in the estimated growth rate following introduction of these measures, though the esti- 481

mated growth rate remained above 0 (Fig. 8). As the model has evolved and the data streams become 482

more complete, we have generally converged on the estimated growth rates from current inference. 483

It is clear that it takes around 20 days from the time changes are enacted for them to be robustly 484

incorporated into model parameters (see dots and 95% credible intervals in Fig. 8). 485

Using parameters drawn from the posterior distributions, the model produces predictive posterior dis- 486

tributions for multiple health outcome quantities that have a strong quantitative correspondence to the 487

regional observations (Fig. 9). We recognise there was a looser resemblance to data on seropositivity, 488

though salient features of the temporal profile are captured. In addition, short-term forecasts for each 489

measure of interest have been made by continuing the simulation beyond the date of the final available 490

data point, assuming that behaviour remains as of the final period (starting 13th May 2020). 491

20

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2021. ; https://doi.org/10.1101/2020.08.04.20163782doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.04.20163782
http://creativecommons.org/licenses/by/4.0/


Fig. 9: Health outcome predictions of the SARS-CoV-2 ODE transmission model from the be-
ginning of the outbreak and three weeks into the future for London. (Top left) Daily deaths; (top
right) seropositivity percentage; (bottom left) daily hospital admissions; (bottom right) ICU occupancy.
In each panel: filled markers correspond to observed data, solid lines correspond to the mean outbreak over a
sample of posterior parameters; shaded regions depict prediction intervals, with darker shading representing a
narrower range of uncertainty (dark shading - 50%, moderate shading - 90%, light shading - 99%). The inter-
vals represent our confidence in the fitted ODE model, and do not account for either stochastic dynamics nor
the observational distribution about the deterministic predictions - which would generate far wider intervals.
Predictions were produced using data up to 14th June 2020.
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10 Discussion 492

In this study, we have provided an overview of the evolving MCMC inference scheme employed for 493

calibrating the Warwick COVID-19 model [10] to the available health care, mortality and serological 494

data streams. We have focused on the period May-June 2020, which corresponds to the first wave of the 495

outbreak; a brief account of further refinements is given below. The work we describe was performed 496

under extreme time pressures, working from limited initial knowledge and with data sources of varying 497

quality. There are therefore assumptions in the model that with time and hindsight we have refined and 498

compared to other more recently available data sources; similarly, the focus on hot-spots of infection 499

during the summer and the rise in cases into autumn 2020 has shaped much of our methodology. This 500

article relates the model formulation that was used to understand the dynamics, predict cases and 501

advise policy during the first wave. 502

A comparison of model short-term predictions and data over time (i.e. as the outbreak has progressed) 503

demonstrated an observable decline in the error - suggesting that our model and inference methods 504

have improved. We have considered in some detail the choice of data sets used to infer model pa- 505

rameters and the impact of this choice on the key emergent properties of the growth rate r and the 506

reproductive number R. We highlight that many of the decisions about which data sets to utilise 507

are value judgements based on an epidemiological understanding of the relationships between disease 508

dynamics and observed outcomes. None of the data sets available to epidemiological modellers are 509

perfect, all have biases and delays; here we believe that by using multiple data sources in a Bayesian 510

framework we arrive at a model that achieves a natural compromise. In particular, we have highlighted 511

how single measures such as the number of daily deaths generate considerable uncertainty in the pre- 512

dicted growth rate (Fig. 6) and may be slower to identify changes in behaviour (Fig. 5). However, 513

some questions related to the data are more fundamental; the ambiguity of what constitutes a COVID 514

hospitalisation (Fig. 7) is shown to cause a slight difference in the estimated growth rate r but a more 515

marked discrepancy in incidence. 516

It is important that uncertainty in the parameters governing the transmission dynamics, and its 517

influence on predicted outcomes, be robustly conveyed. Without it, decision makers will be missing 518

meaningful information and may assume a false sense of precision. MCMC methodologies were a 519

suitable choice for inferring parameters in our model framework, since we were able to evaluate the 520

likelihood function quickly enough to make the approach feasible. Nevertheless, for some model 521

formulations and data, it may not be possible to write down or evaluate the likelihood function. In 522

these circumstances, an alternative approach to parameter inference is via simulation-based, likelihood- 523

