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Abstract

MRI is an advanced imaging modality with the unfortunate disadvantage of long data acquisition 

time. To accelerate MR image acquisition while maintaining high image quality, extensive 

investigations have been conducted on image reconstruction of sparsely sampled MRI. Recently, 

deep convolutional neural networks have achieved promising results, yet the local receptive field 

in convolution neural network raises concerns regarding signal synthesis and artifact 

compensation. In this study, we proposed a deep learning-based reconstruction framework to 

provide improved image fidelity for accelerated MRI. We integrated the self-attention mechanism, 

which captured long-range dependencies across image regions, into a volumetric hierarchical deep 

residual convolutional neural network. Basically, a self-attention module was integrated to every 

convolutional layer, where signal at a position was calculated as a weighted sum of the features at 

all positions. Furthermore, relatively dense shortcut connections were employed, and data 

consistency was enforced. The proposed network, referred to as SAT-Net, was applied on cartilage 

MRI acquired using an ultrashort TE sequence and retrospectively undersampled in a pseudo-

random Cartesian pattern. The network was trained using 336 three dimensional images (each 

containing 32 slices) and tested with 24 images that yielded improved outcome. The framework is 

generic and can be extended to various applications.

Introduction

Magnetic Resonance Imaging (MRI) is an advanced imaging modality that provides superior 

soft tissue contrast. The primary disadvantage of MRI, however, is the long data acquisition 

time. To accelerate image acquisition, various sparse sampling (i.e. sampling fewer data 

points in the sensor domain or k-space in order to reduce scan time) schemes were proposed 
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(Peters, 2000; Pike,1994); however, these techniques introduced image blurring and 

undersampling artifacts. To improve image fidelity in accelerated data acquisition, advanced 

image reconstruction techniques were developed. Specifically, compressed sensing (CS) 

became a breakthrough method in the past decade (Lustig, 2007). In some variants of 

compressed sensing, a priori information was actively exploited and incorporated into image 

reconstruction (Bilgic, 2001; Vaswani, 2010).

Non-patient specific a priori information can be acquired via deep learning (LeCun, 2015) 

and utilized for image reconstruction. In recent years, deep learning has led to a flood of 

breakthroughs in image processing and begun to change the landscape of medical physics 

(Xing, 2018). Particularly, convolutional neural networks (CNNs) and CNN-based 

Generative Adversarial Networks (GAN) have been influential in medical imaging 

(Krizhevsky, 2012; Goodfellow, 2014). In some pilot studies on image reconstruction of 

sparsely sampled MRI, a priori information acquired through deep learning was 

incorporated into the framework of compressed sensing, either as the initial image or as the 

optimal parameters defined in the model. Hammernik et al. employed a convolutional neural 

network to find the optimal parameters specified at different stages of a variational network, 

which mimicked different iterations in compressed sensing processing (Hammernik. 2018). 

Yang et al. used a non-convolutional neural network to search for the best parameters 

defined in the ADMM (Alternating Direction Method of Multipliers) and compressed 

sensing model (Yang, 2017). Wang et al. utilized a convolutional neural network to initialize 

the compressed sensing model in a two-phase reconstruction or was integrated into the 

compressed sensing framework as an additional regularization term (Wang, 2016). Yang et 
al. incorporated the conditional GAN loss into the compressed sensing framework as a 

regularization term (Yang, 2018).

