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Summary

Mediation analysis is difficult when the number of potential mediators is larger than the
sample size. In this paper we propose new inference procedures for the indirect effect in the
presence of high-dimensional mediators for linear mediation models. We develop methods for
both incomplete mediation, where a direct effect may exist, and complete mediation, where
the direct effect is known to be absent. We prove consistency and asymptotic normality of our
indirect effect estimators. Under complete mediation, where the indirect effect is equivalent to the
total effect, we further prove that our approach gives a more powerful test compared to directly
testing for the total effect. We confirm our theoretical results in simulations, as well as in an
integrative analysis of gene expression and genotype data from a pharmacogenomic study of
drug response. We present a novel analysis of gene sets to understand the molecular mechanisms
of drug response, and also identify a genome-wide significant noncoding genetic variant that
cannot be detected using standard analysis methods.

Some key words: High-dimensional inference; Integrative genomics; Mediation analysis.

1. Introduction

Mediation analysis is of great interest in many areas of research, such as psychology, epi-
demiology and genomics (MacKinnon, 2008; Hayes, 2013; Huang et al., 2014). A major goal
is to understand the direct and indirect effects of an exposure variable on an outcome variable,
potentially mediated through several intervening variables. Statistical methods for estimating
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and testing direct and indirect effects are well-developed when the number of mediator vari-
ables is relatively small (Hayes, 2013; VanderWeele & Vansteelandt, 2014; VanderWeele, 2015),
but problems arise when the number of potential mediators exceeds the sample size. This high-
dimensional scenario is common in genomics applications. For example, the effects of genetic
variants may be mediated through the regulation of gene expression, but it is usually not known
a priori which genes are regulated, so the total number of potential mediators can be very
large.

General methods for high-dimensional inference are currently the subject of intense research.
Techniques based on debiasing penalized regression estimators have been shown to provide
asymptotically normal and unbiased estimators for certain parametric sparse regression models
(Javanmard & Montanari, 2014, 2018; Van de Geer et al., 2014; Zhang & Zhang, 2014). The
sparsity level of the regression parameter is not typically known. Cai & Guo (2017) discussed
the construction of confidence intervals that can adapt to this unknown sparsity, and Zhu &
Bradic (2018) proposed a test that avoids the sparsity requirement by instead assuming that the
precision matrix is known or has certain sparsity properties. While these methods can be used
for testing direct effects, they cannot be directly applied to perform inference on indirect effects.
One approach is to use them to extend low-dimensional mediation analysis methods such as
VanderWeele & Vansteelandt (2014), but it may be difficult to achieve valid inference for reasons
that will be explained in § 2.1.

Several semiparametric high-dimensional methods have recently been proposed in the causal
inference literature for peforming inference on causal effects in the presence of high-dimensional
controls (Belloni et al., 2017;Athey et al., 2018). In particular, the procedure ofAthey et al. (2018)
is closely related to the method proposed here, and is discussed in detail in § 2.5. However, these
approaches do not directly apply to estimating indirect effects in high-dimensional mediation
models. Chen et al. (2015) and Huang & Pan (2016) use principal components analysis to reduce
the dimensionality of the mediators, and employ the bootstrap for inference. Hanson et al. (2016)
and Zhang et al. (2016) first screen the mediators according to their marginal correlations with
the response.

In this paper we propose and provide asymptotic guarantees for two new inferential procedures
for the indirect effect in high-dimensional linear mediation analysis models. We first consider
the incomplete mediation setting, where both direct and indirect effects might exist. This is a
common scenario, for example in genome-wide methylation studies that investigate whether
environmental exposures exert their effects on phenotype by altering DNA methylation patterns.
The exposures may also act through a nonmethylation pathway, giving rise to potential direct
effects. We illustrate another application in § 6, where we identify gene sets that may mediate the
effect of a gene of interest on a drug response phenotype.

We then consider the complete mediation setting when it is known that a direct effect does
not exist. This setting is common when studying genetic variants located in noncoding regions
of the genome, which typically can only exert their effects on a phenotype by regulating gene
expression. Recent work has shown that in the low-dimensional case, testing for the indirect
effect can be much more powerful than directly testing the total effect, even though both are
equal under complete mediation (Kenny & Judd, 2014; Zhao et al., 2014b; Loeys et al., 2015).
We show theoretically and in simulations that this is also true for our proposed high-dimensional
method. Our work can thus be useful in genome-wide association studies where powerful tests
are required to detect important variants. In an analysis of the genetics of drug response in § 6,
our method was able to identify a genome-wide significant noncoding genetic variant that could
not be detected by the standard approach.
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2. Proposed methods

2.1. Mediation model and notation

For the ith subject, i = 1, . . . , n, let Yi be the outcome, Gi be a vector of p mediators and Si be
a vector of q exposures. We allow p to be larger than the sample size n, but we assume that Si is
low-dimensional. Finally, assume that the Yi, Gi and Si have all been centred to have zero mean.
We consider the following linear mediation model:

Yi = GT
i α0 + ST

i α1 + ε1i, Gi = γ Si + Ei, (1)

where ε1i are mean-zero random variables and Ei are mean-zero random vectors that are inde-
pendent of Gi and Si. Model (1) implies that GT

i α0 = ST
i γ Tα0 + ε2i, where ε2i = ET

i α0. Let σ 2
1

denote the variance of ε1i, and σ 2
2 denote the variance of ε2i.

