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Abstract

Mass spectrometry (MS) plays an important role in seeking biomarkers for disease detection. 

High-quality quantitative data is needed for accurate analysis of metabolic perturbations in 

patients. This article describes recent developments in MS-based non-targeted metabolomics 

research with applications to the detection of several major common human diseases, focusing on 

study cohorts, MS platforms utilized, statistical analyses and discriminant metabolite 

identification. Potential disease biomarkers recently discovered for type 2 diabetes, cardiovascular 

disease, hepatocellular carcinoma, breast cancer and prostate cancer through metabolomics are 

summarized, and limitations are discussed.
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Introduction

Based on the National Institutes of Health Biomarkers Definitions Working Group, a 

biomarker is a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention.[1] The parameters that characterize the performance of a 

biomarker-based test include sensitivity, specificity, positive predictive value, and negative 

predictive value. In practice, no biomarker-based test has perfect clinical and analytical 

sensitivity and specificity. For example, the current blood screening test for hepatocellular 

carcinoma (HCC) diagnosis, based on α-fetoprotein (AFP) detection, has limited specificity 

and sensitivity since AFP is also a fetal antigen and other liver diseases such as hepatic 
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cirrhosis can also lead to high AFP blood levels.[2] For prostate cancer (PCa) diagnosis, the 

current blood test based on prostate specific antigen (PSA) measurement has low specificity 

because elevated PSA levels can also result from inflammatory processes or benign prostatic 

hyperplasia (BPH).[3] Based on the multiple processes that can lead to disease, a biomarker 

panel consisting of multiple compounds may provide more accurate correlations to disease 

states with enhanced sensitivity and selectivity than a single biomarker for detection.[4–6] In 

this scenario, the comprehensive analysis of small molecule metabolites in a biological 

system through metabolomics technology has opened a new window for biomarker 

discovery. Groups of metabolites can result in a disease signature that may change as a 

process evolves and reflect the health state of a patient through a close representation of the 

phenotype.

Over the last decade, mass spectrometry (MS) has witnessed a very rapid growth in clinical 

metabolomics with targeted and non-targeted approaches. Targeted metabolomics aims to 

quantify the concentration of a predefined set of chemically characterized metabolites, while 

non-targeted metabolomics comprehensively analyzes all measurable analytes in a sample 

including chemical unknowns.[7] In this review, we provide an overview of MS-based non-

targeted metabolomics studies for human disease biomarker discovery, mostly reported in 

the past three years. We also discuss the general procedures for non-targeted metabolomics 

workflow and provide guidelines on how to conduct this type of studies.

At present, there are difficulties in replication of the identified disease biomarkers. Several 

factors may contribute to this issue: first, it is difficult to obtain cohorts with sufficient large 

size and diversity in ethnicity, gender and geographical region for both training and 

validation tests; secondly, differences in techniques affect metabolite detection and different 

data-processing methods such as normalization method may also affect analysis results. 

Significant efforts are needed in constructing large biobanking systems and standardizing of 

metabolomics workflow.

Recent MS-based Non-targeted Metabolomics Studies in Disease 

Biomarker Discovery

Type 2 diabetes

In the past three years, diabetes has been one of the most frequently studied diseases using 

MS-based metabolomics. Different studies providing metabolite panels that outperformed 

models based on clinical risk factors for type 2 diabetes risk prediction are summarized in 

Table 1. Peddinti et al. implemented both non-targeted and targeted metabolic profiling of 

fasting serum samples from a Finnish cohort used for training classification models, and 

plasma samples from a French cohort used for validation (Table 1).[8] Non-targeted 

metabolic profiling was performed using ultraperformance liquid chromatography mass 

spectrometry (UPLC-MS) and gas chromatography (GC)-MS-based methods and targeted 

metabolomics was used for absolute metabolite quantification using isotope-dilution liquid 

chromatography tandem mass spectrometry (LC-MS/MS).[8] A set of 34 differential 

metabolites was associated with type 2 diabetes progression, and a 7-metabolite panel 

comprised of glucose, mannose, α-hydroxybutyrate (α-HB), α-tocopherol, bradykinin 
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hydroxyproline ([Hyp3]-BK) and two unknown compounds, was found to predict type 2 

diabetes risk.[8] Also, increased levels of BCAAs (valine and isoleucine) and decreased 

levels of histidine, glutamine and glycine were found associated with progression to type 2 

diabetes.[8] ROC curves were generated by repeated nested cross-validation and AUC was 

