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Abstract

Individual differences are a conspicuous feature of color vision and arise from many sources, in 

both the observer and the world. These differences have important practical implications for 

comparing and correcting perception and performance, and important theoretical implications for 

understanding the design principles underlying color coding. Color percepts within and between 

individuals often vary less than the variations in spectral sensitivity might predict. This stability is 

achieved by a variety of processes that compensate perception for the sensitivity limits of the eye 

and brain. Yet judgments of color between individuals can also vary widely, and in ways that are 

not readily explained by differences in sensitivity or the environment. These differences are 

uncorrelated across different color categories, and could reflect how these categories are learned or 

represented.

Introduction

Sensory processing varies widely from one individual to the next. These variations are not 

restricted to clinical deficits or anomalies, and more broadly represent a natural and inherent 

property of all sensory systems that affect all aspects of coding, from sensitivity to conscious 

experience. As a result, the notion of a “standard observer” (a widely-used metric in 

colorimetry [1]) belies the fact that individual differences are the standard, and that an 

average function characterizes the behavior of few if any actual observers. Studies of 

individual differences are thus important for describing the distribution of percepts and 

abilities on different sensory tasks. However, they are also increasingly recognized as an 

important source of information about the underlying causes for these differences [2–4]. 

Systematic variation arises from systematic differences in the mechanisms and computations 

mediating perception, and thus the specific patterns of variation provide clues about the 

nature and function of these latent processes. Here we briefly review insights from 

individual differences about how and to what extent the brain forms a consistent 

representation of color. We highlight two striking features of this representation. First, 

despite enormous variations both within and across observers, the visual system often 
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maintains a highly stable perceptual experience of color. Second, despite this stability or 

constancy, some aspects of color experience nevertheless vary markedly across observers. 

These patterns point in surprising ways to the nature of the perceptual architecture of color 

appearance.

Sources of variation in color vision

Systematic variability in color vision arises at all levels of the visual system, beginning even 

before light reaches the receptors. The lens and macular pigments selectively absorb short-

wavelength light, and variations in their density strongly bias spectral sensitivity [5,6]. The 

spectral sensitivities of the cone receptors can also vary because of common polymorphisms 

in the genes encoding the cone opsins, leading to small but reliable differences in the 

wavelength of peak sensitivity [7]. Differences in the concentration or optical density of the 

photopigment also varies the bandwidth of the cone sensitivities [8]. More pronounced 

genetic alterations of the long- or medium-wavelength photopigments (L or M) underlie 

common forms of color deficiencies, affecting ~8% of Caucasian males [9]. These can range 

from alterations of the sensitivities (anomalous trichromacy) to a complete loss of one cone 

class (dichromacy). Because these genes are coded on the X chromosome, they may 

potentially also lead to an extra dimension of color vision (tetrachromacy) in some female 

carriers of color deficiencies [10,11], though the link between the number of photopigments 

and the dimensionality of color vision is not simple [12].

Together these peripheral factors strongly influence color matches, or which physical spectra 

lead to equal quantum catches in the cones and are thus indistinguishable or metameric to 

the observer [5,6]. Consequently, stimuli that look identical to one observer will appear 

different to another, so that we each live in unique perceptual worlds. Metamer differences 

across observers may become more pronounced with the introduction of narrow-band light 

sources in wide gamut lighting and displays [13], prompting interest in developing color 

profiles for individual observers to try to partially adjust images for these differences. In 

color research, analogous corrections are routinely applied to adjust for the luminance 

sensitivity of the individual [14,15]. This sensitivity depends primarily on the combined 

responses of the L and M cones, though in complex ways [16]. The L:M cone ratio can be 

measured in vivo with adaptive optics [17,18] and shows a dramatic range of normal 

variation, from 1:1 to 16:1 [19].

We know much less about the sources and nature of normal variation in postreceptoral color 

mechanisms. However, it seems likely that neural variability is pronounced at all processing 

stages, and for example, post-receptoral limits on chromatic sensitivity also vary widely 

among individuals (e.g. [20,21]). As a result, we each view the world through a unique 

visual apparatus. Moreover, it is important to emphasize that this physiological variation can 

be equally dramatic within the individual, across both time and space. The visual system 

undergoes enormous changes during normal development or aging or with the progression 

of disease [20,22,23]. Similarly, visual processing varies both quantitatively and 

qualitatively from the center of gaze to the periphery [24]. Thus even an individual observer 

“sees” the world through a visual system that is very different at different times and 

locations.
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Stability despite variation

If vision did not adjust for these sensitivity variations, we would each experience color very 

differently - uniform surfaces would appear with steep color gradients, and the world would 

seem yellower and lower contrast as we age. Yet sensory systems exhibit a remarkable 

capacity to compensate for their sensitivity limits in order to maintain a constant or stable 

representation of physical properties of the world. An example is filling-in of information in 

the blind spot or scotomas [25]. Similarly, color perception rests on a range of adjustments 

that correct for the idiosyncratic spectral sensitivity of the observer. Thus the stimulus that 

appears white or as a particular hue shows little variation with age [26–28], and color 

percepts across the visual field change much less than predicted by the spatial variations in 

spectral sensitivity [29]. These constancies are sometimes complete, but not always [30], and 

how they succeed or fail can provide insights into the limits and mechanisms of neural 

compensation, and perhaps into fundamental strategies in perceptual processing.