free methods, such as Approximate Bayesian Computation [24–26]. Nevertheless, we recognise the 524

appropriate mathematical structure of the model is also uncertain. Our methodology is formulated 525

around deterministic differential equations that work well for large populations and significant levels of 526

infection. On the other hand, stochastic effects are ignored and stochastic approaches may be needed 527

when modelling low infection level regimes. In addition, a subset of our parameters had fixed values 528

throughout our analyses, which means we may have underestimated the overall amount of parameter 529

uncertainty. 530

As we gain collective understanding of the SARS-CoV-2 virus and the COVID-19 disease it causes, 531

the structure of infectious disease transmission models, the inference procedure and the use of data 532

streams to underpin these models must continuously evolve. The evolution of the model through 533

the early phase of epidemic (up to June 2020) is documented here (Figs. 3 and 8) and we feel it is 534

meaningful to show this evolving process rather than simply present the final finished product. A 535

vast body of work exists describing mathematical models for different infectious outbreaks and the 536

associated parameter inference from epidemiological data. In most cases, however, these models are 537

fitted retrospectively, using the entire data that have been collected during an outbreak. Fitting 538
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models with such hindsight is often far more accurate than predictions made in real-time. In the 539

case when models are deployed during active epidemics, there are also additional challenges associated 540

with the rapid flow of detailed and accurate data. Even if robust models and methods were available 541

from the start of an outbreak, there are still significant delays in obtaining, processing and inferring 542

parameters from new information [5]. This is particularly crucial as new interventions are introduced 543

or significant policy changes occur, such as the relaxation of multiple non-pharmaceutical interventions 544

during May, June and July of 2020 or the introduction of the nationwide “test and trace” protocol [27]. 545

Predicting the impact of such changes will inevitability be delayed by the lag between deployment and 546

the effects on observable quantities (Fig. 5) as well as the potential need to reformulate model structure 547

or incorporate new data streams. 548

Multiple refinements to the model structure and approaches have been realised since June 2020 and 549

more are still possible. The three biggest changes have been forced by external events: the rise and 550

spread of the Alpha (B.1.1.7) variant during the latter part of 2020; the rise and spread of the Delta 551

(B.1.617.2) in April and May of 2021 [28]; and the development and delivery of vaccines from December 552

2020 onwards [29]. The two variants have necessitated an increase in the dimension of the ODEs as 553

at least two variants need to be modelled simultaneously (either Alpha out-competing wild type, 554

or Delta out-competing Alpha); the two new variants also require the estimation of variant specific 555

parameters governing their relative transmission rates and the proportion of infected individuals that 556

require hospital treatment or die from the disease [30]. The spread of these two variants is captured 557

by looking at “S-gene failures”: the TaqPath system used to perform PCR tests in many regions of 558

the country fails to detect the S-gene of Alpha due to a point mutation. The rise of Alpha is therefore 559

determined by the increase of S-gene failures, while the decline of Delta is captured by the decline 560

of S-gene failures. Vaccination also requires a large number of parameters: in particular the vaccine 561

efficacy after one and two doses against infection, symptoms, severe illness and hospitalisation, death, 562

and against both Alpha and Delta variants are needed within the model. We treat these additional 563

parameters as inputs to the model, based on the estimations made by Public Health England [31]. 564

Other changes to the model structure include using the proportion of community (known as Pillar 2) 565

PCR samples that are positive rather than the number of positive tests. We feel that this proportion 566

is less likely to be biased by changes in testing behaviour, and so provide a more stable estimate of the 567

level of infection in the community. We also no-longer use serology data from blood-donors, as again 568

this is likely to suffer from a number of confounding factors. Instead, data from the national REACT 569

2 study [32] is incorporated into the likelihood, and helps to anchor the total number of previously 570

infected individuals in each region. More consideration has been given to detecting changes in the 571

strength of social distancing (φt). In the original model φt was inferred in two main phases: the main 572

lockdown (from 23rd March to 13th May 2020) and the more relaxed restrictions (from 13th May 573