0.75 for the 7-metabolite model and 0.78 for a combined model including clinical risk 

factors, which were significantly better than the clinical-only model (AUC = 0.68). This 

marker panel was further tested in the validation cohort using 4 out of 7 metabolites 

(glucose, mannose, α-HB and α-tocopherol) with an AUC = 0.84 for the combined model.

[8] A strength of this work relies on the robust models developed, but limitations are 

associated with the biological interpretation of the potential biomarkers obtained based on 

the identification confidence level provided for these compounds.

A different LC-MS based non-targeted metabolomics study coupled with genetic analyses 

identified bile acid synthesis and phospholipid metabolism as being associated with type 2 

diabetes incidence.[9] Data from three Swedish cohorts were involved in this study, and a 

German cohort was utilized for further replication.[9] Fifteen metabolites were significantly 

altered in models adjusted for age, gender, waist circumference, body mass index (BMI) and 

fasting glucose (p < 0.05), however, only five compounds (cortisol, γ-glutamyl-leucine, 2-

methylbutyroylcarnitine, L-tyrosine and deoxycholic acid) could be analyzed in the 

validation cohort,[9] revealing the difficulty in replicating in an independent cohort from a 

different geographical region biomarkers discovered in a non-targeted fashion and with 

different analytical methods. In addition, different metabolite panels were found by authors 

from Refs. [8] and [9] due to the implementation of different analytical methods (LC-MS 

and GC-MS vs. LC-MS) and different normalization methods. Identification of 

monosaccharides and polar amino acids was limited by using only reverse-phase LC in 

which polar metabolites are not well retained, and considering that all metabolic features 

with a retention time < 35 s were excluded. [9].

Another non-targeted metabolomics study on metabolic signatures of type 2 diabetes risk 

applied both LC-MS and GC-MS to obtain serum metabolic profiles from a Singapore 

Chinese cohort (Table 1).[10] Thirty-five differential metabolites were found associated with 

increased type 2 diabetes risk, including increased levels of BCAAs and non-esterified fatty 

acids (palmitic acid, linoleic acid, oleic acid, and stearic acid), and decreased levels of 

proline, serine and medium-chain acylcarnitines. The positive association of BCAAs (valine 

and isoleucine [8]) and valine, leucine and isoleucine [10] with progression to type 2 

diabetes is consistent with a recent meta-analysis.[11] However, palmitic acid and stearic 

acid may also be background or contaminant ions, and their origins need further verification 

since no blank samples were analyzed, this lack being a limitation of this study. From the 

pool of 35 differential metabolites, a group of six metabolites (proline, glycerol, 

aminomalonic acid, lysophosphatidylinositol (LPI) (16:1), 3-carboxy-4-methyl-5-propyl-2-

furanpropionic acid (CMPF), and urea) with AUC >0.80 were added to a multivariate-

adjusted logistic regression model together with established diabetes risk factors, improving 

the AUC of type 2 diabetes risk prediction from 0.769 to 0.935.[10]
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Cardiovascular disease (CVD)

Coronary heart disease is the leading cause of mortality in most developed countries. 