We are interested in performing inference on the indirect effect

γ Tα0 ≡ β0 (2)

of Si on Yi when the dimension of Gi exceeds the sample size. We will describe separate methods
for the incomplete mediation setting, where Si may have a direct effect on Yi through α1, and the
complete mediation setting, where α1 is assumed to equal zero. We will assume throughout that
α0 is sparse, so that only a small number of variables mediate the effect of Si on Yi.

Assuming that model (1) is correctly specified with no unmeasured confounders, β0 and the
direct effect α1 admit causal interpretations under a counterfactual framework, analogous to low-
dimensional mediation models (Huang et al., 2014; VanderWeele & Vansteelandt, 2014). See the
Supplementary Material for a detailed discussion. Our method can also accommodate measured
confounders or covariates. If Zi is a low-dimensional vector of potential confounders, we could
write

Yi = GT
i α0 + ST

i α1 + ZT
i αz + ε1i, Gi = γ Si + γzZi + Ei.

For example, in our data analysis in § 6 we let Zi be a set of principal components to adjust for
population stratification; in the Supplementary Material we describe how our proposed procedures
can be modified for this setting. In this paper we do not consider more complicated models,
such as interactions between the Zi and Gi or between Si and Gi. These may require additional
methodological development, which we leave for future work.

The remainder of the paper will use the following notation. Let S be an n × q matrix of the Si,
G be an n × p matrix of the Gi, Y be an n × 1 vector of the Yi, ε1 be an n × 1 vector of the ε1i, and
Ei be an n×p matrix of the Ei. Define the vector Xi = (GT

i , ST
i )T. Also define the sample matrices

�̂SS = n−1 ∑
i(SiST

i ), �̂SG = n−1 ∑
i(SiGT

i ), �̂GG = n−1 ∑
i(GiGT

i ), �̂GY = n−1 ∑
i(GiYi),

�̂XY = n−1 ∑
i XiYi, and �̂XX = n−1 ∑

i XiX T
i , as well as their population-level versions �SS ,

�SG, �GG, �GY , �XX and �XY . Finally, for any matrix A, let aij denote the ijth entry and let
‖A‖L1 = maxj

∑
i |aij|, ‖ ·‖1 denote the elementwise �1 norm, and ‖ ·‖∞ denote the elementwise

�∞ norm of either a vector or a matrix.

2.2. Intuitions

This section provides an intuitive description of the challenges of performing inference on
the indirect effect β0 (2) with high-dimensional mediators. For simplicity, in this subsection we
assume that the direct effect α1 = 0. In the low-dimensional problem when p < n, γ T and α0

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
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can be estimated using the ordinary least squares estimates γ̃ T = �̂−1
SS �̂SG and α̃0 = �̂−1

GG�̂GY ,
respectively. Then β0 can be estimated using γ̃ Tα̃0. Inference is straightforward because this
product estimator typically has an asymptotically normal distribution (Sobel, 1982; Zhao et al.,
2014b), though see the last paragraph of § 3.1. In high dimensions, when p exceeds n, the challenge
is that the ordinary least squares estimator of α0 does not exist. Since α0 is sparse, one solution
would be to use penalized regression, such as the lasso, to estimate α0. However, these do not
have tractable limiting distributions, so inference on β0 using this approach is difficult.

An alternative might be to instead use a debiased lasso estimator α̌0 of α0, whose components
do have nice asymptotic distributions (Javanmard & Montanari, 2014; Van de Geer et al., 2014;
Zhang & Zhang, 2014). We first briefly introduce α̌0 following Javanmard & Montanari (2014).
In high dimensions, the ordinary least squares estimator �̂−1

GG�̂GY is not feasible because �̂GG

is no longer invertible, but we can still consider estimators of the form 	̂�̂GY for a different
data-dependent matrix 	̂. By model (1),

	̂�̂GY − α0 = (	̂�̂GG − I )α0 + 1

n
	̂GTε1, (3)

where I is the p × p identity matrix. In general, 	̂�̂GY will therefore be a biased estimator, with
bias equal to (	̂�̂GG − I )α0. When α0 is sparse, it turns out that this bias can be well-estimated
by (	̂�̂GG − I )α̃0, if we carefully construct 	̂ so that ‖	̂�GG − I‖∞ is small and α̃0 is a lasso
estimate of α0 so that ‖α̃0 − α0‖1 is small; for more details see Javanmard & Montanari (2014).
The debiased lasso estimator is then constructed by subtracting the estimated bias from 	̂�̂GY :

α̌0 = 	̂�̂GY − (	̂�̂GG − I )α̃0 = α̃0 + 1

n
	̂GT(Y − Gα̃) = α0 + 1

n
	̂GTε1 + 
, (4)

where 
 = (	̂�̂GG −I )(α0−α̃). It can be shown for suitably constructed 	̂ that each component
of 
 is oP(n−1/2), so that each component of n1/2(α̌0 −α0) is asymptotically normal. Javanmard
& Montanari (2014) chose 	̂ to minimize the variance of α̌0, while Van de Geer et al. (2014) and
Zhang & Zhang (2014) chose 	̂ to estimate the precision matrix �−1

GG.
Despite these encouraging properties, inference using the corresponding estimator γ̃ Tα̌0 for

β0 is still not always possible. Using (4),

γ̃ Tα̌0 = γ̃ T	̂�̂GY − γ̃ T(	̂�̂GG − I )α̃0 = β0 + (γ̃ T − γ )α0 + 1

n
γ̃ T	̂GTε1 + γ̃ T
,

which can be interpreted as a debiased version of γ̃ T	̂�̂GY for β0. However, the error γ̃ T
 is
no longer negligible: even though each component of 
 is oP(n−1/2), the linear combination
γ̃ T
 may not be, so n−1/2(γ̃ Tα̌0 −β0) may not have an easily characterized asymptotic distribu-
tion. We argue in the Supplementary Material that we would need to at least assume either that
p log(p)/n1/2 → 0 or that γ is sparse in order for γ̃ T
 = oP(n−1/2). However, these conditions
are restrictive.