While many of these strategies remain unknown, it is apparent that compensation for 

variations in the individual involves multiple processes and levels, similar to the many 

adjustments and heuristics that support color constancy with variations in the stimulus (e.g. 

allowing stable color of surfaces despite changes in the lighting) [31,32]. One simple 

mechanism is adaptation to the average stimulus spectrum, which can reciprocally reweight 

sensitivity to discount a sensitivity bias. If these adjustments are local they could operate 

across the visual field to maintain a constant white balance in the response [33]. However, 

the visual system does more than adjust to the mean. Hue percepts remain more consistent 

between the fovea and near periphery than predicted by simply rescaling the cone 

sensitivities [34,35], and they may also compensate for the sensitivity biases that are 

introduced by changing the spectral bandwidth and thus saturation of the stimulus [36]. 

Adaptation could also adjust the contrast gain of the system, in order to maintain a constant 

perceptual gamut [37]. Another class of adjustments may involve learning. For example, 

prominent color percepts could reflect the stimulus properties of the world rather than the 

physiological processing of the observer. For example, pure blue and yellow lie close to the 

axis of natural daylight variation and thus have a clear environmental analog [38], while a 

neural substrate for these special hues has proven elusive [39]. Learning has also been 

invoked to explain how color percepts could remain invariant across different retinal 

locations [40].

These types of adjustments could also support “inter-observer” constancy. As long as the 

stimulus characteristics of the visual environment are more consistent than the physiological 

characteristics of the observers, then adaptation to – or learning about – a common world 

should tend to converge observers toward common color experiences. For example, inter-

observer variation in achromatic settings is much less than expected from the wide natural 

range of human spectral sensitivity [33,41]. Another potential illustration is the color 

experience of anomalous trichromats. Their altered cone sensitivities predict very weakened 

L vs. M cone responses (roughly reddish-greenish sensations). Yet their perceptual reports of 

color suggest that in some of these observers the L vs. M signal is amplified so that they may 

experience visible colors more like normal trichromats, even if their thresholds for detecting 

color differences are much higher [42]. This amplification is consistent with an adaptation 
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that – like normal trichromats - matches the gain of their neural coding to the same range of 

color contrasts in their environment [43].

A further line of inquiry pointing to stable inter-observer color experience derives from 

cross-cultural studies of color naming. Berlin and Kay’s World Color Survey revealed 

consistent patterns of linguistic color categories across different populations [44]. For 

example, most languages have a basic color term for “red” that labels a similar region of 

color space. The link between naming and appearance is complex, and despite strong 

universal trends there are also clear examples of linguistic relativity in color categories and 

perceptual performance. As such the interpretation of these naming patterns continues to 

evolve [45–48]. However, the similarities in color categorization suggest that something – in 

the world or the brain – is again consistent enough to maintain shared properties across 

observers in at least some aspects of color perception and communication.

Variation despite stability

While the foregoing emphasizes the potential similarities in color percepts both within and 

between observers, in other regards measures of color appearance are striking for the 

dissimilarities they suggest, a point dramatically illustrated by the image of the blue-black or 

white-gold dress [49–51]. Differences in color appearance could again arise from many 

factors. For example, the same mechanisms that calibrate different visual systems for the 

same environment should drive individuals toward divergent percepts when it is the 

environment that varies [52]. The color statistics of the environment can vary widely (e.g. 

between lush or arid habitats, or natural or carpentered). Thus any given environment may 

hold its inhabitants in very different states of adaptation [53]. Notably the range of variation 

this predicts (though not the specific pattern) is comparable to the range observed in average 

color naming across different cultures [54]. Even in the same environment, color perception 

could cycle with the seasons [55], tracking the annual variations in the color characteristics 

of the world [56].

Differences in color naming are also surprisingly large. In a reanalysis of the World Color 

Survey, Lindsey and Brown showed that there is often more similarity in the color naming of 

respondents from two different languages than among speakers of the same language [57]. 

These patterns suggest that different individuals tend to adopt different strategies or motifs 

that are themselves universal in that they are deployed across languages. Similarly, within 

the English language many studies have now documented the reported color percepts of 

individuals by measuring the unique hues (pure sensations of red, green, blue or yellow). 