Different potential plasma biomarker panels associated to CVD risk were discovered by 

means of metabolomics and lipidomics strategies (Table 2). Hazen and coworkers conducted 

non-targeted and targeted metabolic profiling studies using training and validation cohorts of 

different sizes (Table 2). [12, 13] In a first study [13], 18 plasma analytes, selected by 

stringent feature selection approaches, were identified to be associated with cardiac risk, 

including choline, trimethylamine N-oxide (TMAO), betaine, and also a compound with m/z 
= 189.1, which was subsequently confirmed to be N6,N6,N6-trimethyl-L-lysine (TML). [12] 

The latter, which is a nutrient precursor for gut microbiota-dependent generation of 

trimethylamine (TMA), and the atherogenic metabolite TMAO, were suggested in a second 

study as independent prognostic biomarkers for CVD risk.[12]

Both genetic and environmental factors are related to CVD pathogenesis, with a known 

environmental factor being a lipid-rich diet.[13] Stegemann etal. performed a shotgun 

lipidomics ancillary study within the Bruneck study, finding that triacylglycerols (TAGs) and 

cholesterol esters (CEs) showed the strongest associations with CVD risk, followed by 

phosphatidylethanolamines (PEs)/phosphatidylcholines (PCs), sphingomyelins (SMs) and 

lysophosphatidylcholines (LPCs).[14] These results were consistent with their follow-up 

targeted proteomics and lipidomics study using multiple reaction monitoring MS (MRM-

MS) in which three apolipoproteins (apoC-II, apoC-III and apoE) were most significantly 

associated with incident CVD, from the total of 13 apolipoproteins quantified. Lipid species 

including TAGs, CEs, PCs and PEs were also found to be strongly correlated with apoC-II, 

apoC-III and apoE.[15]

Hepatocellular carcinoma (HCC)

Recently, non-targeted metabolomics studies in serum, plasma and tissue have been 

undertaken to discover new biomarkers of HCC.[16–19] Gong et al. analyzed serum samples 

of HCC and hepatitis B virus cirrhosis (HBV-CIRR) patients, which were compared to 

healthy controls (HCs) using both GC-MS and LC-MS-based methods (Table 3). [16] These 

authors performed non-targeted metabolomics experiments and targeted analysis of 22 

eicosanoids, deriving 14 differential metabolites that were progressively altered in HBV-

CIRR and HCC, including increased levels of malate, citrate, succinate, lysine, carnitine, 

proline, ornithine, serine, phenylalanine, tyrosine, and arachidonic acid, and decreased levels 

of arabinose, galactose and uric acid.[16] The AUC, sensitivity and specificity values of the 

two signatures of selected eicosanoids and other metabolites (Table 3) showed better 

discrimination results than AFP.[16] Besides, Wang et al. reported candidate biomarkers for 

HCC clinical staging (between stage I and non-stage I HCC and between stages I and II) 

including dihydrocortisol, taurine, uric acid, LPC, LPE, and estrone, among others (Table 3). 

[18] Di Poto et al. conducted GC-MS-based non-targeted metabolomics analysis on plasma 

samples from HCC patients and liver CIRR controls (Table 3).[19] Notably, this was 

followed by a targeted evaluation of 46 metabolites selected based on those exhibiting 

significant changes in non-targeted analysis, metabolites selected from their previous study 

on an Egyptian cohort, and from literature search by text mining.[19] Least absolute 

shrinkage and selection operator (LASSO) regression further provided a 11-metabolite 
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signature containing amino acids and their derivatives (valine, serine, glycine, isoleucine, 

creatinine, and pyroglutamic acid/glutamic acid), sugars, and alcohols (alpha-D-glucosamine 

1-phosphate and tagatose), fatty acids (linoleic acid and lauric acid) and the inorganic acid 

phosphoric acid, which combined with clinical factors, discriminated HCC from CIRR 

controls (AUC = 0.857 using SVM), much better than AFP (AUC = 0.712).[19] However, 

some metabolite identities such as phosphoric acid, lauric acid, and tagatose might also be 

originated from exogenous sources such as food or contamination and their true origin needs 

to be further examined.

