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ABSTRACT

During breast cancer metastasis, the developmental process epithelial–mesenchymal transition (EMT) is abnormally acti-
vated. Transcriptional regulatory networks controlling EMT are well-studied; however, alternative RNA splicing also plays
a critical regulatory role during this process. A comprehensive understanding of alternative splicing (AS) and the RNAbind-
ing proteins (RBPs) that regulate it during EMTand their impact on breast cancer remains largely unknown. In this study, we
annotated AS in the breast cancer TCGA data set and identified an AS signature that is capable of distinguishing epithelial
andmesenchymal states of the tumors. This AS signature contains 25AS events, amongwhich nine showed increased exon
inclusion and 16 showed exon skipping during EMT. This AS signature accurately assigns the EMT status of cells in the CCLE
data set and robustly predicts patient survival. We further developed an effective computational method using bipartite
networks to identify RBP-AS networks during EMT. This network analysis revealed the complexity of RBP regulation and
nominated previously unknown RBPs that regulate EMT-associated AS events. This study highlights the importance of
global AS regulation during EMT in cancer progression and paves the way for further investigation into RNA regulation
in EMT and metastasis.
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INTRODUCTION

Alternative splicing (AS) is the process whereby a single
gene transcript is spliced to generate numerous RNA iso-
forms with the potential to encode different proteins. It
has been reported that nearly all human genes undergo
AS, and alternatively spliced isoforms have been shown
to perform distinct functional roles in the cell (Wang
et al. 2008; Nilsen and Graveley 2010). The process of
AS is regulated by various cis-elements that are located
in the vicinity of variable exons of pre-mRNAs. These cis-el-
ements are recognized by cognate RNA-binding proteins
(RBPs) to influence splice site recognition by the spliceo-
some. Splicing-regulatory RBPs can have positive or nega-
tive effects on the inclusion of alternative exons and they
frequently interact with one another in complexes to mod-
ulate splicing regulatory action (Fu and Ares 2014;
Damianov et al. 2016; Ying et al. 2017). Therefore, the re-
lationship between RBPs and their target splicing events is

highly context-dependent, and deciphering the “splicing
code” is a continuing challenge in the field (Barash et al.
2010). Developing computational methods to understand
how and to what extent different groups of RBPs regulate
specific splicing events is of great interest.
The epithelial–mesenchymal transition (EMT) is a devel-

opmental process where epithelial cells lose their cell-cell
adhesions and apical-basal polarity while acquiring migra-
tory and invasive properties characteristic of mesenchymal
cells (Thiery and Sleeman 2006; Thiery et al. 2009).
Numerous studies have linked abnormal activation of
EMT to tumor metastasis, which remains the leading cause
of death in cancer patients (Yang and Weinberg 2008).
Genome-wide AS analysis revealed dynamic changes of
AS during EMT (Shapiro et al. 2011; Yang et al. 2016). A
handful of AS events and RBPs have also shown functional
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significance in EMT (Warzecha et al.
2009, 2010; Brown et al. 2011;
Reinke et al. 2012; Lu et al. 2013;
Huang et al. 2017; Li et al. 2018; Hu
et al. 2020). Given the strong relation-
ship between EMT and cancer meta-
stasis, analysis of cancer patient data
sets to study AS and regulatory RBPs
during EMT could be clinically infor-
mative in finding drivers of tumor
metastasis.

In this study, we made use of breast
invasive carcinoma (BRCA) RNA-se-
quencing data sets available through
The Cancer Genome Atlas (TCGA).
We derived an AS signature of EMT
that is capable of discriminating epi-
thelial and mesenchymal tumor sam-
ples and faithfully predicting patient
outcomes. In order to comprehen-
sively address the combinatorial regu-
lation of AS by RBPs during EMT, we
developed a bipartite network to as-
sociate multiple RBPs with target
splicing events. Through community
detection, we identified novel clusters
of RBPs involved in combinatorial reg-
ulation of AS. These clusters contain
newly identified EMT-associated
RBPs and splicing events that have
the power to predict patient survival.

RESULTS

Identification of EMT-associated AS events in human
breast cancer

To identify important AS events that are associated with
EMT in breast cancer, we first developed a method to dif-
ferentiate between epithelial and mesenchymal tumors in
TCGA-BRCA samples (Fig. 1A). We used E-cadherin
(CDH1) and Vimentin (VIM), two genes highly expressed
in epithelial and mesenchymal cell states, respectively, to
separate tumor specimens into either epithelial or mesen-
chymal tumors. This method of characterizing EMT status
was previously shown to be simple and robust (Park et al.
2008). Our rationale of choosing CDH1 and VIM is
that down-regulation of E-cadherin is a hallmark of EMT
which results in disassembly of the cell adherens junctions,
and loss of E-cadherin is implicated in cancer progres-
sion and metastasis (Hirohashi 1998; Beavon 2000;
Schmalhofer et al. 2009). In contrast, increased expression
of the intermediate filament Vimentin is a predominant
marker for mesenchymal cells (Leader et al. 1987; Satelli
and Li 2011).