Alternatively, deep neural networks have been proposed to provide an end-to-end mapping 

from sparsely sampled k-space data or images to fully sampled images. Zhu et al. 
constructed an AUTOMAP (automated transform by manifold approximation) framework, 

which was composed of a few fully connected layers and some convolutional layers (Zhu, 

2018). Schlemper et al. proposed a deep network architecture, which was formed by a 

sequence of convolutional neural networks with data consistency enforced on the output of 

every network (Schlemper, 2018). Ke et al. developed a cascaded residual dense network for 

cardiac MR image reconstruction, which included both k-space prediction networks and 

spatial-domain residual dense networks to enable cross-domain learning (Ke, 2019). Lyu et 
al. established a deep neural network for quantitative relaxation parametric mapping, where 

different k-space lines contained various signal contrast (Lyu, 2018). Liu et al. built a deep 

neural network for super-resolution within 2D slices, which adopted deconvolution 

operation instead of bicubic interpolation as the preprocessing step (Liu, 2018). Chaudhari et 
al. employed a three-dimensional patched-based convolutional neural network for super-

resolution in the slice encoding direction (Chaudhari, 2018).

While convolutional neural networks achieved high performance because of the effective 

extraction of local image features, the convolution operator has a limited range of influence 

or local receptive field. This can be problematic for synthesizing signal from a wide range of 

inputs. The receptive field can be enlarged by increasing the depth of a convolutional neural 
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network or employing a hierarchical network architecture. However, a deep stack of 

convolutional operations is not only computationally prohibitive for volumetric high-

resolution images, but also introduces difficulties in optimization when long-range 

dependencies are progressively propagated across multiple layers (Hochreiter, 1997).

Furthermore, it would be preferable to efficiently use the available information. For 

example, in a deep learning-based segmentation approach, supervoxel-based partition was 

applied to identify critical regions close to the boundary, such that more computational 

efforts could be made within the critical regions (Qin, 2018). Alternatively, in various 

models that incorporated the self-attention mechanism (Parikh, 2016; Luong, 2015), signal 

at a position was obtained by attending to all positions in the same image (rather than near 

neighbors) with weights determined by the similarity between voxels. In this way, distant 

voxels were allowed to make direct contributions, facilitating long-range dependencies.

In fact, it has been a trend to integrate the self-attention mechanism, which captures long-

range dependencies, into deep neural networks. An innovative network architecture called 

Transformer (Vaswani, 2017) was proposed for machine translation applications, where a 

stack of building blocks was employed, each composed of one or more self-attention layers 

and a fully connected layer. The Transformer model was tailored to the Image Transformer 

model for image synthesis tasks, where ‘local’ self-attention maps were derived from small 

image patches to relieve the heavy computation load caused by a large number of voxels in 

an image (Parmar, 2018). Meanwhile, the non-local neural network architecture was 

developed for video classification, which viewed the self-attention mechanism as a special 

case of non-local filtering operations that captured global dependencies (Wang, 2017). 

Along the same direction, the self-attention GAN (Zhang, 2018) was constructed for the 

generation of natural images, where the self-attention mechanism was incorporated into both 

generator and discriminator of a convolutional GAN. Attention was used in other 

applications, such as similarity learning (Gao, 2018) and hand gesture recognition (Li 2018).

In this study, we proposed a self-attention convolutional neural network for MRI 

reconstruction, which introduced the self-attention mechanism into a deep convolutional 

neural network. At every convolution layer, self-attention maps were derived from feature 

maps, where the attention value at a position was calculated as a weighted sum of the 

features at all positions. Hence, the self-attention module was able to model long-range 

dependencies across image regions and was complementary to local convolution operators. 

We implemented the self-attention mechanism on top of a high performance convolutional 

neural network, T-Net, which was a volumetric hierarchical deep residual network with 

established global and local shortcut connections. Data consistency was further enforced in 

k-space, where the network predictions were replaced by original measurements at the data 

points that were actually sampled. This self-attention (SA) T-Net was referred to as SAT-

Net.

While the SAT-Net provides a generic framework for MR image reconstruction, in this 

study, it was mainly applied to cartilage MRI that was acquired using an ultrashort TE 

(UTE) sequence and retrospectively undersampled using a pseudo-random Cartesian 

sampling scheme. Using the SAT-Net, image quality was well maintained when a high 
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acceleration factor of 6 was achieved. Particularly, the self-attention mechanism 

demonstrated its ability to improve the reconstruction outcome.