Breast cancer (BC)

BC is among the most curable cancers when diagnosed at early stages. Several studies using 

serum, plasma, urine and tissue samples from BC patients were recently reported on the 

discovery of new biomarker candidates for BC diagnosis and improved prognosis.[20–23] 

Asiago etal. studied BC recurrence using a combination of NMR and two-dimensional 

GC×GC-MS (Table 4). [20] In this study, serum samples were collected more than 3 months 

before recurrence diagnosis (“Pre”), within 3 months before/after diagnosis (“Within”), and 

3 months after recurrence diagnosis (“Post”), as well as from patients with no evidence of 

disease (NED). Initial logistic regression analysis was used to rank metabolites to maximize 

diagnostic accuracy, then a partial least squares-discriminant analysis (PLS-DA) model with 

11 metabolite markers (Table 4) was built yielding 86% sensitivity and 84% specificity for 

“Post” and “Within” vs. “NED” with leave-one-out cross-validation. Overall, sensitivity was 

much improved than the current BC-monitoring assay - cancer antigen (CA) 27.29 (Table 4).

[20]

A plasma LC-MS-based metabolomics study of BC patients and HCs combined with a 

pathway-based approach was recently reported (Table 4), in which 105 metabolites related to 

more than 35 metabolic pathways were detected and analyzed.[21] Results from univariate 

and multivariate analysis showed effective all-stage as well as early-stage BC diagnosis. 

Significant disturbances in arginine/proline and tryptophan metabolism as well as fatty acid 

biosynthesis were revealed.[21] It is worth noting that proline was also found to be 

discriminant for BC in agreement with the serum study reported in Ref [20].

In a GC-MS-based serum metabolic profiling study of 152 BC patients and 155 HCs,[24] 7 

compounds were significantly altered between BC patients and HCs including 

dimethyldodecane, galactose, a-glyceryl stearate, methyl stearate, 1-(1-

methoxycarbonylethyl)-4-(2-methyl-2-hydroxypropyl)benzene, tetradecane and 

glucopyranoside. [24] Despite the possibility of some of these species having an exogenous 

origin, another study looking at volatile biomarkers of BC in breath has also shown the 

presence of alkanes (e.g. tridecane, dodecane and tetradecane),[25] which may have possibly 

resulted from oxidative stress on polyunsaturated fatty acids.[26] However, tetradecane, 

dimethyldodecane, and 1-(1-methoxycarbonylethyl)-4-(2-methyl-2-hydroxypropyl)benzene 

and glucopyranoside, to our knowledge, have not been reported in blood samples, and thus 

their origin is unclear and should be further verified to ensure correct identification and 

eliminate the possibility of contamination.

Zang et al. Page 5

Trends Analyt Chem. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prostate Cancer (PCa)

Recently, studies on PCa metabolic biomarker discovery were performed using plasma, 

serum, tissue, and urinary extracellular vesicle (EV) samples.[27–29]. The prostate serum 

antigen (PSA) is currently the most common marker used for screening PCa despite its 

limited specificity.[30] One of the most debated urine potential biomarkers for PCa in the 

literature is sarcosine, however its use in the clinic remains controversial. [31] These 

limitations continue to drive efforts in discovering new diagnostic markers for PCa with 

better specificity and sensitivity.

Recently, Fernandez and collaborators performed a rapid analysis of PCa and HC serum 

samples using flow injection-traveling wave-ion mobility mass spectrometry (FI-TWIM-

MS), resulting in a PCa signature with uric acid, phe-phe, tryptophan, phenylacetyl 

glutamine, indole, p-cresol sulfate, lysophosphatidyl ethanolamine (LPE) (18:2), lysine, 

LPC(18:2), and leucine/isoleucine/allo-isoleucine that was used to differentiate PCa patients 

from controls with good sensitivity and specificity (Table 5). [27] The positive association 

between uric acid and PCa detection in this study was consistent with the finding by Kolonel 

et al. [32] Also interestingly, the performance of this method was comparable to an assay 

that outperformed the PSA test using the more comprehensive, but more time consuming 

UPLC-MS approach, suggesting that higher throughput tools can perform as well as more 

conventional, “gold standard” approaches.[27]