Tumor samples were scored as epithelial or mesenchy-
mal tumors by plotting the difference in the expression be-
tween VIM and CDH1. For instance, a more mesenchymal
tumor expresses relatively higher levels of VIM and lower
levels of CDH1, resulting in a larger EMT score
(Supplemental Table S1). As shown in Supplemental
Figure S1A, tumors scoring one standard deviation below
the mean were designated as epithelial tumors and those
with an EMT score greater than one standard deviation
above the mean were classified as mesenchymal tumors.
This classification identified 143 epithelial specimens and
157 mesenchymal specimens out of a total of 1215
TCGA-BRCA samples.

To test whether this stratification creates a bias toward
existing breast cancer subtypes, we plotted the distribu-
tion of tumors in each subtype (Supplemental Fig. S1B).
Within the 300 epithelial and mesenchymal samples iden-
tified, 93 out of 157 mesenchymal samples and 129 out of
143 epithelial samples are associated with a known sub-
type within the database. Among the 93 mesenchymal
samples, 66 were of the luminal A or B subtype (71.7%)
and five were of basal subtype (5.4%). Among the 129 ep-
ithelial samples, 110 were of the luminal A or B subtype
(85.3%) and six were of basal subtype (4.7%). While
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FIGURE 1. Identification of EMT-associated AS events in human breast cancer. (A) Schematic
of the analysis pipeline. (B) Heat map of the PSI values of the 25 significantly altered cassette
exons in epithelial and mesenchymal samples. The PSI values were transformed into z-score
(mean=0 and standard deviation=1) and plotted for each event. Red denotes higher inclu-
sion of the cassette exon, while blue stands for higher skipping of that exon. Rows and columns
are clustered based on the Pearson correlation coefficient. (C,D) Genome browser tracts of
RNA-sequencing data showing alterations in AS between epithelial and mesenchymal sam-
ples. (C ) Epithelial samples show higher inclusion ofMAP3K7 exon 12 thanmesenchymal sam-
ples. (D) Epithelial samples show lower inclusion of SPAG9 exon 24 than mesenchymal
samples.
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normal-like tumors tended to be more mesenchymal and
luminal B tumors were generally more epithelial, our
EMT classification did not display a significant bias toward
epithelial luminal tumors and mesenchymal basal tumors.
Because themajority of AS events fall into the exon skip-

ping category, also called skipped exons (SE), we focused
on analyzing SE events of the above epithelial and mesen-
chymal tumors. We utilized exon junction reads and reads
landing in variable exons extracted from the TCGA RNA-
seq samples and calculated the Percent Spliced In (PSI) val-
ues of each of the AS events from a comprehensive list of
42,485 annotated SE events (Katz et al. 2010; Shen et al.
2014). We then calculated the differential PSI between tu-
mors classified by epithelial or mesenchymal state. This
approach led to the identification of 28 AS events that
showed a change in average PSI greater than 20% be-
tween epithelial and mesenchymal, with an FDR less
than 10−20. To avoid the confounding complications
caused by transcription changes, we also eliminated splic-
ing events with a change in gene expression greater than
1.5-fold between epithelial and mesenchymal tumors.
This resulted in a final list of 25 AS events that showed sig-
nificant differences in epithelial and mesenchymal tumors
(Supplemental Table S2). Among them, EXOC7 and
FGFR1 were previously reported to undergo isoform
switching in EMT (Lu et al. 2013; Hopkins et al. 2017), sup-
porting the validity of our 25 annotated AS events.
Unsupervised clustering of the levels of these 25 AS events
robustly separated the tumors into either epithelial or mes-
enchymal groups (Fig. 1B). Visualizing two representative
examples, RNA sequencing read density plots showed
that the degree ofMAP3K7 exon 12 inclusion is decreased
in mesenchymal tumors, whereas SPAG9 exon 24 inclu-
sion preferentially occurs in mesenchymal tumors (Fig.
1C,D). These analyses reveal that the 25 splicing events ex-
hibit significant differences between tumors that are epi-
thelial or mesenchymal in nature.