Method

In this study, a self-attention convolutional neural network, SAT-Net, was developed for the 

reconstruction of sparsely sampled MRI. With Institutional Review Board approval and 

HIPAA compliance, 360 three dimensional cartilage images were acquired using a special 

ultra-short TE (UTE) sequence and retrospectively undersampled using a pseudo-random 

Cartesian sampling. SAT-Net was used to provide an end-to-end mapping from sparsely 

sampled images to their fully sampled correspondence with data consistency further 

enforced in k-space. The workflow is illustrated in Figure 1.

Image Acquisition and Sparse Sampling

Three hundred and sixty 3D cartilage images were acquired at the University of California 

San Diego (Ma, 2018). The data were acquired on a 3T scanner (GE Healthcare, Waukesha, 

WI) using an adiabatic inversion recovery spin-lock prepared UTE sequence with different 

numbers of IR spin-lock pulses (2, 4, 6, 8, 12, and 16). Other imaging parameters were as 

follows: echo time of 32 μs, repetition time of 500 ms, flip angle of 10°, resolution of 

256×256×32, voxel size of 0.586×0.586×3 mm, and a scan time of 2.7 min per data set.

Given fully sampled images, a pseudo-random variable-density Cartesian acquisition, 

CIRcular Cartesian UnderSampling (CIRCUS) was simulated (Liu, 2014), as illustrated in 

Figure 2. Sparse sampling was performed on the ky-kz plane with an acceleration factor of 6 

achieved. The undersampled k-space data were transformed back to the image domain using 

the 3D inverse Fourier Transform, and taken as the input to the neural network.

Reconstruction Using the Self-Attention Convolutional Neural Network

A self-attention convolutional neural network (SAT-Net) was developed for MRI 

reconstruction, which introduced the self-attention mechanism (SA) into a volumetric 

hierarchical deep residual convolutional neural network.

Basically, a deep convolutional neural network was employed to provide a data-driven end-

to-end mapping from a sparsely sampled MR image to its corresponding fully sampled 

image. Throughout the network, volumetric processing was adopted to fully exploit 3D 

spatial continuity. While the utilization of global information was critical for signal synthesis 

and artifact compensation, a larger receptive field would improve outcomes significantly.

To enlarge the receptive field, a hierarchical deep neural network was constructed. The 

network was composed of an encoder (contracting path with a decreased resolution of 

feature maps) and a decoder (expanding path with an increased resolution of feature maps), 

both having multiple levels. At each level, the resolution of feature maps was kept the same. 

From one level to the next along the contracting path, feature maps were down-sampled, and 

the number of feature maps (convolution kernels) was doubled as indicated. In the 

expanding path, the change in image resolution and number of feature maps was reversed. 

Both down-sampling and up-sampling were accomplished using convolution operations 
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(with 2×2×2 kernels) instead of conventional pooling, as suggested by (Springenberg, 2014). 

The network architecture is shown in Figure 3.

In addition, ‘global’ shortcuts connected the corresponding levels of the encoder and the 

decoder to compensate for details lost in down-sampling, whereas ‘local’ shortcut 

connections were established within the same level of a single path to facilitate residual 

learning (He, 2016). Moreover, relatively dense local shortcut connections were formed in 

this SAT-Net by forwarding the input of a hierarchical level to all the subsequent 

convolutional blocks at the same level, as illustrated in Figure 4. In contrast, U-Net 

(Ronneberger, 2015) had no local shortcut connections, whereas V-Net (Milletari, 2016) had 

simple local shortcut connections. The relatively dense design was inspired by Dense Net 

[34, 35] (Huang, 2017; Lodhi, 2019) and Deep Recursive Residual Network (Tai, 2017), as 

illustrated in Figure 5, where the former demonstrated the effect of dense shortcut 

connections on the improvement of performance, and the latter proposed an alternative 

connection pattern that was more computationally efficient. We constructed the relatively 

dense local shortcut connection pattern to reach a good balance between the network 

performance and memory consumption.