2020). In practice, there will be continuous changes to this quantity as the population’s behaviour 574

varies (not necessarily in response to government guidelines), given the importance to public health 575

planning of rapidly detecting such changes we now estimate the values of φt on a weekly timescale but 576

assume the value to only vary slowly (unless there has been a major change to the restrictions). Finally, 577

we have assumed that many of the observable epidemiological quantities (such as hospitalisation and 578

death) are related in a fixed way to the age-distribution of infection in the population. In reality, the 579

medical treatment of COVID-19 cases in the UK has changed dramatically since the first few cases 580

in early March 2020, such that the risk of mortality, the need for hospitalisation and the duration 581

of hospital stay have all changed. Such changes have been incorporated periodically into the model 582

structure, informed from hospital data sources. 583

Despite all of these improvements over the last year, there are still aspects that could be further im- 584

proved. The understanding that infection may be partially driven by nosocomial transmission [33, 34], 585

while significant mortality is due to infection in care homes [35, 36], suggests that additional compart- 586
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ments capturing these components could greatly improve model realism if the necessary data were 587

available throughout the course of the epidemic. Similarly, schools, universities and some workplaces 588

pose additional risks, so there is merit in considering how these amplifiers of community infection could 589

be incorporated within the general framework [37–39]. Additionally, if in a regime with much lower 590

levels of infection in the community, it may be prudent to adopt a stochastic model formulation at a 591

finer spatial resolution to capture localised outbreak clusters, although the potential heterogeneity in 592

local parameters may preclude accurate prediction at this scale. 593

In summary, if epidemiological models are to be used as part of the scientific discussion of controlling 594

a disease outbreak it is vital that these models capture current biological understanding and are 595

continually matched to all available data in real time. Our work on COVID-19 presented here highlights 596

some of the challenges with predicting a novel outbreak in a rapidly changing environment. Probably 597

the greatest weakness is the time that it inevitably takes to respond – both in terms of developing 598

the appropriate model and inference structure, and the mechanisms to process any data sources, but 599

also in terms of delay between real-world changes and their detection within any inference scheme. 600

Both of these can be shortened by well-informed preparations; having the necessary suite of models 601

supported by the latest most efficient inference techniques could be hugely beneficial when rapid and 602

robust predictive results are required. 603
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SUPPLEMENTARY MATERIAL