Validation of the 25 AS signature in a CCLE breast
cancer cell line data set

To assess whether the 25 AS signature can stratify inde-
pendent EMT-associated cancer samples, we analyzed a
different publicly available RNA sequencing database,
the Cancer Cell Line Encyclopedia (CCLE). This database
is composed of RNA sequencing data of 54 breast cancer
cell lines. We used expression levels of CDH1 and VIM to
derive their EMT scores and classified seven epithelial and
seven mesenchymal cell lines (Supplemental Table S3).
Comparison of PSI values in these 14 cell lines revealed
that all of the AS events showed alternative splicing in
the same direction as predicted, and 23 out of 25 AS
events showed significant differences in PSI, with an abso-
lute difference in PSI greater than 0.25 (Supplemental
Table S4). As expected, PSI-based unsupervised hierarchi-

cal clustering analysis grouped all epithelial cells and mes-
enchymal cells as two separate clusters (Fig. 2A). Similar to
what was observed in patient tumor specimens, the
MAP3K7 and SPAG9 splicing events stratified the epithe-
lial and mesenchymal breast cancer cell lines (Fig. 2B,C).
We next experimentally examined whether the compu-

tationally annotated AS events do, in fact, undergo isoform
switching during EMT. Using semiquantitative PCR, we
analyzed six out of the 25 AS events in four epithelial cells
and three mesenchymal cells, including CCLE-derived
lines and a pair of lines from an experimental EMT system
where the human mammary epithelial cells (HMLE) transit
into a mesenchymal state by overexpressing the transcrip-
tion factor Twist (HMLE/Twist) (Mani et al. 2008). Each of
the PCR reactions amplify both splice isoforms simultane-
ously, allowing for calculation of the PSI values. Not only
were the AS events significantly altered in the experimen-
tal EMT system, but similar PSI distributions were also de-
tected in breast cancer epithelial and mesenchymal cells
(Fig. 3A–F).

The 25 AS signature accurately predicts EMT status

If isoform switching of the 25 AS events is a general phe-
nomenon during EMT, the PSI in each tumor or cell line
should faithfully predict the epithelial or mesenchymal sta-
tus. To test this idea, we used four widely used machine
learning models, Support Vector Machine (SVM),
Decision Tree (DT), K-nearest neighbor (KNN), and Naive
Bayes (NB). We used fivefold cross-validation across 100
iterations and found that all machine learning methods ex-
hibited strong predictive power (Supplemental Fig. S2A–
C). A more stringent test was to use the 25 AS events
derived from the BRCA-TCGA data set and predict the ep-
ithelial and mesenchymal states of the CCLE samples. This
approach once again revealed high accuracy and sensitiv-
ity of the predictions, with the average accuracies of SVM,
DT, KNN, and NB at 87.81%, 87.47%, 99.13%, and
99.66%, respectively (Fig. 3G–I). Considering both speci-
ficity and selectivity in tandem with accuracy, KNN exhib-
ited the strongest predictive power. Thus, these results
indicate that our AS signature can accurately and effective-
ly distinguish epithelial and mesenchymal cell states and is
a robust signature of EMT.

Community detection of RBP-AS bipartite networks
reveals distinct clusters

The predictive capacity of the AS signature demonstrated
that AS of this subset of events is consistent and robust
during EMT. We hypothesized that a regulatory network
tightly controls these EMT-associated AS events, which
are likely functionally critical for EMT.
Since RBPs directly regulate AS, we focused on the rela-

tionship between RBPs and EMT-associated AS events by
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establishing correlation networks. We first analyzed the
correlation between RBP gene expression and the EMT
scores in each tumor sample bearing epithelial or mesen-
chymal states in the BRCA TCGA data set. This led to the
identification of 22 RBPs that showed a significant positive
or negative correlation (r≥0.4 or r≤−0.4, respectively, P≤
10−10, log2 gene fold-change≥1, Supplemental Table S5).

Bipartite networks contain two independent sets of
nodes where connections, or edges, are only drawn be-
tween nodes in the two different sets and not within one
set. To evaluate the relationships between RBPs and
EMT-associated AS events, we constructed bipartite corre-
lation networks using the 22 RBPs as one class of nodes
and 25 AS events as the other class of nodes (Fig. 4). The
RBP and AS nodes are connected when the absolute value
of the Pearson correlation coefficient (PCC) of an RBP and
AS node is equal to or greater than 0.4 (|PCC|≥0.4).
Following bipartite network construction, we applied a
fast unipartite modularity maximization algorithm to
detect communities within the network in order to identify
groups of RBP-AS events that are more closely connected
compared to the rest, as these communities are likely func-
tionally significant. This annotation yielded two groups of
RBPs based on their splicing activity: One group of RBPs
promote exon inclusion (Fig. 4A) and the other group of
RBPs promote exon skipping (Fig. 4D).

The majority of RBPs promoting exon inclusion shown in
Figure 4A is further clustered into two networks (Fig. 4B,C).