The focal stimuli corresponding to these hues vary widely and consistently across observers 

[58]. In some cases these variations are predictable from individual differences in spectral 

sensitivity (e.g. the wavelength that appears unique green has been found to be correlated 

with both macular pigment density and L:M cone ratio) [59,60]. Such results are important 

because they would implicate a relatively fixed neural readout for the unique hues, as 

assumed by conventional color-opponent theory. However, more often it has been difficult to 

show an association between unique hues and sensitivity. For example, unique yellow 

settings appear unaffected by very different L:M cone ratios [61], and more generally, the 
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range of variation in each of the hues is inconsistent with the distribution expected from 

normal variations in spectral sensitivity [62].

A further surprising and important characteristic of hue percepts is that the individual 

variations across different hues are largely independent [62]. That is, how observers differ in 

unique red is uncorrelated with the differences in unique yellow. Even more surprising, these 

differences are also uncorrelated with the intermediate binary hues (e.g. orange or purple) 

[63]. Thus knowing an individual’s red and yellow settings does not predict their orange 

setting, even though according to color-opponent theory, orange is encoded only implicitly 

by the underlying mechanisms representing red-green and blue-yellow sensations. This 

independence is also not predicted from most peripheral sources of sensitivity variation, 

which should instead lead to more broadband and thus correlated changes in the different 

hues [62].

Analyses of such correlations provide a powerful and widely-used tool in the study of 

individual differences. Measurements that covary (or are independent) are likely to reflect 

the influence of common (or independent) underlying processes. Statistical approaches such 

as factor analysis or principal components analysis are designed to extract these processes, 

and in vision, factor analysis has been applied to a variety of data sets to try to estimate the 

number and characteristics of the mechanisms mediating different visual tasks [64]. 

Importantly, many visual judgments are precise enough (yet vary enough across observers) 

to provide precise quantitative information about these mechanisms and how they differ 

among the subjects [6].

Recently Emery et al. applied factor analysis to measurements of hue-scaling data, in which 

different colors are described in terms of their perceived proportion of red vs. green or blue 

vs. yellow [65,66]. Even though observers were explicitly instructed to decompose their 

color percepts in terms of these four primaries, the resulting factor pattern instead revealed 

roughly seven distinct factors, each narrowly tuned to a different region of color space. 

While the basis for this finding remains uncertain, one possible interpretation is that 

observers learn to partition or otherwise encode the color plane into many color categories 

(e.g. the four unique hues and their binary combinations), and that the stimuli encompassing 

each category are learned or encoded independently. That is, each individual may separately 

represent the stimuli they classify as yellow or orange or red. A further implication is that 

while the stimulus for color can be described in a two-dimensional metrical space, the 

perceptual representation of color may be non-metrical, with different colors coded as 

qualitatively different categories rather than quantitatively different vectors [66]. Whatever 

their cause, hue percepts appear remarkably constant within the observer, yet surprisingly 

different across observers.

Conclusion

The representation of color remains highly stable within the individual despite many factors 

that bias spectral sensitivity. Some aspects of color percepts may also remain relatively 

stable across observers, because of physiological or environmental constraints. Yet in other 

ways color appearance manifests as a private experience, so that, for example, the stimuli for 
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unique hues are unique to the individual. The neural or environmental bases for these 

variations have yet to be revealed, but may point to fundamental principles in the visual 

construction of color.
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differences in color appearance suggesting that hue is encoded in terms of narrowly tuned 
categories that vary independently of each other.

Emery and Webster Page 9

Curr Opin Behav Sci. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Individual differences in color sensitivity and color appearance are large and 

reliable

• Differences in sensitivity often fail to predict differences in appearance

• Color perception remains remarkably stable despite sensitivity variations 

within the observer

• Variations across different hues are uncorrelated, suggesting hue categories 

are learned or encoded independently
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Figure 1. 
Individual differences in hue scaling (after [61]). a) 26 observers rated the perceived 

proportion of red, green, blue, or yellow in 36 stimuli spanning the cone-opponent plane. b) 

Hue scaling functions derived by converting the RGBY percents into a perceptual angle in a 

blue-yellow vs red-green plane, as a function of stimulus angle in the cone-opponent plane. 

Color lines are for for individual observers; black line plots the mean for all observers. c) 

Standard deviations across trials within an observer (dashed lines), or for the mean settings 

between observers (solid line). Between-subject differences are consistently larger 

suggesting they reflect real inter-observer differences in hue scaling rather than 

measurement noise. d) Factor analysis of the individual differences in the hue scaling 

functions identified 7 systematic factors, each accounting for the variance over a different 

narrow range of hues.
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