Two recent studies have followed an uncommon, yet promising approach for PCa biomarker 

discovery, primarily focusing on the analysis of urine EVs (Table 5).[28, 29] Puhka et al. 
analyzed samples from 3 PCa patients, collected before prostatectomy (pre) and after 

prostatectomy (post), and from 3 HCs (Table 5).[28] Results indicated that the levels of 

glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2–26-fold lower in “pre” 

samples than HC and “post” samples, and that the changes were only detected in urinary 

EVs, but not in the urine samples themselves.[28] In a different study focused on 

discriminating patients with PCa from those with prostate hyperplasia (BPH) through the 

analysis of urinary EVs in a small cohort, (Table 5) increased levels of PCs, acyl carnitines, 

sterols, and ceramides with small carbon number in their acyl chains were detected in BPH 

samples. [29] Overall, further comprehensive validation of the different metabolite panels 

reported for PCa should be accomplished with larger cohorts to translate these findings into 

clinically-useful markers. Lack of such validation will limit the applicability of reported 

findings, and unnecessarily delay the availability of better diagnostic tools that could save 

patient’s lives.

Procedures in Non-targeted Metabolomics Studies

A summary of methodological details and statistical performance for the select studies 

discussed above are provided in Tables 1–5. Examination of these tables indicates that, by 

far, LC-MS has been (and continues to be) the most widely used technique for metabolic 

profiling and targeted analysis, with some more complex studies integrating it with GC-MS, 

and to a lesser extent NMR, with the aim of improving metabolite coverage and biomarker 

quality. Most studies leveraged both univariate and multivariate analysis methods in 

screening for significantly altered metabolites between case and control subjects. The most 
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commonly used univariate analysis methods included the Student’s t test for normally-

distributed data, analysis of variance (ANOVA) for comparing several groups, Welch’s t test 

for unequal variances, the Mann-Whitney U test (also called Wilcoxon rank-sum test), the 

Wilcoxon signed-rank test with respect to unpaired and paired comparison of non-normal 

distributed data, and the χ2 test to compare expected and observed values. Multivariate 

methods included logistic regression, Cox regression, principal component analysis (PCA), 

and partial least-squares discriminant analysis (PLS-DA). Also, clinical covariates can be 

included in logic regression or Cox regression to assess whether the significance in disease 

association is independent of other risk factors.[8–10]

It is worth mentioning that for most of the diseases described above, the main panels of 

discriminant metabolites identified in each study are generally not replicated across other 

studies. This lack of biomarker replication is one of the biggest hurdles in the field, and can 

likely be ascribed to differences in experimental and data analysis methods, and also to the 

small size of the cohorts typically examined. We strongly suggest that future studies should 

adopt a hybrid metabolomics approach where previously-described biomarkers are followed 

in a targeted fashion, while simultaneously collecting non-targeted data for discovery and 

pathway mapping purposes. Modern instrumentation can easily collect such LC-MS data by 

combining parallel reaction monitoring and survey scan functions.[33] This type of more 

focused exercise would be very helpful to enable more robust comparisons of biomarker 

abundances in the studied cohorts against literature reports, propelling the field forward in a 

more constructive fashion. Other aspects of the metabolomics workflows that require further 

standardization across laboratories include curation steps used in data pre-processing, 

normalization methods used in data processing, and standard practices in cohort selection 

including age-, gender- and BMI-matching to reduce the impact of confounders in study 

design. Finally, if possible, large cohorts with diversity in ethnicity, gender and geographical 

region for both training and validation testing are critically needed to improve longevity and 

impact of metabolomics efforts. However, for individual researchers, to build up a large 

cohort is too time consuming and expensive. More efforts should be devoted to building 

large biobanking systems to improve such situation.