At every level in the hierarchical network, there were three convolutional blocks. Each 

convolutional block was composed of a convolutional layer that extracted image features and 

of an activation layer that provided nonlinearity.

Based on this T-Net, the self-attention mechanism was incorporated into every convolutional 

block, as shown in Figure 3. In this way, global information that was spread in widely 

separated spatial regions of feature maps could be efficiently utilized. In the resultant SAT-

Net, a convolutional block was composed of three layers, a convolution layer that captured 

local information, a novel self-attention layer that supplied non-local information, and a 

nonlinear activation layer which was implemented by parametric ReLU function (He, 2015). 

Figure 6 compared the convolution block of a self-attention convolutional neural network 

with that of a traditional network.

Implementation of Self-Attention Modules

The self-attention maps within each convolution block were derived for feature maps 

extracted at the preceding convolution layer. The attention value at a position was obtained 

by attending to all positions in the same image with different weights, formulated as

C Xi ∑js(X )ℎ Xj (1)

where i was a position at which the response was computed, j enumerated all positions in the 

same image, function s calculated a scalar that revealed the relevance between the signal 

intensity at the current i position and that at any position j and function h computed a 

representation of the input signal at any position j. That meant only signal at relevant 

positions contributed directly to the signal at the current position, and the contribution was 

determined by both the relevance and the signal intensity at the distant positions. The 

response was subsequently normalized by a factor C(Xi), where
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C Xi = ∑
j

s(X ) . (2)

The functions s and h were chosen with some degree of flexibility, since networks that 

modeled long-range dependencies were found to be insensitive to the choice (Wang, 2017). 

In this work, h was defined as a linear function for simplicity

ℎ Xj (3)

and s was defined as an embedded Gaussian function because Gaussian function was a 

natural choice to quantify the similarity (relevance) between Xi and Xj:

s(X ) ϕ Xi
Tθ Xj W i W j . (4)

Here, Wf, Wg and were weight matrices implemented as 1×1×1 convolution, which were 

learned in the training of the network.

In addition, residual learning was employed in the attention layer, as given by

αY . (5)

Therefore, the output of the self-attention layer (Zi) was composed of two components: one 

was the feature maps from the previous convolution layer that captured local information 

(Xi) and the other was the self-attention maps that provided non-local information (Yi). A 

scale parameter α balanced the contributions from local and non-local sources in the 

response, which was learned during the training. Initially, was set to 0, and the SAT-Net had 

a learning behavior similar to that of a convolutional network. As α was increased during 

optimization, the self-attention layers gradually took effect, accomplishing a smooth 

transition to the distinguished self-attention convolutional neural network. In this way, the 

attention layer was seamlessly integrated, enabling efficient utilization of information from 

widely separated spatial regions. The structure of a self-attention layer is shown in Figure 7.

Data Consistency Enforcement

While the output of the self-attention convolutional neural network provided reasonable 

estimates for k-space coefficients at all data points, it would be more accurate to replace the 

network predictions with original measurements at the data points that were actually 

sampled. In the framework of deep learning, this was incorporated into the Root Mean 

Squared Error (RMSE) loss function (de Jesús Rubio, 2018; Meng, 2018; de Jesús Rubio, 

2009; Zhang 2018; de Jesús Rubio, 2017; Jiang, 2018),

∑i = 1
n ∥ z ∥2 , (6)

where xi was the fully sampled image and zi was the predicted image with data consistency 

enforced. zi was formulated by
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IFT d ki, k ı (7)

in which ki was the measured k-space data, kl was the estimated k-space data obtained from 

the network predictions at the current iteration, and h was the data consistency enforcement 

function. The estimated k-space data k was the Fourier transform of the network output, as 

given by

k = FT f χZF θ (8)

where was the forward mapping of the convolutional neural network that took undersampled 

zero-filled image as the input. The data consistency enforcement function d was defined as

d ki, kl ki * kl + 1 ki ) (9)

with I representing the indicator function. More intuitively, d could be expressed as

ki, kl =
i
k

. (10)

The indicator function was not continuous, but it did not affect the performance of the 

convolutional neural network [15]. The self-attention convolutional neural network was 

implemented on a tensor-flow (Abadi , 2016) based AI platform, NiftyNet (Gibson, 2018).