Fig. S1: Distribution of times and delays used in the model. (Top row, left) Time between symptom
onset and hospitalisation, conditional on hospital admission occurring. (Top row, right) Time between symptom
onset and ICU admittance, conditional on ICU admission occurring. We modelled these two delays as Weibull
distributions estimated from the available data: Time between symptom onset and hospitalisation, λ = 8.4,
k = 1.4; Time between symptom onset and ICU admittance, λ = 10.9, k = 1.7. We did not take these
distributions directly from the available data which was relatively sparse due to the lack of certainty involving
the date of symptom onset for many patients. (Middle row, left) Probability of the length of stay in hospital
equalling or exceeding a duration of t days. (Middle row, right) Probability of the length of stay in ICU
equalling or exceeding a duration of t days. (Bottom row) Time between hospitalisation and death. The
remaining three distributions, displayed in the middle and bottoms rows, we took directly from the available
data. All distributions are based on individual patient data as recorded by the COVID-19 Hospitalisation
in England Surveillance System (CHESS) [21] and the ISARIC WHO Clinical Characterisation Protocol UK
(CCP-UK) database sourced from the COVID-19 Clinical Information Network (CO-CIN) [22, 23].
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Fig. S2: Linear fits to daily hospital admissions per 100,000 individuals in each region. Points
show the number of daily admissions to hospital (both in-patients testing positive and patients entering hospital
following a positive test); results are plotted on a log scale. Three simple fits to the data are shown for pre-
lockdown (red), strict-lockdown (blue) and relaxed-lockdown phases (green). Fits are a limit linear fit to the
logged data (mean estimates depicted by solid lines, 95% confidence intervals by the dashed lines).
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Fig. S3: Sequential comparison of daily hospital admission model results and data in each region.
For all daily hospital admissions with COVID-19 in each region, we show the raw data (black dots) and a set
of short-term predictions generated at different points during the outbreak. Changes to model fit reflect both
improvements in model structure as well as increased amounts of data.
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Fig. S4: Sequential comparison of daily hospital death model results and data in each region.
For all daily hospital deaths with COVID-19 in each region, we show the raw data (black dots) and a set of
short-term predictions generated at different points during the outbreak. Changes to model fit reflect both
improvements in model structure as well as increased amounts of data.
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Fig. S5: Impact of data streams on estimated growth rates, by region. The impact on the regional
growth rate (estimated from the ODE epidemic on 10th June 2020) of restricting the inference to different
data streams (deaths only, hospital admissions, hospital bed occupancy, deaths and admissions or all data); the
serology data was included in all inference. Parameters were inferred using data until 9th June 2020, while the
r value comes from the change in predicted rate of change of new cases.
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Fig. S6: Impact of model structure on estimated growth rates, by region. Analysis of having different
numbers of lockdown phases on the estimated regional growth rate on 10th June 2020, while using all the data.
The number of lockdown phases tested were there (blue dots), four (green dots) and eight (red dots). Parameters
were inferred using data until 9th June 2020, while the r value comes from the change in predicted rate of change
of new cases.
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Fig. S7: Impact of including different types of hospital admission in parameter inference on the
estimated regional growth rates (on 10th June 2020). For each region, growth rates were estimated from
the ODE epidemic for 10th June 2020. In each panel, blue dots (on the left-hand side) give r estimates when
using all hospital admissions in the parameter inference (together with deaths, ICU occupancy and serology when
available); red dots (on the right-hand side) represent r estimates using an alternative inference method that
restricted to fitting to in-patient hospital admission data (together with deaths, ICU occupancy and serology
when available). Parameters were inferred using data until 9th June 2020, while the r value comes from the
change in predicted rate of change of new cases. We observe that restricting the definition of hospital admission
leads to a slight reduction in the growth rate r but a more pronounced reduction in the incidence. (This
separation is not possible for the devolved nations, but the associated distributions are shown for completeness.)
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Fig. S8: Impact of including different types of hospital admission in parameter inference on the
daily incidence (on 10th June 2020). For each region, daily incidences were estimated from the ODE
epidemic for 10th June 2020. In each panel, blue dots (on the left-hand side) give incidence estimates when
using all hospital admissions in the parameter inference (together with deaths, ICU occupancy and serology
when available); red dots (on the right-hand side) represent incidence estimates using an alternative inference
method that restricted to fitting to in-patient hospital admission data (together with deaths, ICU occupancy and
serology when available). Parameters were inferred using data until 9th June 2020. We observe that restricting
the definition of hospital admission leads to a pronounced reduction in the incidence. (This separation is not
possible for the devolved nations, but the associated distributions are shown for completeness.)
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Fig. S9: Evolution of growth rate predictions and most recent model estimates in each of the
ten regions. For each region, we show how predictions of r have evolved over time (dots and 95% credible
intervals). These predictions are from the date the MCMC inference is performed. The solid blue line (together
with 50% and 95% credible intervals) shows our estimate of r through time using the most recent fit to the data
(performed on 14th June 2020 using in-patient data only). Vertical dashed lines show the two dates of main
changes in policy, reflected in different regional φ values.
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Fig. S10: Health outcome predictions of the ODE from the beginning of the outbreak and 3 weeks
into the future for the East of England region. (Top left) Daily deaths; (top right) seropositivity
percentage; (bottom left) daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled
markers correspond to observed data, solid lines correspond to the mean outbreak over a sample of posterior
parameters; shaded regions depict prediction intervals, with darker shading representing a narrower range of
uncertainty (dark shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent our
confidence in the fitted ODE model, and do not account for either stochastic dynamics nor the observational