A typical workflow used for non-targeted metabolomics studies is shown in Fig. 1, with each 

of the main steps critically discussed below. Although not depicted explicitly in the Figure, it 

should be mentioned that stringent quality assurance procedures should be followed 

throughout this workflow to reduce unwanted experimental variance that may obscure more 

interesting biological effects, as reviewed by Dudzik et al.[34] Similarly, the analysis of 

quality control samples must be included in this type of studies for guarantying high quality 

data, as recommended by the metabolomics quality assurance and quality control 

consortium.[35]

1. Sample Preparation

Sample preparation for non-targeted metabolomics studies should be geared towards 

preserving and preparing a large number of metabolites for downstream analysis while also 

being rapid, and highly reproducible. The importance of this step should not be 

underestimated, as the sensitive tools used for metabolic profiling can easily reveal 
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differences in sample handling and preparation, becoming the largest source of unwanted 

variance. Blood plasma or serum and urine have typically been the most frequently 

investigated biofluids so far. Pretreatment of blood-derived samples (e.g. serum or plasma) 

typically starts with a deproteinization step followed by centrifugation to collect the 

metabolite-containing supernatant, which can be either directly analyzed or lyophilized and 

stored for further analysis after reconstitution or chemically-derivatized to increase 

metabolite thermal stability and volatility for GC-MS experiments.[34] Urine sample 

preparation is simpler due to its low protein content.[36] In this case, centrifugation is 

commonly used to remove solid debris, and the supernatant is then analyzed with or without 

dilution, depending on urine concentration. In some studies, one or several internal standards 

(ISs) are spiked in for post-acquisition normalization of the dataset (see Tables 1–5).

2. MS-based Metabolic Profiling Platforms

The strengths and weaknesses of various MS-based platforms used for non-targeted 

metabolomics are compared in Table 6. LC-MS is the most widely used metabolomics 

technique due to the versatile components including the ionization technique, stationary and 

mobile phases. Reversed-phase UPLC coupled to high resolution MS has been increasingly 

favored in metabolomics studies due to the robustness of these stationary phases, and the 

ability to resolve non-polar metabolites, including lipids, with excellent resolution and mass 

accuracy. However, this technique still suffers from some fluctuation in retention times and 

mass spectral drift, and a lack of comprehensive spectral libraries for metabolite 

identification. In contrast, GC-MS, the oldest hyphenated technique coupled to MS, yields 

more reproducible retention times and mass spectra, and more accurate and efficient 

metabolite identification by matching to spectral libraries. However, GC-MS can only 

analyze compounds that are either volatile or can be made volatile through thermally-stable 

derivatives. Therefore, this technique is many times viewed as a complement to LC-MS in 

terms of metabolite coverage.

Large scale metabolic profiling studies involving thousands of samples call for high-

throughput analytical platforms, faster than LC-MS, prompting the use of DI MS and FI MS. 

Without chromatographic separation, however, high resolution analyzers such as QTOF, 

Orbitrap and to a lesser extent due to its high cost, Fourier-transform ion cyclotron 

resonance (FTICR), are essential to improve metabolite annotation confidence and peak 

capacity.[37, 38] Ion mobility spectrometry (IMS) has been increasingly applied in 

combination with MS to provide an additional separation dimension, while maintaining the 

analysis speed of DI or FI MS, and providing collision cross section (CCS) values as an 

additional parameter to enhance compound identification confidence. [27]

The development of ambient MS in the last decade has further decreased sample preparation 

and handling requirements in metabolomics, with techniques such as rapid evaporative 

ionization MS (REIMS), the “MasSpec Pen”, and desorption electrospray ionization (DESI) 

MS imaging applied to tissue sample analysis for rapid diagnosis of human cancers and 

tumor excision guidance during surgery.[39–41]
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3. Data Analysis

The major steps in raw data pre-processing in non-targeted metabolomics are summarized in 

Fig. 1. The most widely used free software tools for hyphenated MS-based metabolomics 

processing have been recently reviewed by Spicer et al. [42] and include XCMS [43] and 

MZmine 2 [44]. The steps involved in data processing include peak picking, retention time 

correction, and alignment. These can be optimized by using design of experiments to remove 

unreliable peaks and improve data quality. [45] Along these lines, the mass spectral feature 

list optimizer (MS-FLO) [46] was developed to post-process data and automatically identify 

potential false positive features such as duplicate peaks, isotopic peaks, and adducts not 

properly removed by XCMS and MZmine 2.