The network in Figure 4B represents
those RBPs that promote exon inclu-
sion and favors a mesenchymal AS
pattern. Among these RBPs, QKI,
ZCCHC24, and the CELF2 homolog
CELF1 were previously reported to
promote EMT (Chaudhury et al.
2016; Cieply et al. 2016; Yang et al.
2016), validating our computational
output. In contrast to these RBPs that
promote EMT-associated exon inclu-
sion events (Fig. 4B), RBPs can also
form a network with exon-inclusion
events that favor an epithelial AS
(Fig. 4C). Out of the seven RBPs,
ESRP1, ESRP2, and RBM47 have
been experimentally demonstrated
to inhibit EMT through AS regulation,
and EXOC7 exon inclusion promotes
an epithelial cell state (Warzecha
et al. 2010; Dittmar et al. 2012; Lu
et al. 2013; Yang et al. 2016). These
results show that our computationally
derived RBP-AS networks are sup-
ported by experimental evidence.
In addition to the above RBPs that

promote exon inclusion, the second
group of RBPs promotes exon skipping (Fig. 4D).
Clustering analysis separates RBPs into three networks.
The first and second networks depict connections be-
tween RBPs and exon skipping events that favor a mesen-
chymal splicing pattern (Fig. 4E,F), while the third network
connects RBPs and exon skipping events that favor an ep-
ithelial state (Fig. 4G). Noticeably, the majority of RBPs are
connected to several AS events. Conversely, each AS
event is regulated by a set of RBPs, promoting either the
same splicing directions or opposite splicing directions,
suggesting a combinatorial effect of RBPs through syner-
getic or antagonized fashions that tightly regulate AS
events during EMT. For example, exon inclusion in
MAP3K7 is one of the AS events favoring an epithelial
state. Several RBPs including RBM47, STRBP, and
C2orf15 promote the inclusion of MAP3K7 alternative
exon (Fig. 4C), potentially promote an epithelial state. In
contrast, a different group of RBPs, including PTRF,
CELF2, andQKI, promote the skipping of theMAP3K7 var-
iable exon, favoring a mesenchymal splicing pattern (Fig.
4F). These analyses reveal that the expression of different
RBP groups act in concert to dictate the splicing direction
of their gene targets, and that the combinatorial effect of
RBP-AS networks promotes either an epithelial or a mes-
enchymal splicing pattern during EMT.

To experimentally validate our bioinformatic findings,
we performed siRNA knockdown of RBPs and assessed
their effects on regulating alternative splicing of their
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FIGURE 2. Detection of the AS signature in the CCLE data set. (A) Heat map of the 25 EMT-
associated AS events between epithelial (n=7) and mesenchymal (n=7) cell lines from the
CCLE database. The heat map displays z-score transformed PSI values. The columns represent
samples and the rows represent the 25 EMT-associated alternative splicing events. (B,C )
Genome browser tracts of RNA-sequencing data showing alterations in alternative splicing be-
tween epithelial and mesenchymal cell lines. (B) Epithelial cell lines show higher inclusion of
MAP3K7 exon 12 than mesenchymal cell lines. (C ) Epithelial cell lines show lower inclusion
of SPAG9 exon 24 than mesenchymal cell lines.
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predicted downstream target, MAP3K7, whose exon 12 is
preferentially included in epithelial cells and skipped in
mesenchymal cells. We silenced the epithelial promoting
RBM47 andmesenchymal promotingQKI by siRNAs in ep-
ithelial MCF7 and mesenchymal HS_578T cells, respec-
tively, and examined the endogenous levels of MAP3K7
splice isoforms (Fig. 4H,I; Supplemental Fig. S3A,B). In
agreement with our RBP network prediction, knocking
down RBM47 promoted skipping of MAP3K7 exon 12,
while knocking down QKI promoted inclusion of this
exon. These results are further supported by previous find-
ings that RBM47 promotes an epithelial state and that QKI
accelerates EMT (Vanharanta et al. 2014; Pillman et al.
2018), illustrating the potential antagonizing role of these
two RBPs on the same exon in different cell states.

AS levels predict patient survival

Since the AS signature was capable of
distinguishing patient samples with
regard to their EMT status and
because abnormal activation of EMT
is a hallmark for tumor metastasis,
we next investigated the ability of
this AS signature to predict patient
survival using the TCGA-BRCA data-
base. We found that the PSI values
of four genes (ATP5C1, KIF13A,
CD44, LRRFIP2) showed the most sig-
nificant survival curve separation (Fig.
5A–D). Patients that had AS levels that
favor a mesenchymal splicing pattern
showed a worse survival prediction
compared to those with the epithelial
splicing pattern, indicating that pro-
motion of EMT-associated splicing
correlates with poorer patient out-
comes. We also plotted the survival
curves based on the gene expression
level of the same four genes
(Supplemental Fig. S4A–D). CD44
and ATP5C1 were not able to sepa-
rate survival based on gene expres-
sion. Interestingly, gene expression
levels of LRRFIP2 and KIF13A were
able to separate survival curves, but
the directionality of prediction was
opposite between gene expression
and alternative splicing levels. For ex-
ample, high expression levels of
KIF13A predicts poor survival while
higher AS levels predicts better sur-
vival. These results indicate that
gene expression and alternative splic-
ing are independent measures in
BRCA progression, further demon-