In this paper we propose an estimate of β0 under the weaker assumption that log(p)/n1/2 → 0,
and without assumptions on the sparsity of γ . Our central idea is to develop a debiased estimator
not of α0 or β0, but of �SGα0. We will show that the bias of our initial estimator for this quantity
can be estimated sufficiently accurately as long as we construct the matrix 	̂ appropriately. By
premultiplying our debiased estimate of �SGα0 by the low-dimensional quantity �̂−1

SS , we will
obtain an asymptotically normal estimate of β0.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
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2.3. Inference for the indirect effect under incomplete mediation

We first estimate the indirect effect β0 (2) under incomplete mediation, where α1 is allowed to
be nonzero. Let X = (G, S) be the n × (p + q) design matrix and α = (αT

0, αT
1)

T. As described in
§ 2.2, our strategy is to first obtain a debiased estimator for �SGα0, which we will then premultiply
by �̂−1

SS . First, define

D =
(

�SG 0
0 �SS

)
, D̂ =

(
�̂SG 0

0 �̂SS

)
. (5)

Following (3), we first consider estimators of the form 	̂I�̂XY , for a matrix 	̂I that we will
construct later. By model (1),

	̂I�̂XY −
(

�SGα0
�SSα1

)
= (	̂I�̂XX − D)α + 1

n
	̂IX

Tε1.

Since α is sparse, we can estimate the bias term using (	̂I�̂XX − D̂)α̃ as in (3), using a carefully
constructed 	̂ and where α̃ is a lasso estimate of α. We will use the scaled lasso of Sun & Zhang
(2012) because it also provides a consistent estimate of the variance of the Yi, which will be
useful later. We may also leave α1 unpenalized, which is further discussed in § 7.

We can therefore construct a debiased estimate of �SGα0 by subtracting the estimated bias
from 	̂I�̂XY , analogous to (4). We then premultiply the debiased estimator by I2 ⊗�̂−1

SS , where I2
denotes the 2 × 2 identity matrix and ⊗ denotes the Kronecker product. This gives our proposed
estimator b̂ for the indirect effect β0 under incomplete mediation, as well as an estimate â of the
direct effect α1:

(
b̂
â

)
= (I2 ⊗ �̂−1

SS ){	̂I�̂XY − (	̂I�̂XX − D̂)α̃}

=
(

�̂−1
SS �̂SGα̃0

α̃1

)
+ (I2 ⊗ �̂−1

SS )
1

n
	̂IX

T(Y − X α̃), (6)

where α̃1 is the component of α̃ that estimates α1.
Analogous to (4), it remains to find a suitable matrix 	̂I so that (	̂I�̂XX − D̂) is small. We

propose to choose 	̂I to estimate the matrix D�−1
XX , for D defined in (5) and �XX = E(XiX T

i ).
Our estimator is based on constrained �1 optimization, similar to the precision matrix estimation
procedure of Cai et al. (2011):

	̂I = arg min
	

‖	‖1 subject to ‖	�̂XX − D̂‖∞ � τn, (7)

where τn is a tuning parameter. We will show in § 3 that 	̂I will converge to D�−1
XX under the

condition that D�−1
XX is sparse.

We show in § 3 that under certain conditions, (b̂, â) is asymptotically normal and centred at
the true (β0, α1). We also provide estimates of the asymptotic variance of b̂, which will allow
us to construct confidence intervals and conduct Wald tests for the indirect effects. Though this
paper focuses on the indirect effect, (6) also gives an estimate â for the direct effect. As pointed
out by a referee, the direct effect could also be estimated by subtracting b̂ from the ordinary least
squares estimate of the total effect of Si on Yi. We show in § 4.3 in the Supplementary Material
that these two approaches are asymptotically equivalent.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
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2.4. Inference for the indirect effect under complete mediation

In some applications, for example in the analysis of noncoding genetic variants, it may be
known that exposure does not act directly on the outcome, and only acts through mediators. We
can make use of the extra information that α1 = 0 to develop a more efficient procedure for
estimating the indirect effect β0 (2). As above, we first obtain a debiased estimator for �SGα0
and then premultiply by �̂−1

SS . We again first consider estimators of the form 	̂C�̂GY , which by
model (1) satisfy

	̂C�̂GY − �SGα0 = (	̂C�̂GG − �SG)α0 + 1

n
	̂CGTε1.

We construct 	̂C to estimate �SG�−1
GG, analogous to 	̂I (7) above:

	̂C = arg min
	

‖	‖1 subject to ‖	�̂GG − �̂SG‖∞ � τ ′
n, (8)

where τ ′
n is a tuning parameter. We show in § 3 that 	̂C will converge to �SG�−1

GG if the latter
is sparse. If α̃0 is the scaled lasso estimate of α0, we can estimate the bias of 	̂C�̂GY using
(	̂C�̂GG−�̂SG)α̃0. Subtracting this from 	̂C�̂GY and premultiplying by �̂−1

SS gives our proposed
estimate of β0 under complete mediation:

b̃ = �̂−1
SS {	̂C�̂GY − (	̂C�̂GG − �̂SG)α̃0} = �̂−1

SS �̂SGα̃0 + �̂−1
SS

1

n
	̂CGT(Y − GTα̃0). (9)

We show in § 3 that b̃ is asymptotically normal and centred at the true β0, and provide estimates
for its asymptotic variance.