To reduce the effect of missing values on correlation between spectral features and 

subsequent multivariate analysis, a prevalence filter may be applied to the dataset. In this 

filter, a feature is retained if it has a non-zero value in at least a certain percentage (e.g. 50% 

or 80%) of samples of any class. Data normalization is also important to reduce unwanted 

variations in sample preparation, matrix effects and instrument stability, with MS total useful 

signal normalization and internal standard (IS) normalization being the two mainly used 

methods. [47] Total useful signal normalization, however, can be notably affected by 

metabolites with high signal intensity and IS normalization may result in unwanted signal 

suppression leading to incomplete removal of unwanted variation for all metabolites.[34] 

Quality control (QC) samples that represent both the qualitative and quantitative 

composition of the studied samples must be used to assess the accuracy and precision of the 

analytical methods, and help correct both intra- and inter-batch signal variations.[34, 35, 48] 

For correction of inter-batch effects, a quality control sample-based robust LOESS signal 

correction (QC-RLSC) method was developed by Dunn et al. In this approach, a LOESS 

function is applied to QC samples with the purpose of correcting the temporal fluctuation of 

each feature during the run sequence.[49] In addition to QCs, blanks are also essential to 

remove artifacts and contaminants from dataset, however, they are sometimes overlooked by 

metabolomic studies.[34, 48]

Extracting disease relevant information from high dimensional metabolomics datasets is not 

a simple task. Multivariate analysis such as PCA, PLS-DA or oPLS-DA are used to reduce 

the high dimensional data by transforming the original variables to fewer new variables such 

as principle components and latent variables.[50] However, the transformed variables in the 

lower dimension space can be difficult to interpret biologically, and contain interfering 

variables that can confound classification, therefore necessitating variable selection methods 

to reduce the number of original variables to improve prediction accuracy.[50] Univariate 

analysis methods such as the t test and the Mann-Whitney U test (Wilcoxon rank-sum test) 

or logistic/Cox regression analyses are the most common approaches for feature selection, 

however, they fail to capture correlations within the features and subtle abundance 

differences at the single compound level,[51] which can be better obtained by multivariate 

analysis. Nonetheless, multivariate analysis often suffers from overfitting and non-unique 

solution problems. Therefore, univariate or logistic/Cox regression analyses of the 

significance of individual metabolite abundances are implemented controlling the FDR to 

account for multiple comparisons, and are often combined with multivariate analysis metrics 
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such as the variable importance in progression (VIP) from PLS-DA or LASSO for selecting 

significant metabolites (Tables 1–5, Fig. 2). In addition, it is critical to establish the identities 

of the selected metabolites with confidence to avoid false positives such as artifacts, 

contaminants and exogenous compounds from food or drugs that could easily confound 

disease status.[52] Finally, the most promising biomarkers must undergo rigorous validation 

in external cohort(s), which is performed only in a relatively small number of studies (Tables 

1–5).

4. Metabolite Identification

The most widely used method to identify statistically significant metabolites is accurate 

mass search in databases together with targeted MS/MS for structural elucidation, followed 

by searches in public and commercials libraries for similar fragment spectra. In-house 

libraries with both spectral and retention information have been developed by individual 

laboratories as alternatives to open libraries, with improved instrument-specific annotation. 

Their availability, however, is restricted. Compound identification in GC-MS is more 

straightforward and accurate compared to other MS-based methods due to the 

reproducibility of electron ionization (EI) mass spectra and GC retention indexes. In 

contrast, LC-MS/MS databases are generally smaller in size with mostly instrument-

dependent collisional-induced dissociation (CID) spectra and higher energy collision 

dissociation (HCD) spectra, but lack retention time data. A detailed review on MS/MS 

spectral databases and software tools for MS/MS identification of metabolites has been 

presented by Kind et al.[53] Further confirmation of metabolite identity by comparing to 

spectra of authentic standards, should always be attempted if at all possible. More recently, a 

Metabolic In silico Network Expansions Database (MINE-DB) was created, [54] containing 

metabolic products of known compounds predicted using common enzymatic transformation 

reactions, thereby increasing the chance of identification of unknown metabolites not 

included in current databases.