distribution about the deterministic predictions - which would generate far wider intervals. Predictions were
produced using data up to 14th June 2020.
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Fig. S11: Health outcome predictions of the ODE from the beginning of the outbreak and 3
weeks into the future for the Midlands region. (Top left) Daily deaths; (top right) seropositivity
percentage; (bottom left) daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled
markers correspond to observed data, solid lines correspond to the mean outbreak over a sample of posterior
parameters; shaded regions depict prediction intervals, with darker shading representing a narrower range of
uncertainty (dark shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent our
confidence in the fitted ODE model, and do not account for either stochastic dynamics nor the observational
distribution about the deterministic predictions - which would generate far wider intervals. Predictions were
produced using data up to 14th June 2020.
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Fig. S12: Health outcome predictions of the ODE from the beginning of the outbreak and 3
weeks into the future for the North East & Yorkshire region. (Top left) Daily deaths; (top right)
seropositivity percentage; (bottom left) daily hospital admissions; (bottom right) ICU occupancy. In each
panel: filled markers correspond to observed data, solid lines correspond to the mean outbreak over a sample of
posterior parameters; shaded regions depict prediction intervals, with darker shading representing a narrower
range of uncertainty (dark shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent
our confidence in the fitted ODE model, and do not account for either stochastic dynamics nor the observational
distribution about the deterministic predictions - which would generate far wider intervals. Predictions were
produced using data up to 14th June 2020.
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Fig. S13: Health outcome predictions of the ODE from the beginning of the outbreak and 3
weeks into the future for the North West region. (Top left) Daily deaths; (top right) seropositivity
percentage; (bottom left) daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled
markers correspond to observed data, solid lines correspond to the mean outbreak over a sample of posterior
parameters; shaded regions depict prediction intervals, with darker shading representing a narrower range of
uncertainty (dark shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent our
confidence in the fitted ODE model, and do not account for either stochastic dynamics nor the observational
distribution about the deterministic predictions - which would generate far wider intervals. Predictions were
produced using data up to 14th June 2020.
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Fig. S14: Health outcome predictions of the ODE from the beginning of the outbreak and 3
weeks into the future for the South East region. (Top left) Daily deaths; (top right) seropositivity
percentage; (bottom left) daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled
markers correspond to observed data, solid lines correspond to the mean outbreak over a sample of posterior
parameters; shaded regions depict prediction intervals, with darker shading representing a narrower range of
uncertainty (dark shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent our
confidence in the fitted ODE model, and do not account for either stochastic dynamics nor the observational
distribution about the deterministic predictions - which would generate far wider intervals. Predictions were
produced using data up to 14th June 2020.
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Fig. S15: Health outcome predictions of the ODE from the beginning of the outbreak and 3
weeks into the future for the South West region. (Top left) Daily deaths; (top right) seropositivity
percentage; (bottom left) daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled
markers correspond to observed data, solid lines correspond to the mean outbreak over a sample of posterior
parameters; shaded regions depict prediction intervals, with darker shading representing a narrower range of
uncertainty (dark shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent our
confidence in the fitted ODE model, and do not account for either stochastic dynamics nor the observational
distribution about the deterministic predictions - which would generate far wider intervals. Predictions were
produced using data up to 14th June 2020.
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Fig. S16: Health outcome predictions of the ODE from the beginning of the outbreak and 3 weeks
into the future for Wales. (Top left) Daily deaths; (top right) seropositivity percentage; (bottom left)
daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled markers correspond to observed
data, solid lines correspond to the mean outbreak over a sample of posterior parameters; shaded regions depict
prediction intervals, with darker shading representing a narrower range of uncertainty (dark shading - 50%,
moderate shading - 90%, light shading - 99%). The intervals represent our confidence in the fitted ODE model,
and do not account for either stochastic dynamics nor the observational distribution about the deterministic
predictions - which would generate far wider intervals. Predictions were produced using data up to 14th June
2020.
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Fig. S17: Health outcome predictions of the ODE from the beginning of the outbreak and 3 weeks
into the future for Scotland. (Top left) Daily deaths; (top right) seropositivity percentage; (bottom
left) daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled markers correspond
to observed data, solid lines correspond to the mean outbreak over a sample of posterior parameters; shaded
regions depict prediction intervals, with darker shading representing a narrower range of uncertainty (dark
shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent our confidence in the
fitted ODE model, and do not account for either stochastic dynamics nor the observational distribution about
the deterministic predictions - which would generate far wider intervals. Predictions were produced using data
up to 14th June 2020.
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Fig. S18: Health outcome predictions of the ODE from the beginning of the outbreak and 3 weeks
into the future for Northern Ireland. (Top left) Daily deaths; (top right) seropositivity percentage;
(bottom left) daily hospital admissions; (bottom right) ICU occupancy. In each panel: filled markers
correspond to observed data, solid lines correspond to the mean outbreak over a sample of posterior parameters;
shaded regions depict prediction intervals, with darker shading representing a narrower range of uncertainty
(dark shading - 50%, moderate shading - 90%, light shading - 99%). The intervals represent our confidence
in the fitted ODE model, and do not account for either stochastic dynamics nor the observational distribution
about the deterministic predictions - which would generate far wider intervals. Predictions were produced using
data up to 14th June 2020.
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