This estimator has an interesting efficiency property. Under complete mediation, β0 can also be
estimated by directly regressing Yi on Si and ignoring the mediating gene expression information.
We will show that the asymptotic variance of the ordinary least squares estimator of β0 is always
greater than or equal to the variance of our b̃. The same phenomenon has been observed in a
low-dimensional mediation model (Kenny & Judd, 2014; Zhao et al., 2014b; Loeys et al., 2015).
Intuitively, our procedure achieves this efficiency gain by denoising the outcome Yi, replacing
it with an estimate GT

i α̃0 of its conditional expectation GT
i α0 and thus removing much of the

variation from the error term ε1i.

2.5. Connections to existing work

Estimating the indirect effect in high dimensions is challenging because β0 (2) is a linear
combination of the high-dimensional vector α0. Athey et al. (2018) encountered a similar issue
studying inference for a causal effect in the presence of high-dimensional controls, and also
took a debiasing approach. Both of our approaches can be viewed as debiasing a pilot estimator
by subtracting a weighted sum of the residuals from a fitted penalized regression model for Yi.
Athey et al. (2018) chose the weights in this weighted sum to minimize the estimation error of
the desired linear combination, while our weights are equal to (I2 ⊗ �̂−1

SS )	̂I in (6) and �−1
SS 	̂C

in (9). The coefficients of the desired linear combination are known in the setting of Athey et al.
(2018), while in our approach they are equal to �SG and must be estimated, so the method of
Athey et al. (2018) is not directly applicable here. It would be interesting to apply their strategy
to our mediation framework in the future.

There are alternative approaches to constructing the matrices 	̂I (7) and 	̂C (8). One method
might be to choose them to minimize the variances of the resulting estimators â, b̂ and b̃ while
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controlling their biases. In the standard linear regression setting with high-dimensional covari-
ates, Javanmard & Montanari (2014) showed that this strategy can give asymptotically optimal
inference without requiring the precision matrix of the covariates to be sparse. As pointed out
by a referee, applying this strategy to the present mediation setting may obviate the need to
assume sparsity of D�−1

XX and �SG�−1
GG. This is an important direction for future work, and the

Supplementary Material contains a detailed discussion and simulation study exploring the robust-
ness of our procedure to the accuracy of estimating D�−1

XX and �SG�−1
GG. On the other hand, our

current strategy of choosing 	̂I and 	̂C to estimate D�−1
XX and �SG�−1

GG allows us to characterize
the asymptotic variances of our proposed estimators in terms of population-level quantities, as
well as to construct consistent estimates of those variances. Hirshberg & Wager (2019) studied a
similar approach for a more general class of debiased estimators.

3. Theoretical results

3.1. Incomplete mediation

This section presents the theoretical properties of our proposed indirect effect inference
procedure under incomplete mediation. We first require Gij, Si and residual error ε1i to have
exponential-type tails and make several sparsity assumptions.

Assumption 1. For each j = 1, . . . , p, Gij has mean zero and E{exp(tG2
ij)} � K < ∞ for some

constant K and all |t| � η, where η ∈ (0, 1/4) and {log(p + q)}/n � η. The same tail conditions
hold for Si and εi1.

Assumption 2. For D defined in (5), there exist constants MX and NX such that ‖�−1
XX ‖L1 �

MX and ‖(D�−1
XX )T‖L1 � NX . Furthermore, if ωij denotes the ijth entry of D�−1

XX , then
maxi

∑
j |ωij|θ < s0 for some s0 and θ ∈ [0, 1).

The quantity s0 in Assumption 2 measures the degree of sparsity of D�−1
XX . The condition on

‖�−1
XX ‖L1 requires that none of the rows contain too many large entries. This is reasonable, as

precision matrices are frequently used to model conditional dependencies between genes in a
gene network (Danaher et al., 2014; Zhao et al., 2014a), and gene networks are typically thought
to be sparse. The condition on ‖D�−1

XX ‖L1 is related to the irrepresentable condition of Zhao &
Yu (2006), and is similar to requiring that Si cannot be completely explained by Gi.

Theorem 1. Let 	̂I solve (7) with tuning parameter τn = (NX + 1)C1{(log(p + q))/n}1/2 for
C1 = 2η−2(2 + τ + η−1e2K2)2, where K and η are from Assumption 2 and τ > 0. Then, under
Assumptions 1 and 2, with probability greater than (1 − 4p−τ ) and with D defined in (5),

‖	̂I − D�−1
XX ‖∞ � (4NX + 2)C1MX {(log p)/n}1/2.

Theorem 1 shows that our 	̂I (7) is a consistent estimate of the population-level matrix D�−1
XX .

As discussed in § 2.3, in the standard linear regression setting Javanmard & Montanari (2014)
proposed a method for high-dimensional inference that does not require consistent estimation
of precision matrices. In the Supplementary Material we discuss whether their approach can be
applied here as well, which would avoid the need for the sparsity conditions in Assumption 2.

We can now characterize the asymptotic behaviour of our incomplete mediation estimators
(b̂, â) (6). We require additional assumptions necessary for the good performance of the scaled
lasso of Sun & Zhang (2012).

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
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Theorem 2. Let b̂ and â be calculated such that both tuning parameters λn and τn are
O{(n−1 log p)1/2}. Assume the model for Yi (1) satisfies the conditions of Theorem 2 of Sun
& Zhang (2012) and that α0 has at most s0 = o(n1/2/ log p) nonzero components. Under
Assumptions 1 and 2, if (log p)/n1/2 → 0, and α0 and �SG are not both zero, and if
� ≡ �−1

SS �SG(�GG − �GS�−1
SS �SG)−1�GS�−1

SS converges to a positive-definite matrix, then

n1/2
(

b̂ − β0
â − α1

)
→ N (0, V ), where V =

(
σ 2

1 � + σ 2
2 �−1

SS −σ 2
1 �

−σ 2
1 � σ 2

1 (� + �−1
SS )

)
.