With the increasing popularity of IM-MS technology in metabolomics research, compound 

identification accuracy has been improved by the use of CCS as an additional 

physiochemical descriptor.[27] CCS databases have been constructed to support metabolite 

identification by measurement of a large number of standards or by CCS prediction using 

machine learning algorithms.[55, 56]

5. Pathway Analysis

Metaboanalyst [57] and the KEGG database [58] have been widely used to visualize and 

interpret the underlying pathway linkages mapping onto the identified metabolites. In 2018, 

MetaboAnalyst was updated to version 4.0 with a new feature to integrate metabolomics, 

metagenomics, and transcriptomics data for network analysis.[57] Also worth mentioning is 

WikiPathways, an open website that serves as a collaborative platform for the research 

community to edit and curate pathway information.[59] Most of the available pathway 

analysis tools require that the LC or GC-MS raw data is processed a priori by other software 

packages unnecessarily increasing the complexity and time required for the whole 

metabolomics pipeline. Recently, Huan et al. provided an online XCMS workflow 

encompassing all steps needed for LC-MS-based global metabolomics data analysis, 
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including raw data preprocessing, differential analysis, dysregulated pathway analysis, and 

fusion of proteomic and transcriptomic data to provide a deeper insight into metabolic 

mechanisms on a system-wide scale, significantly increasing analysis efficiency. [60]

Limitations and Outlook

Rapid developments in MS-based non-targeted metabolic profiling strategies in the last 

decade have greatly promoted disease biomarker discovery in clinical metabolomics. 

However, replication of biomarkers still remains a significant problem and significant efforts 

have yet to be made towards standardization of non-targeted metabolomics workflows and 

biomarker validation approaches with external cohorts and targeted assays. Since the 

majority of metabolomics studies apply a single analytical technique, which can bias the 

sub-metabolome being sampled, it is suggested that future studies should combine multiple 

techniques such as GC-MS, LC-MS and NMR with various extraction procedures to 

improve metabolite coverage and the quality of biomarker panels proposed. Large 

discrepancies currently exist in the literature in terms of the best metabolite panels useful in 

diagnosing disease, largely due to a lack of harmonization and small size cohorts. 

Furthermore, more interdisciplinary efforts have to be undertaken to standardize protocols 

for integrating genomics and proteomics studies with metabolomics. At present, non-

targeted metabolomics is still at the discovery level and much work is needed to make the 

translation to the clinic successful. We are hopeful, however, that with continuous and 

collaborative efforts from the metabolomics community, we will see a brighter future for this 

rapidly evolving field.
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BCAA branched-chain amino acids
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spectrometry GreedyRLS: Greedy feature selection for 

regularized least squares

HR hazard ratio

HR-MAS-MRS High-resolution magic angle spinning magnetic resonance 

spectroscopy

iPLS-DA interval partial least squares-discriminant analysis

LASSO least absolute shrinkage and selection operator

LC-MS liquid chromatography-mass spectrometry

LMM linear mixed modelling

LOESS locally estimated scatterplot smoothing

MRM multiple reaction monitoring

MS mass spectrometry

NMR nuclear magnetic resonance

oPLS-DA orthogonal PLS-DA

OR odds ratio

PLS-DA partial least squares-discriminant analysis

PCA principal component analysis

QTOF quadrupole time-of-flight

RLS regularised least-squares

ROC receiver operating characteristic

SVM support vector machines

UPLC-MS ultraperformance LC-MS

VIP variable importance in the projection
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Highlights:

• Metabolomics is the growing field studying the alterations of the metabolome.

• The metabolome is the collection of small molecules in biological systems.

• Ample development of new analytical approaches is needed in metabolomics.

• A growing number of disease biomarkers are being discovered by 

metabolomics.
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Figure 1. 
Typical non-targeted metabolomics workflow.
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Figure 2. 
Workflow for discriminant feature selection using univariate and multivariate methods.
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