strating the significance of alternative splicing in patient
survival prediction.
We further examined whether composite PSI values are

capable of predicting patient survival. We used patient tu-
mor PSI values of the aforementioned four AS events as in-
dependent variables and applied them to the COX
proportional hazard model (Cox 1972) to estimate the sur-
vival probability over time of a patient. We randomly se-
lected five patients from the BRCA-TCGA data set and
generated a putative survival curve for each patient (Fig.
5E). We then compared the predicted survival probability
to the known survival time recorded in TCGA. Strikingly,
the patient survival probabilities estimated from the PSI
value-based COXmodel completely matched their known
survival information. As shown in Figure 5E, the patient
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FIGURE 3. Experimental and computational validation of the AS signature. (A–F )
Semiquantitative PCR validation of six out of 25 AS events in epithelial or mesenchymal cell
lines from the CCLE database. (G–I ) Prediction of epithelial or mesenchymal cell status from
the CCLE database based on the EMT AS signature through machine learning methods
(SVM, DT, KNN, and NB). (G) Accuracy. (H) Sensitivity. (I ) Specificity distribution is shown for
all four methods. All machine learning methods using the AS signature exhibit strong predic-
tive power with average accuracies of SVM, DT, KNN, andNB at 87.81%, 87.47%, 99.13%, and
99.66%, respectively.
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with shortest survival time (1008 d) has the worst predicted
survival outcome (cyan line), whereas the patient with lon-
gest survival time (7125 d) is predicted with the best sur-
vival outcome (black line). The rank of predicted survival
of all five patients is consistent with that of their known sur-
vival time. Moreover, we tested whether this prediction
model holds true in different subtypes of breast cancer
by comparing the survival of five randomly picked patients

within the basal subtype (Fig. 5F) and the luminal A sub-
type (Fig. 5G). Once again, the survival probabilities
were accurately predicted by the alternative splicing signa-
ture. In contrast, the gene expression levels of these four
genes lack the ability to accurately estimate the survival
probabilities (Supplemental Fig. S4E–G). Thus, these re-
sults indicate that the EMT-associated AS signature has
strong predictive power for breast cancer patient survival.
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FIGURE 4. Community detection of RBP-AS bipartite networks. (A) Subgroup A correlated with exon inclusion. (B) RBPs and associated exon
inclusion events that promote EMT. (C ) RBPs and associated exon inclusion events that inhibit EMT and promote epithelial state.
(D) Subgroup B correlated with exon skipping. (E,F ) RBPs and associated exon skipping events that promote EMT. (G) RBPs and associated
exon skipping events that inhibit EMT. Node sizes are proportional to the number of related events. (H,I ) Semiquantitative PCR validation of
MAP3K7 exon 12 alternative splicing affected by RBP knockdown in MCF7 cells or HS_578T cells.
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DISCUSSION

Previous studies have focused on transcriptional regula-
tion of EMT. However, the role of global AS regulation in
EMT remains relatively uncharacterized, with little connec-
tion to clinical data sets. In this study, we attempted to
characterize the AS differences between epithelial and
mesenchymal tumors from TCGA. We derived an AS sig-
nature consisting of differentially spliced genes between
epithelial andmesenchymal patient tumors. This signature
is validated both experimentally and bioinformatically. We
constructed bipartite networks of RBPs and the AS signa-
ture, revealing RBP-AS communities with a likelihood for
functional connections. Our AS signature can accurately
predict patient survival, suggesting its potential as a clini-
cal prognostic factor. This study highlights the importance
of global AS regulation during EMT and provides solid
ground for further investigation into RNA regulation in
EMT and metastasis.
Understanding the underlying mechanisms that regu-

late EMT is critical for developing new therapeutic ap-
proaches against metastasis. As AS plays a critical role in
EMT and cancer progression, multiple attempts have
been made at deciphering the global regulatory role of
AS in EMT and metastasis. Recent studies have tried to un-
derstand AS regulation at the transcriptome level.
However, efforts to explore AS changes during EMT

havemostly focused on in vitro studies in cell lines with lim-
ited connections to human patient data sets. In this study,
we utilized the human invasive breast cancer data set from
TCGA in order to examine the AS changes between epi-
thelial and mesenchymal breast tumors. We subdivided
the data set into epithelial and mesenchymal tumor sam-
ples using an EMT gene expression signature. Our EMT
gene expression signature utilizes CDH1 and VIM, two
gene markers highly expressed in epithelial and mesen-
chymal cell states, respectively, which clearly and accurate-
ly separated patient tumor samples into epithelial or
mesenchymal-like categories, demonstrating the simplic-
ity and accuracy of our gene expression signature.
Through analysis of differential splicing between the ep-