Training and Testing of the Self-Attention Convolutional Neural Network

The SAT-Net was trained to learn the optimal network parameters using 336 three 

dimensional images (each containing thirty-two slices). Data augmentation was performed, 

including translation, rotation, and flipping, to increase the quantity of training data. The 

network parameters were initialized using the He method (He, 2015) and updated using the 

Adam algorithm (Kingma, 2014) with an adaptive learning rate (starting from 0.001, β1 of 

0.9, β2 of 0.999, and ∊ of 10−8).

Given the trained neural network, 24 three dimensional images from different subjects were 

tested. The quality of reconstructed images was evaluated both qualitatively and 

quantitatively. We measured two quantitative metrics. One was the Structural Similarity 

Index Measure (SSIM), which measured the perceptual difference between two similar 

images, and the other was the Peak Signal-to-Noise Ratio (PSNR). SSIM was defined as

SSIM(x, y) = 2μxμy + C1 2σxσy + C2
μx2 + μy2 + C1 σx2 + σy2 + C2

(11)

Whereμx, μy, σx and σy corresponded to the mean and standard deviation of signal intensity 

in the reconstructed image and the ground truth, (k L)2, (k L)2, 01 , 03, and L is the dynamic 

range of the pixel values. PSNR was defined as
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PSNR = 10 × log10
2n − 1 2

MSE (12)

where MSE is the mean squared error, defined as

∑
i = 1

n
z ∥ . (13)

Results

Trained with 336 three dimensional images and tested with 24 images, the SAT-Net provided 

improved image fidelity, with a high acceleration factor of 6 achieved in cartilage MRI. In 

the pseudo-random Cartesian acquisition, high frequency information lost due to sparse 

sampling was substantially recovered. Particularly with the self-attention mechanism 

incorporated into the convolutional neural network, the quality of reconstructed images was 

significantly improved.

Figure 8 compared sparsely sampled MR images reconstructed with and without the self-

attention mechanism incorporated. The four images, from left to right, corresponded to the 

undersampled image input (zero-filled and reconstructed using conventional inverse Fourier 

Transform), the fully sampled image (ground truth), the images reconstructed using the 

convolutional neural network, and the image reconstructed using the self-attention 

convolutional neural network, respectively. The losses of micro-structures caused by sparse 

sampling, as appeared in the zero-filled undersampled image, were substantially recovered 

in both images reconstructed using deep learning approaches. Moreover, incorporation of the 

self-attention mechanism further improved the quality of reconstructed images, which was 

highly consistent with the ground truth. In subsequent experiments, the self-attention 

mechanism was always incorporated.

In the training of neural networks, the Root Mean Squared Error (RMSE) was measured. 

The proposed SAT-Net had lower RMSE values than the T-Net, as shown in Figure 9.

The SSIM and PSNR of the 24 test images were shown in Figure 10. Images reconstructed 

using SAT-Net had higher SSIM and PSNR than those reconstructed using T-Net or the 

conventional zero-filling approach, demonstrating the improvement brought about by the 

incorporation of the self-attention mechanism.