The ultra-sparsity assumption on s0 in Theorem 2 is standard in the debiased lasso literature
(Javanmard & Montanari, 2014; Van de Geer et al., 2014; Zhang & Zhang, 2014). The choice of
τn controls the coherence parameter ‖	̂I�̂XX − D̂‖∞ at rate (n−1 log p)1/2, which is necessary
for showing that the bias of our proposed estimator goes to 0 when n and p go to infinity. The
proof of Theorem 2 shows that the asymptotic variance V can be consistently estimated using

σ̂ 2
1 (I2 ⊗ �̂−1

SS )	̂I�̂XX 	̂T
I (I2 ⊗ �̂−1

SS ) +
(

σ̂ 2
2 �̂−1

SS 0
0 0

)
.

Consistency of �̂XX and �̂SS is standard, and consistency of 	̂I is given by Theorem 1. Estimation
of σ̂ 2

1 and σ̂ 2
2 is discussed in § 4.

We caution that Theorem 2 does not cover the setting where both �SG = 0 and α0 = 0. This
would cause n1/2(b̂ − β0) to asymptotically equal zero, rather than be normally distributed. A
related issue arises even for standard low-dimensional Wald-type tests for the indirect effect,
such as Sobel’s test (Sobel, 1982; Hayes, 2013; Barfield et al., 2017). In practice, these tests can
be conservative when the exposure, the mediator and the outcome are only weakly associated.
In this case, the true finite-sample distribution of the Wald test statistic has higher kurtosis than
a normal distribution, so that critical values calculated assuming a normal distribution lead to
a conservative test (Barfield et al., 2017). This setting is different from the weak instrumental
variable problem, which we discuss in the Supplemetary Material.

3.2. Complete mediation

We now present the theoretical properties of our indirect effect inference procedure under
complete mediation. Similar to Assumption 2, we first make several sparsity assumptions, under
which we can show that 	̂C (8) is a consistent estimate of �SG�−1

GG.

Assumption 3. There exist constants MG and NG such that ‖�−1
GG‖L1 � MG and

‖(�SG�−1
GG)T‖L1 � NG. Furthermore, if ωij denotes the ijth entry of �SG�−1

GG, then
maxi

∑
j |ωij|θ < s0 for some s0 and θ ∈ [0, 1).

Theorem 3. Let 	̂C solve (8) with tuning parameter τn = (NG + 1)C1{(log p)/n}1/2. Then,
under Assumptions 1 and 3, with probability greater than (1 − 4p−τ ), and with C1 and τ as in
Theorem 1,

‖	̂C − �SG�−1
GG‖∞ � (4NG + 2)C1MG{(log p)/n}1/2.

We can now characterize the asymptotic behaviour of our complete mediation indirect effect
estimator b̃ (9). The proof of Theorem 4 indicates that the asymptotic variance of b̃ can be
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consistently estimated by σ̂ 2
1 �̂−1

SS 	̂C�̂GG	̂C�̂−1
SS + σ̂ 2

2 �̂−1
SS . As with incomplete mediation case,

the requirement that α0 and �SG are not both zero arises here as well.

Theorem 4. Let b̃ be calculated such that both tuning parameters λn and τn are of order
O{(n−1 log p)1/2}. Assume the model for Yi in mediation model (1) has α1 = 0, but otherwise
satisfies the conditions of Theorem 2 of Sun & Zhang (2012), and that α0 has at most s0 =
o(n1/2/ log p) nonzero components. Under Assumptions 1 and 3, if (log p)/n1/2 → 0, α0 and
�SG are not both zero, and if �SG�−1

GG�GS converges to a positive-definite matrix, then

n1/2(b̃ − β0) → N (0, σ 2
1 �−1

SS �SG�−1
GG�GS�−1

SS + σ 2
2 �−1

SS ).

As mentioned in § 2.4, under complete mediation the indirect effect β0 can also be consistently
estimated by directly regressing Yi on Si. The expression for the asymptotic variance of b̃ from
Theorem 4 now allows us to analytically compare our estimator with the ordinary least squares
estimate of β0.

Proposition 1. In model (1), assume that α1 = 0, so that b̃OLS = (STS)−1STY is a consistent
estimator of β0.Then, under the conditions ofTheorem 4, var{n1/2(b̃OLS−β0)}−var{n1/2(b̃−β0)}
converges to a positive semidefinite matrix.

Proposition 1 shows that our b̃ always has equal or lower asymptotic variance compared to the
ordinary least squares estimator, even when the mediators are high-dimensional. This extends
similar findings in low dimensions (Kenny & Judd, 2014; Zhao et al., 2014b; Loeys et al., 2015).
In fact, we show in the Supplementary Material that for any fixed p, our estimator b̃ achieves
the minimum asymptotic variance among all asymptotically unbiased estimators of β0 with the
same convergence rate. Tests based on b̃ will thus have higher power to detect nonzero β0 than
tests based on b̃OLS, as confirmed by simulations in § 5.3. In practice, the Wald test based on b̃
can still be conservative when α0 and �SG are close to zero, for reasons discussed in § 3.1, but
simulations show that our proposed b̃ can still have significant power gains over the majority of
the parameter space.