ithelial and mesenchymal tumors, we identified an AS sig-
nature of 25 genes that showed a drastic change in splicing
patterns between epithelial and mesenchymal tumors.
These events are validated in a separate CCLE database
both bioinformatically and experimentally. Several of
these events have been shown in previous publications,
by our laboratory and other groups, to not only occur dur-
ing EMT, but also be functionally important for EMT
(Warzecha et al. 2009, 2010; Brown et al. 2011; Reinke
et al. 2012; Lu et al. 2013; Hopkins et al. 2017; Huang
et al. 2017; Li et al. 2018; Hu et al. 2020). Our analysis high-
lights the clinical significance of AS in breast cancer and
provides the impetus for further mechanistic investigations
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FIGURE 5. AS levels predict patient survival. (A–D) Kaplan-Meier survival plots of BRCA patients from TCGA stratified by the exon-inclusion level
of four of the 25 EMT AS events. High PSI is 50% above the average PSI value while low PSI is 50% below the average PSI value. The “survdiff”
function in R is used to compute P-values using the log-rank test. (E–G) Alternative splicing of the genesATP5C1, KIF13A,CD44, and LRRFIP2 are
used to predict the survival of five randomly selected patients from TCGA using the Cox proportional hazard model. The known patient survival
times from TCGA are indicated in the inserted boxes as “t=”with the unit as days. The estimated survival probabilities over time by PSI values are
plotted, and the color code of each patient survival curve corresponds to the same patient with indicated survival time from TCGA in the inserted
box. Patients are randomly selected without specifying a breast cancer subtype (E), from the basal subtype (F ), or from the luminal A subtype (G).
Regardless of subtype classification, patients with the longer survival time in TCGA showed better predicted survival and vice versa.
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into how each individual splicing event contributes to EMT
and cell plasticity.

From our analysis of epithelial and mesenchymal tu-
mors, we extracted a list of RBPs that may play a critical
role during EMT through correlation analysis and robust fil-
tering. We linked splicing events with their regulators and
tried to build a functionally interconnected regulation net-
work that dictates EMT direction. Community detection
methods on EMT associated splicing events identified
subnetwork clusters that are positively or negatively asso-
ciated with EMT. RBPs and their target AS events form
highly connected communities which may indicate enrich-
ment of specific biological functions. We tested our bioin-
formatic findings experimentally. MAP3K7 alternative
exon 12 is a conserved tissue-specific alternative splicing
event (Venables et al. 2012). It was recently reported that
skipping of exon 12 generates a constitutively active
MAP3K7 kinase important for cells to undergo EMT
(Tripathi et al. 2019). Here, we have identified two splicing
factors RBM47 and QKI that antagonize each other to pro-
mote an epithelial or mesenchymal isoform, respectively.
Our analysis provides a new way of exploring the associa-
tion between RBPs and AS events and provides an oppor-
tunity to further study global AS regulation in EMT.

While our community detection analysis identified
known EMT RBP regulators such as the ESRPs, QKI and
RBM47 (Warzecha et al. 2010; Cieply et al. 2016; Yang
et al. 2016), our networks contain numerous RBPs and
AS events with no known functional connections to EMT.
However, the magnitude of the node size in each commu-
nity suggests putative RBPs or splicing events with dense
connections have a higher likelihood of an important
role. As an example, ZCCHC24 was one of the most signif-
icantly connected RBP nodes, and was recently shown to
have highly labile expression during induction of pluripo-
tency (Cieply et al. 2016). EMT has been associated with
an increase in stemness and stem-cell phenotypes
(Pradella et al. 2017), suggesting ZCCHC24 is a promising
candidate for future study. LARP6 is another RBP node that
we discovered to regulate mesenchymal splicing patterns.
Interestingly, LARP6 regulates collagen synthesis and tis-
sue fibrosis, phenotypes that are closely connected to
EMT (Cai et al. 2010). It will be interesting as a future direc-
tion to investigate its role in alternative splicing regulation
that impacts an EMT phenotype. Future investigations on
the RBP-AS network have the potential to link previously
undetected pathways with EMT progression and tumor
metastasis.