The effect of using different patterns of local shortcut connections was investigated. Figure 

11 showed images reconstructed using a self-attention convolutional neural network with no 

local shortcuts (as in U-Net), simple local shortcuts (as in V-Net), or relatively dense local 

shortcuts (as in T-Net and SAT-Net). The strategy of employing relatively dense local 

shortcuts did improve image quality over the other designs. The same trend was confirmed 

quantitatively by measuring the average SSIM, PSNR, and RMSE, as shown in Table 1. The 

highest SSIM and PSNR, as well as the lowest RMSE, were achieved in images 
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reconstructed with relatively dense local shortcuts (as employed in SAT-Net) compared to 

those obtained without local shortcuts (as in U-Net) or with simple shortcuts (as in V-Net).

In Figure 12, images reconstructed with or without data consistency enforced were 

compared to the ground truth. The enforcement of data consistency improved the quality of 

the reconstructed image.

Discussion

In this study, we integrated the self-attention mechanism into a deep convolutional neural 

network for MRI reconstruction. It is advantageous to use the self-attention mechanism to 

capture long-range dependencies. In contrast to the progressive propagation provided by a 

stack of convolutional operations, the self-attention mechanism computes direct interactions 

between any two positions, regardless of the distance. For this reason, the self-attention 

mechanism is computationally efficient.

When combined with deep learning, the self-attention mechanism could be built on top of a 

variety of deep neural networks for image processing applications. In the Image Transformer 

model (Parmar, 2018), one or more self-attention layers were combined with a fully 

connected layer to form the building block of an encoder-decoder network. However, the 

design of the fully connected layer did not suit image processing tasks since the large 

number of pixels caused heavy computation burden. To circumvent the problem, ‘local’ self-

attention was performed on small image patches, which unfortunately had the effect of 

diminishing the strength of the self-attention mechanism as a means to model long-range 

dependencies. Alternatively, the self-attention mechanism was integrated into a conditional 

GAN to form the self-attention GAN (Zhang, 2018). While GANs (Goodfellow, 2014) have 

been extensively investigated for image synthesis, the training of GANs is well known to be 

unstable (despite numerous attempts to make their training more robust) and sensitive to the 

choices of hyper-parameters. In this work, we demonstrated the feasibility of integrating the 

self-attention mechanism into a convolutional neural network by appending a self-attention 

layer to every convolutional layer.

Certain design aspects of the T-Net model made it a particularly favorable convolutional 

neural network for MR image reconstruction. The first feature of T-Net was the relatively 

dense local shortcut connections constructed to facilitate residual learning. While the dense 

shortcuts in Dense Net boosted network performance by forwarding the output of every 

convolutional block to all subsequent blocks (Huang, 2017), it was computationally 

prohibitive for high resolution volumetric images. Inspired by Deep Recursive Residual 

Network (Tai, 2017), we developed our SAT-Net model which only forwarded the input of a 

hierarchical level to all the subsequent convolutional blocks at the same hierarchical level, 

improving the prediction outcome with an affordable computational cost. This specialized 

shortcut connection design helped SAT-Net achieve an improved performance compared to 

the standard designs of U-Net and V-Net. The second aspect of T-Net which made it 

particularly well-suited for MR image resolution was that enforcement of data consistency 

was performed in k-space. Replacing predicted k-space coefficients with original 

measurements apparently improved the prediction accuracy. The efficacy of enforcing data 
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consistency was demonstrated in the conjugated gradient highly constrained backprojection 

approach (Griswold, 2007). In the framework of deep learning, we enforced data consistency 

in a similar way to the work conducted in the cascade of convolutional neural networks 

(Schlemper, 2018).

In this study, the SAT-Net was trained with MR images acquired using a consistent imaging 

protocol. Compared with natural images or CT images, MR images that were consistently 

acquired were limited in number. We collected 336 three dimensional images and performed 

data augmentation to build a training set of a reasonable size. For each fully sampled image, 

different acceleration factors can be adopted, with higher acceleration factors expected to 

result in a decrease in image quality. In this study, we demonstrated an improvement in 

image fidelity at an acceleration factor of 6, which indicated a possibility to achieve a higher 

degree of acceleration.