In a closely related setting, Athey et al. (2020) found that when estimating the causal effect of
a treatment on a long-term outcome, leveraging intermediate outcomes can increase efficiency. In
the Supplementary Material we provide a detailed comparison. Together, these results converge
on a common principle, and provide theoretical justification for recent work in genomics showing
that data integration using mediation analysis can increase the power to detect important biological
signals (Wang et al., 2012; Huang et al., 2015).

The improved efficiency guaranteed by Proposition 1 requires strong scientific or expert knowl-
edge to justify the absence of the direct effect. Furthermore, it also depends on the correct
specification of both stages of the linear mediation model (1). In low dimensions, this has been
pointed out by Loeys et al. (2015). This is in contrast to the usual ordinary least squares estimator,
which requires fewer modelling assumptions. We illustrate the effect of model misspecification
on our proposed estimator in the Supplementary Material.

Our estimator b̂ (6), proposed in § 2.3 under incomplete mediation, could also be used to
estimate the indirect effect under complete mediation. Proposition 2 shows that under complete
mediation, b̃ is asymptotically more efficient.

Proposition 2. In model (1), assume that α1 = 0. Under the conditions of Theorems 2 and 4,
var{n1/2(b̂ − β0)} − var{n1/2(b̃ − β0)} converges to a positive semidefinite matrix.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
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4. Implementation

We first centre the Yi, Gi and Si. To apply the scaled lasso, we standardize all covariates to have
unit variance and then choose the tuning parameter λn using the quantile-based penalty procedure
in the R package scalreg (R Development Core Team, 2020).

To estimate the asymptotic variances of our estimators, given in Theorems 2 and 4, we need
estimates of the residual variances σ 2

1 and σ 2
2 from our mediation model (1). Sun & Zhang (2012)

showed that the scaled lasso can provide a consistent estimate σ̂ 2
1 for σ 2

1 . Since model (1) implies
that Yi = ST

i (β0 +α1)+εi where εi ∼ N (0, σ 2
1 +σ 2

2 ), we can estimate σ 2
2 by first regressing Yi on

Si to obtain the ordinary least squares residual variance estimator σ̂ 2, and using σ̂ 2
2 = σ̂ 2 − σ̂ 2

1 . In
practice, σ̂1 may sometimes be larger than σ̂ , in which case we estimate σ̂2 = 0. This is sensible
because σ̂1 > σ̂ likely occurs when no mediators are associated with the outcome, i.e., α0 = 0,
in which case σ2 indeed equals zero.

We construct the matrices 	̂I (7) and 	̂C (8) by setting the tuning parameters τn = τ ′
n =

{(log p)/n}1/2/3. This choice is guided by Theorems 1 and 3. We also tried choosing the tuning
parameters by minimizing an ad hoc information criterion-type measure, but this resulted in
confidence intervals with poor coverage in some cases. Finding a more data-adaptive tuning
procedure is an important direction for future research.

The time-consuming part of our method is the constrained �1 optimization, in (7) and (8), which
we implement using fast algorithms from the flare package. For n = 300 subjects, p = 1000
mediators and q = 1 exposure, our procedure with tuning parameter τn = {(log p)/n}1/2/3
takes 66 seconds on a single core of an Intel Xeon X5675 processor at 3.07 GHz and with
8 GB of RAM, and larger τn results in shorter computation time: our procedure with τn =
{(log p)/n}1/2 takes 5 seconds. Our procedure is available in the R package freebird, available
at https://github.com/rzhou14/freebird.

5. Numerical results

5.1. Comparison of methods

We compared our methods to a naive nondebiased remax method, discussed in § 2.2. This
estimates β0 using �̂−1

SS �̂SGα̃0, where α̃0 is a standard lasso estimate of α0 implemented using
the R package glmnet. There is no tractable limiting distribution for this estimate of β0, so
we used the bootstrap to obtain percentile confidence intervals, and obtained average power and
coverages based on those intervals. Bootstrapping the lasso is not theoretically justified (Dezeure
et al., 2015), but this at least allows us to have a comparable baseline method.

We also compared our procedures to the high-dimensional mediation analysis method of
Zhang et al. (2016), using their R package HIMA. The method first uses marginal screening
on mediators to reduce dimensionality. It then regresses the outcome on the retained media-
tors using penalized regression with the minimax concave penalty (Zhang, 2010). Using only
the selected mediators, it uses ordinary least squares to compute a pair of p-values for each
mediator, for its associations with the outcome and the exposure. These p-values are Bonferroni-
corrected for the number of selected mediators, and Zhang et al. (2016) identify a mediator
as significant if both of its adjusted p-values are less than the desired significance level. How-
ever, this testing approach based on the maximum of two p-values does not provide confidence
intervals.

Under complete mediation, the indirect effect is equal to the total effect, which can be tested
directly using ordinary least squares. In this setting we therefore also compared our complete
mediation method to ordinary least squares.
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5.2. Simulations under incomplete mediation

We first studied our estimators under incomplete mediation. Following model (1), for samples
i = 1, . . . , n = 300 we generated q = 1 exposure Si ∼ N (0, 1) and p = 500 potential mediators
Gi following Gi = cγ Si + Ei, where c was a scalar, γ was a p × 1 coefficient vector and
Ei ∼ N (0, �E). We generated �E following procedures in Danaher et al. (2014) such that �−1

E
was sparse in the sense of Assumption 2 and had diagonal entries equal to 1. Finally, we generated
the outcome according to Yi = GT

i α0 + ST
i α1 + ε1i, where ε1i ∼ N (0, 5). In the Supplementary

Material we show that our simulation results were similar even when ε1i was not normally
distributed. We let γ have 15 nonzero components randomly generated between [−1, 1], fixing
γ across replications, and let α0 have 15 nonzero components equal to one. We chose either
one or five of these nonzero components to correspond to variables whose entries in γ were
also nonzero; these were the true mediators. Here we set the direct effect α1 = 0.1, and in the
Supplementary Material we present results when α1 = 0.5. In this simulation scheme the indirect
effect β0 = cγ Tα0, and we varied β0 by varying the constant c.