AS has been shown to be a promising predictor of pa-
tient outcome (Shen et al. 2016). To test the predictive
power of our AS signature derived from the patient
TCGA data set, we utilized machine learning techniques
to predict the EMT category of CCLE as another indepen-
dent RNA sequencing data set. In all machine learning
models, our 25-gene splicing signature has strong predic-

tive power ranging from 87.47%–99.6% in the CCLE data
set. Many of these splicing events are strong predictors
of poor survival, while their gene expression levels are
not as informative. Using only four out of the 25 AS signa-
tures, we were able to accurately rank patient survival
probabilities. For the same set of patients within the basal
or luminal A subtype, using a combined signature of four
alternative splicing events surpasses the predictive ability
of using their gene expression levels. This showed that
our analysis extractedmeaningful alternative splicing infor-
mation which cannot be replaced by traditional gene ex-
pression approaches. These results highlight the clinical
relevance of this splicing signature. We speculate that
this splicing signature will be a useful clinical predictor of
tumor EMT status and patient survival.

MATERIALS AND METHODS

EMT score calculation

The EMT score is calculated as the gene expression difference be-
tween VIM and CDH1 (VIM-CDH1) and ranked in descending or-
der. Samples whose EMT scorewas one standard deviation above
the mean were classified as mesenchymal, while the samples with
an EMT score one standard deviation below the mean were de-
noted as epithelial.

Analysis of alternative splicing

Raw junction reads in the PSI estimation were downloaded from
Level 3 TCGA BRCA data from the GDC legacy archive (https
://portal.gdc.cancer.gov/legacy-archive). Known alternative splic-
ing events were classified using an annotated set of splicing
events provided by the splicing analysis tool MISO downloaded
from (http://miso.readthedocs.io/en/fastmiso/) (Katz et al. 2010).
The percentage spliced in (PSI) values of each cassette exon
were calculated using the following formula:

PSI = I/LI
I/LI + S/LS

, (1)

where I represents the exon inclusion readswhich are from the up-
stream splice junction and the downstream splice junction. S rep-
resents the exon skipping reads which are from the skipping
splice junction connecting the upstream exon to the downstream
exon. LI is the effective length of inclusion isoform, LS is the effec-
tive length of skipping isoform, j is the junction length which is de-
fined as j=2× (read length-anchor length), and i is the read
length. When a gene contains multiple variable exons, the effec-
tive length of inclusion isoform (LI) is calculated as LI=m× ( j−
r + 1), and the junction length is denoted as j=m× (readLength
− anchorLength). m represents the number of variable exons for
isoform, such as m=2 for a splicing event with two adjacent var-
iable exons. For those events that have the same starting coordi-
nates but different ending coordinates, only the one whose
distance is largest is considered.
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Identification of EMT-related AS events

The mean PSI for each gene from the epithelial or mesenchymal
samples (TCGA or CCLE) is calculated. The absolute value of the
difference between the average PSI for each gene is calculated
(ΔPSI) (Supplemental Table S2). Significant AS events are selected
by ΔPSI≥ 0.2, FDR≤10−20, and associated fold change of gene
expression value≤ 1.5. The known EMT associated splicing event
CD44 is also included (Brown et al. 2011).

Validation of AS events through semiquantitative
PCR

Briefly, RNA was extracted from cultured epithelial cell lines
HMLE pBP, HCC1428, MCF7 and mesenchymal cell lines BT-
578T, HS_578T, MDA-MB-157, and HMLE/Twist using the E.Z.
N.A Total RNA Kit (Omega Bio-Tek). RNA concentration and pu-
rity were measured on a Nanodrop 2000 (Thermo Fisher
Scientific).

cDNA was generated via reverse transcription using the
GoScript Reverse Transcription System (Promega) with 1 µL
GoScript RT and 250 ng of RNA in a total volume of 20 µL fol-
lowed by incubation at 25°C for 5 min, 42°C for 30 min, and
70°C for 15 min. Semiquantitative RT-PCR assaying for splicing
products was performed using Hot StarTaq DNA polymerase
(Qiagen), and PCR cycles were run for 30 or fewer cycles.
Primers for semiquantitative analysis were designed on constitu-
tive exons flanking each variable exon. Semiquantitative PCR
generates both exon inclusion and skipping products which
were separated through agarose gel electrophoresis. PCR prod-
uct intensity wasmeasured using ImageJ image analysis software.

Identification of EMT-associated RBPs

The Pearson correlation value (r) is calculated between RBP ex-
pression and the EMT score of each tumor sample, then ranked
in descending order. Significant RBPs are selected by r≥ 0.4 or
r≤−0.4, P≤10−10, gene absolute fold change≥1.5.