The current approach can be extended in several directions. First, the self-attention 

convolutional neural network can be used to provide a direct mapping from k-space data to 

fully sampled images. In this study, we used zero-filled images as the input, which had 

undersampling artifacts. Secondly, alternative loss functions can be adopted in lieu of the 

RMSE that we used for this study. Potential candidates for loss function include loss, loss, 

SSIM, mutual information, or their combination. Thirdly, the self-attention convolutional 

neural network can be employed for specific MRI reconstruction tasks, such as dynamic 

MRI or quantitative MRI.

The proposed SAT-Net is a generic reconstruction framework that can be applied to various 

acquisition techniques (data sampling trajectories, pulse sequences, etc.) for diverse clinical 

applications. Moreover, the proposed self-attention convolutional neural network could 

potentially benefit tremendous image processing applications beyond MRI reconstruction 

due to the wide application of convolutional neural networks.

Conclusion

A self-attention convolutional neural network framework was developed for the 

reconstruction of sparsely sampled MRI, aiming to provide improved image fidelity for 

accelerated MR image acquisition. Incorporation of the self-attention mechanism into 

convolutional neural networks effectively improved the reconstruction outcome by taking 

advantage of long-range dependencies. With additional support from relatively dense 

shortcut connections and data consistency enforcement, a high acceleration factor of 6 was 

achieved in cartilage MRI, while maintaining high image quality. The self-attention 

convolutional neural network architecture not only provides a generic framework for MRI 

reconstruction, but also has the potential to benefit other applications that employ 

convolutional neural networks.
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Figure 1. 
The workflow of employing the self-attention convolutional neural network (SAT-Net) for 

MR reconstruction. Fully sampled 3D images were retrospectively undersampled in k-space 

and transformed back to the image domain. In the training procedure, a convolutional neural 

network was established, in which loss was back-propagated and used to update model 

parameters iteratively. In testing, retrospectively undersampled images were passed through 

the well-trained network, and subsequent data consistency enforcement was performed to 

form the final reconstruction result.
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Figure 2. 
The pseudo-random variable-density Cartesian sampling pattern (CIRCUS). Undersampling 

was performed on the ky-kz plane, with an acceleration factor of 6 achieved.
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Figure 3. 
The architecture of the volumetric hierarchical deep residual convolutional neural network 

(SAT-Net). It is composed of a contracting path (on the left) and a subsequent expanding 

path (on the right), along which the resolution of feature maps first shrinks and then 

expands. Global shortcut connections are established between the corresponding levels of 

the two paths, whereas local shortcut connections are established within the same level of a 

single path.
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Figure 4. 
Comparison of our local shortcut connection scheme with the ones adopted in U-Net and V-

Net. (a) No local shortcuts, as in U-Net, (b) simple local shortcuts (forwarding the input of a 

hierarchical level to the output at the same level), as in V-Net, and (c) relatively dense local 

shortcuts (forwarding the input of a hierarchical level to all the subsequent convolutional 

blocks at the same level), as we proposed in SAT-Net.
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Figure 5. 
Several comparatively dense shortcut connection schemes that inspired our design. (a) Our 

SAT-Net, in which the input of a network level was forwarded to all the subsequent 

convolutional blocks at the same level, (b) Dense Net, in which the output of every 

convolutional block was forwarded to all the subsequent blocks, and (c) Deep Recursive 

Residual Network, which had shortcut connections with various ranges of influence and the 

origins of the shortcuts were close to the input of the network level.
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Figure 6. 
Comparison of the convolution block of a self-attention convolutional neural network with 

that of a traditional network. (a) Traditional convolution block without the self-attention 

mechanism incorporated, as used in the T-Net, and (b) novel convolution block with the self-

attention mechanism incorporated, as used in the SAT-Net, which provides long-range 

dependencies.
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Figure 7. 
Structure of a self-attention layer. The output of a self-attention layer is composed of two 

components: one is the feature maps from the previous convolution layer that capture local 