When there was only one true mediator, we used all three competing methods to test H0 : β0 =
0 at the α = 0.05 significance level, and used our proposed method and naive method to calculate
95% confidence intervals for different values of β0. When there were five true mediators, we did
not apply the method of Zhang et al. (2016) because it considers each mediator separately and
does not provide inference for the overall indirect effect. The existence of multiple significant
mediators does not imply that the indirect effect is nonzero because the effects of the different
mediators may cancel each other out, a phenomenon known as inconsistent mediation.

Figure 1 reports average coverage probabilities and power curves over 200 replications. The
naive method had worse coverage than our approach, and though it had excellent power, it was
not theoretically justified, as mentioned in § 5.1. The method of Zhang et al. (2016) had counter-
intuitive behaviour when β0 was large, and surprisingly high power when β0 was small. Its power
was poor for large β0 because its model selection step performed poorly: larger β0 corresponded to
larger c, and therefore to increased collinearity between Gi and Si in the regression for Yi, making
consistent model selection difficult. Its power was surprisingly high for small β0 because it did
not appropriately account for the variability of its model selection step. In the Supplementary
Material we describe a slightly modified version of their approach that gives confidence intervals
and show that it has poor coverage, and also construct a setting where it fails to maintain Type I
error because of its improper post-model selection inference.

5.3. Simulations under complete mediation

We next studied the performance of our indirect effect estimator under complete mediation.
We considered four simulation settings based on the same data generation scheme used above,
but with α1 = 0. We generated p = 500 potential mediators with either one or five true mediators,
and in the Supplementary Material we present results for p = 1000.

Figure 2 reports average coverage probabilities and power curves over 200 replications. Our
method was always able to maintain the nominal coverage probability and significance level, and
in every case had higher power than ordinary least squares and the naive method for sufficiently
large β0, consistent with Proposition 1. The average lengths of 95% confidence intervals were
also smaller for our method compared to ordinary least squares; see the Supplementary Material.
Similar to the incomplete mediation setting, the method of Zhang et al. (2016) had high power
when β0 was small and counter-intuitive behaviour when β0 was large. Our test was slightly
conservative for β0 close to zero because the normal approximation to the distribution of our
Wald-type test statistic is poor under weak mediation, as discussed in § 3.1.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa016#supplementary-data
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Fig. 1. Average coverage probabilities of 95% confidence intervals (left panels) and average power curves at signi-
ficance level α = 0.05 (right panels) for estimating and testing the indirect effect under incomplete mediation, over
200 replications. The direct effect was α1 = 0.1. The number of true mediators was 1 in the upper panels and 5 in
the lower panels. Proposed (solid): b̂ from (6); Naive (dot-dash): the naive method discussed in § 5.1; Zhang (large
dot-dash): method of Zhang et al. (2016).

6. Data analysis

6.1. Data description

Understanding the mechanisms behind individual variation in drug response is an important
step in the development of personalized medicine. We applied our proposed methods to phar-
macogenetic studies of the response to the cancer drug docetaxel in human lymphoblastoid cell
line (Niu et al., 2012; Hanson et al., 2016). The data consists of genotype data on 1 362 849
single nucleotide polymorphisms and expression data on 54 613 probes, after pre-processing,
from cell lines from 95 Han-Chinese, 96 Caucasian and 93 African-American individuals. These
data are available from the Gene Expression Omnibus under accession number GSE24277. Niu
et al. (2012) exposed these cells to docetaxel and quantified their responses using EC50, the
concentration at which a drug reduces the population of cells by half (Hanson et al., 2016).

6.2. Gene set analysis

It is common in gene expression profiling experiments to identify genes that are signifi-
cantly associated with the phenotype being studied. A natural next step is to identify gene sets,
representing biological pathways, through which these significant genes may act. This is a dif-
ficult analysis problem because the intervening pathways may contain a large number of genes,
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Fig. 2. Average coverage probabilities of 95% confidence intervals (left panels) and average power curves at
significance level α = 0.05 (right panels) for estimating and testing the indirect effect under complete medi-
ation, over 200 replications. The number of true mediators was 1 in the upper panels and 5 in the lower
panels, with 500 potential mediators. Proposed (solid): b̃ from (9); Naive (dot-dash): the naive method dis-
cussed in § 5.1; OLS (log dash): ordinary least squares estimate; Zhang (large dot-dash): the method of

Zhang et al. (2016).

resulting in a high-dimensional mediation analysis problem. This is different from standard gene
set enrichment analysis (Subramanian et al., 2005), as the latter does not allow for direct testing
of mediation by the gene set.

We applied our proposed procedures to test whether a candidate gene set mediates the indirect
effect of a given gene of interest on the phenotype. We used our incomplete mediation esti-
mator b̂ (6), because the gene of interest may have a direct effect on the phenotype that does
not proceed through the candidate gene set. As in our simulations, we set the tuning parameter
τn = {(log p)/n}1/2/3 when estimating 	̂I (7). As an illustration, we studied the indirect effects
of TMED10, a transmembrane trafficking protein whose corresponding gene was the most sig-
nificantly associated with docetaxel response in our data. We retrieved biological process Gene
Ontology gene sets with at least 50 genes from the Molecular Signatures Database (Subramanian
et al., 2005; Liberzon et al., 2011), then applied our proposed approach to test the indirect effect
of TMED10 through each of the 4436 candidates. Of these, 420 gene sets contained more genes
than there were samples, making our high-dimensional approach indispensable.