Machine-learning classification of EMT status

We evaluated how well AS events can distinguish epithelial or
mesenchymal samples. We used fivefold cross-validation across
100 iterations using themachine learningmethods support vector
machine (SVM), decision tree (DT), K-nearest neighbor (KNN) and
Naive Bayes. Epithelial and mesenchymal samples from TCGA
were randomly divided into five equal sized samples with four
samples randomly assigned as the training set, and the remaining
sample designated as the test set. This process is repeated five
times until each sample has been assigned as the test set (one
run). The average of the five results from one run is then used
as a single estimation. This process is repeated 100 times and
plotted for accuracy, specificity and sensitivity. We repeated this
process using RNA-seq data from CCLE breast cancer cell lines
to further evaluate prediction performance, training the parame-
ters using four TCGA subsets and using the CCLE data set as the
test set. We used the fitcsvm function in Matlab R2018b for the
SVM method and adopted the corresponding functions defined
in Matlab for the DT, KNN and NB methods.

Bipartite network between RBPs and AS events and
community detection

To construct an RBP-AS bipartite network, we represent the rela-
tionship between RBPs and AS events in the form of a nR×nA ad-
jacency matrix, where nR is the number of the selected RBPs and
nA is the total number of AS events. The matrix B is defined as fol-
lows:

Bij = 1, if PCC| ≥ 0.4,
0, Otherwise.

{
(2)

The bipartite network is created by joining together pairs of
RBPs and AS when Bij=1.
We further applied modularity to measure the density of links

inside communities as compared to links between communities
(Blondel et al. 2008). The bipartite modularity is defined as fol-
lows:

Q = 1
m

∑
i,j

Bij − kidj

m

( )
d(Ci , Cj ), (3)

wherem is the number of links in the network, Bij is the weight of
the edge between RBP i and isoform j, ki is the degree of RBP i, dj

is the degree of AS event j, and Ci,Cj are the community indices
of RBP i and isoform j, respectively. The δ-function δ (u, v) is de-
fined as:

d(u, v) = 1, if u = v,
0, Otherwise.

{
(4)

We ran the algorithm in R and adopted the “igraph” packages
for the figures. Node sizes are proportional to the number of relat-
ed events.

siRNA-mediated knockdown of RBP nodes

Briefly, 5 × 104 MCF7 or HS_578T cells were seeded into each
well of a 24-well plate. Twenty-four hours after seeding, siRNAs
against RBPs were added at a final concentration of 10 nM per
well using 1 µL Lipofectamine RNAiMAX transfection reagent
(Invitrogen). RNA was collected 72 h after transfection using the
E.Z.N.A Total RNA Kit (Omega Bio-Tek).

Survival analysis of TCGA BRCA data

Kaplan-Meier survival plots of BRCA patients from TCGA strati-
fied by the exon-inclusion level of four of the 25 EMT AS events
were plotted. High or low PSI is defined by being 50% above or
below the average PSI value, respectively.
The Cox proportional hazards model demonstrates that the

hazard function h(t), which means the risk of death at time t. for
an individual with a certain gene expression profile, is given by

h(t|X ) = h0(t) exp
∑p
i=1

bixi

( )
= h0(t) exp (bTX ), (5)

where h0(t) is the baseline hazard when the PSI values of all four
genes (ATP5C1, KIF13A, CD44 and LRRFIP2) are equal to zero.
β= (β1, β2, · · · βp)

T denotes the column vector of regression param-
eter. X= (x1, x2, · · · xp)

T denotes the PSI value of p splicing events.
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The Cox partial likelihood is derived as follows:

L(b) =
∏
r[D

exp (bTX (r ))∑
j[Rr

exp (bTX (j))
, (6)

where D denotes the set of indices of patient death and Rr is the
set of indices of individuals at risk for death at time tr (Gui and Li
2005). We take the logarithm of the Cox partial likelihood as fol-
lows:

L(b) =
∑
r[D

bTX (r ) − log
∑
j[Rr

exp (bTX (j))

( )( )
. (7)

The normal maximum likelihood estimation method is then ap-
plied to calculate the unknown parameters β. This cox proportion-
al hazardmodel is used to plot the predicted survival curve for any
patient sample with known PSI values for the four splicing events.
We picked five random data sets with different survival times and
plotted their survival curves using this model.

We adopted the “survival” package in R to plot the predicted
survival curve. All Kaplan-Meier curves are plotted using the
“survfit” function, and the “survdiff” function is used compute
P-values using the log-rank test.

DATA DEPOSITION

Processed TCGABRCA Level 3 RNA-SeqV2 gene expression data
were downloaded from the Genomic Data Commons (GDC)
Legacy Archive (https://portal.gdc.cancer.gov/legacy-archive).
CCLE data were downloaded from the CCLE database (https
://portals.broadinstitute.org/ccle). All data generated or analyzed
during this study (compiled tables of EMT scores, differential
splicing analysis, EMT-related RBP analysis, and survival analysis
from TCGA and CCLE) are included in this published article
(and its Supplemental Information files). The original scripts gen-
erated during the current study are available from the corre-
sponding author on reasonable request.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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