information and the other is the self-attention maps that provide non-local information. A 

scale parameter α balances the contributions from local and non-local sources in the 

response. In the attention maps, function computes a scalar that reveals the relevance 

between the signal intensity at the current position and at any position j , and function h 
computes a representation of the input signal at any position j.
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Figure 8. 
Comparison of images reconstructed with or without the self-attention mechanism 

incorporated, which were undersampled in a pseudo-random Cartesian sampling pattern 

with an acceleration factor of 6 achieved. (a) The undersampled image reconstructed using 

conventional Fourier Transform, which was the input to the system, (b) the fully sampled 

image, which was the ground truth, (c) the image reconstructed using the convolutional 

neural network T-Net, which was an impressive output, and (d) the image reconstructed 

using the self-attention convolutional neural network SAT-Net, which was a superior output. 

For each type of image, the whole picture was displayed in the upper row, and a region of 

interest was amplified in the lower row. The losses of micro-structures caused by sparsely 

sampling, as seen in the undersampled images, were substantially recovered in the images 

reconstructed using deep neural networks, as in (c) and (d). Incorporating the self-attention 

mechanism in (d) further improved the quality of the reconstructed image in (c), which had 

high fidelity with the ground truth (b).
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Figure 9. 
Comparison of Root Mean Squared Error (RMSE) in the training of the T-Net and the SAT-

Net. The SAT-Net had lower RMSE than the T-Net.

Wu et al. Page 22

Inf Sci (N Y). Author manuscript; available in PMC 2020 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Quantitative performance evaluation of images reconstructed using different methods. (a) 

The SSIM of the test images reconstructed using zero-filling, T-Net, and SAT-Net, (b) the 

PSNR of the test images reconstructed using zero-filling, T-Net, and SAT-Net. Images 

reconstructed using SAT-Net had higher SSIM and PSNR than those reconstructed using T-

Net or conventional zero-filling approaches.
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Figure 11. 
Comparison of images reconstructed with different local shortcut connections. (a) The fully 

sampled image, (b) the image reconstructed using a self-attention convolutional neural 

network without local shortcuts, as conducted in U-Net, (c) the image reconstructed using a 

self-attention convolutional neural network with simple local shortcuts, as conducted in V-

Net, and (d) the image reconstructed using a self-attention convolutional neural network 

with relatively dense local shortcuts, as conducted in T-Net and SAT-Net. For each type of 

image, the whole picture was displayed in the upper row, and a region of interest was 

amplified in the lower row. The image reconstructed using a self-attention convolutional 

neural network with relatively dense shortcuts (d) was more similar to the ground truth (a) 

than the image reconstructed with a network that employed no local shortcuts (b) or simple 

local shortcuts (c).
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Figure 12. 
Comparison of images reconstructed with or without data consistency enforced against the 

ground truth. (a) The fully sampled image, (b) the image reconstructed using a self-attention 

convolutional neural network without data consistency enforced, and (c) the image 

reconstructed using a self-attention convolutional neural network with data consistency 

enforced. For each type of image, the whole picture was displayed in the upper row, and a 

region of interest was amplified in the lower row. The enforcement of data consistency 

clearly improved the quality of the reconstructed image.
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Table 1.

The average SSIM, PSNR, and RMSE of images reconstructed using self-attention deep convolutional neural 

networks with different shortcut connections. Images reconstructed with relatively dense local shortcut 

connections (as adopted in T-Net and SAT-Net) had higher SSIM and PSNR, as well as lower RMSE, than 

those reconstructed without local shortcuts (as in U-Net) or with simple local shortcuts (as in V-Net). This 

quantitative result was consistent with the observation in Figure 11.

Images SSIM PSNR RMSE

images reconstructed without local shortcuts 0.82 60.22 9.83

images reconstructed with single local shortcuts 0.86 62.56 7.65

images reconstructed with relatively dense local shortcuts 0.87 63.23 6.82
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