Our procedure found 257 gene sets with significant indirect effects that passed Bonferroni
correction. One reason for the large number of significant findings is that many gene sets are
subgroups of larger sets. Table 1 reports the top ten most significant ones, as ranked by their
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Table 1. Top ten most significant gene sets through which the TMED10 gene may act on
drug response

Gene set 95% CI p-value

Regulation of heart rate −0.83 ± 0.22 6.3 × 10−14

Synaptic vesicle cycle −0.60 ± 0.17 2.6 × 10−12

Regulation of vasoconstriction −1.08 ± 0.30 3.1 × 10−12

Negative regulation of transporter activity −0.64 ± 0.18 5.3 × 10−12

Negative regulation of cation transmembrane transport −0.70 ± 0.20 5.3 × 10−12

Positive regulation of blood circulation −1.07 ± 0.31 1.1 × 10−11

Negative regulation of transmembrane transport −0.73 ± 0.21 2.2 × 10−11

Regulation of cardiac muscle contraction −0.60 ± 0.18 6.8 × 10−11

Neurotransmitter transport −0.58 ± 0.18 1.4 × 10−10

Regulation of oxidoreductase activity −0.73 ± 0.22 1.5 × 10−10

95% CI, confidence intervals obtained from the proposed method under incomplete mediation (6); p-value,
raw p-values obtained from the proposed procedure.

indirect effect p-values. Many of these are involved in transmembrane transport, which suggests
that the role of TMED10 in the response to docetaxel may be to move small molecules into
and out of cells. Our proposed method can thus generate useful exploratory results for further
downstream analysis. We also implemented the method of Zhang et al. (2016), which found no
significant gene sets.

6.3. Noncoding variants analysis

We next studied the effects of noncoding genetic variants on the response to docetaxel.
We first performed a standard genome-wide association study and regressed docetaxel EC50

on each variant separately, controlling for the first five principal components of the geno-
type data in order to control for population stratification (Price et al., 2006). This approach
did not identify any significant variants after multiple testing correction. We were then inter-
ested in whether a high-dimensional mediation analysis method could provide more power.
We chose the top 1000 expression probes with the largest variances as potential media-
tors and controlled for the first five principal components. We first applied the method of
Zhang et al. (2016), but it did not detect any significant variants that passed Bonferroni
correction.

It is known that noncoding variants likely do not have a direct effect on the phenotype. This
justifies application of our complete mediation estimator b̃ (9) to test for noncoding variances
associated with EC50. We use τ ′

n = {(log p)/n}1/2/3 when estimating 	̂C (8), and controlled
for the first five principal components in all of our analyses. Our new procedure was indeed
able to identify one significant variant that passed Bonferroni correction for all noncoding
variants: the single nucleotide polymorphism rs11578000, with an estimated indirect effect
of b̂ = −0.0777 ± 0.0186 and a p-value of 2.8 × 10−16. Interestingly, the Genotype Tissue
Expression Project (Lonsdale et al., 2013) found that in heart and muscle tissue, rs11578000
regulated the expression of the gene SUSD4, which has been found to inhibit the complement
system (Holmquist et al., 2013), a system of proteins involved in innate immunity that may be
involved in the response to epirubicin/docetaxel treatment in breast cancer patients (Michlmayr
et al., 2010). Our b̃ provides novel findings that could not have been detected using standard
approaches.
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7. Discussion

Our methods require that the directions of causality in mediation model (1) be correctly
specified. In practice this causal pathway may be complex, as some genes react to the outcome,
rather than cause the outcome. Our method’s findings should thus be further analysed to verify
that the causal directions are indeed of interest. One potential solution to this issue is to use
recently developed methods for high-dimensional causal inference (Bühlmann et al., 2014) to
first screen out reactive genes before applying our proposed procedures.

Though we focused on testing the indirect effect in this paper, our incomplete mediation method
also provides â, a natural estimate of the direct effect, as discussed in § 2.3. We explored using â
to test for the presence of a direct effect, and similar to Kenny & Judd (2014), we found that the
power was relatively low. This may be because when calculating our estimators we penalize the
direct effect parameter α1 when we fit the scaled lasso. This makes sense if the direct effect is
expected to be zero, which is sensible in our integrative genomics applications, but an alternative
is to leave α1 unpenalized. This may give a more powerful test for the direct effect, and more
work is required to derive the asymptotic distribution of the resulting estimator. Inference for
the direct effect in high dimensions could also be achieved by applying debiased lasso methods
to test α1 in the regression of Yi on Gi and Si in our model (1). Based on some simulations, we
found that our estimator â is always smaller in absolute value, and usually had smaller variance,
compared to the debiased estimator of Van de Geer et al. (2014).

Finally, we have so far only considered linear mediation models for continuous outcomes. It
is possible to extend our methods to generalized linear models for the outcome Yi in mediation
model (1). However, the causal interpretation of these nonlinear models requires special care
(VanderWeele & Vansteelandt, 2010; VanderWeele, 2015). Also, we have so far assumed that the
residual errors ε1i and Ei are independent of the exposure Si and mediator Gi in model (1). Under
heteroscedasticity, if the errors are dependent on either Si or Gi, our theoretical results will likely
not hold, and extending our approach to this setting is an important research direction.
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