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The lockdown response to coronavirus disease 2019 (COVID-19)
has caused an unprecedented reduction in global economic and
transport activity. We test the hypothesis that this has reduced
tropospheric and ground-level air pollution concentrations, using
satellite data and a network of >10,000 air quality stations. After
accounting for the effects of meteorological variability, we find de-
clines in the population-weighted concentration of ground-level ni-
trogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine
particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal
increases in ozone (O3: 4%; 95% CI:−2 to 10%) in 34 countries during
lockdown dates up until 15 May. Except for ozone, satellite measure-
ments of the troposphere indicate much smaller reductions, high-
lighting the spatial variability of pollutant anomalies attributable
to complex NOx chemistry and long-distance transport of fine partic-
ulate matter with a diameter less than 2.5 μm (PM2.5). By leveraging
Google and Apple mobility data, we find empirical evidence for a link
between global vehicle transportation declines and the reduction of
ambient NO2 exposure. While the state of global lockdown is not
sustainable, these findings allude to the potential for mitigating
public health risk by reducing “business as usual” air pollutant
emissions from economic activities. Explore trends here: https://
nina.earthengine.app/view/lockdown-pollution.

air quality | COVID-19 confinement | emissions | nitrogen dioxide |
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In many developing nations, economic growth has exacerbated
air pollutant emissions, with severe consequences for the en-

vironment and human health. Long-term exposure to air pollu-
tion including fine particulate matter with a diameter less than
2.5 μm (PM2.5) and ozone (O3) is estimated to cause ∼8.8 million
excess deaths annually (1, 2), while nitrogen dioxide (NO2) results
in 4 million new pediatric asthma cases annually (3). Despite the
apparent global air pollution “pandemic,” anthropogenic emissions
continue to increase in most developing and some developed
nations (4–6).
The major ambient (outdoor) air pollution sources include

power generation, industry, traffic, and residential energy use (4,
7). With the rapid emergence of the novel coronavirus disease
2019 (COVID-19), and, in particular, the government-enforced
lockdown measures aimed at containment, economic activity
associated with transport and mobility has come to a near-complete
standstill in many countries (8). Lockdown measures have included
partial or complete closure of international borders, schools, and
nonessential businesses and, in some cases, restricted citizen mo-
bility (SI Appendix, Fig. S1) (9). The associated reduction in traffic
and industry has both socioeconomic and environmental impacts
which are yet to be quantified. In parallel to the societal conse-
quences of the global response to COVID-19, there is an unprec-
edented opportunity to estimate the short-term effects of economic
activity counterfactual to “business as usual” on global air pollution
and its relation to human health.
Here we test the hypothesis that COVID-19 lockdown events

between January and the middle of May 2020 were associated
with declines in ambient NO2, O3, and PM2.5 air pollutant

concentrations. Country-specific lockdowns are defined by the
average date of policy restrictions on mobility, workplace clo-
sure, and stay-at-home advisories (10). We use satellite data to
provide a global perspective on atmospheric pollutant dynamics,
but, to quantify air pollution anomalies relevant to public health,
we utilize ground-level measurements from >10,000 air quality
stations in 34 countries, after accounting for meteorological
variations.

Results and Discussion
General Air Pollution Changes. Before accounting for meteoro-
logical variability, we observed declines in ground-level NO2
(36% population-weighted mean with interquartile range [IQR]
of 26%) and PM2.5 (31%; IQR: 50%) concentrations recorded
by air quality stations across 34 countries during 2020 (1 January
to 15 May) relative to a 3-y average for the same dates (Fig. 1).
In contrast, O3 increased by 105% (77% IQR). Satellite mea-
surements of tropospheric pollutant concentrations over the
inhabited areas also reveal declines in NO2 (15%; IQR: 27%)
and increases in O3 (4%; IQR: 6%; SI Appendix, Figs. S3 and S4)
relative to 2019 averages. Measures of aerosol optical depth
(AOD, a proxy for PM2.5) declined by 4.7% (35% IQR).
Therefore, ground-level and total column tropospheric trends in
pollutants show a correspondence in the direction of change but
not necessarily the magnitude of change. This is likely because
tropospheric pollutant concentrations may be significantly diluted
relative to ground-level concentrations, due to mixing and transport
in mesoscale weather systems. This is particularly likely because the
satellite data have not been adjusted for confounding meteoro-
logical effects. For instance, elevated AOD may be a product of
long-distance aerosol transport and not ground-level sources of
PM2.5 (11). The same is true for satellite-measured O3, which is
strongly influenced by its generally increasing abundance above the
boundary layer, especially during winter.

Significance

The global response to the COVID-19 pandemic has resulted in
unprecedented reductions in economic activity. We find that,
after accounting for meteorological variations, lockdown
events have reduced the population-weighted concentration
of nitrogen dioxide and particulate matter levels by about 60%
and 31% in 34 countries, with mixed effects on ozone. Re-
ductions in transportation sector emissions are largely re-
sponsible for the NO2 anomalies.
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The simple comparison of 2020 January−May averages to 3-
or 1-y baseline values (Fig. 1 and SI Appendix, Figs. S3 and S4)
does not isolate the COVID-19 lockdown effect for two reasons.
Firstly, lockdowns were implemented over different dates across

the globe, and, therefore, averaging over January−May smooths
over the country-specific lockdown effects. Secondly, local up to
synoptic-scale weather patterns (temperature, humidity, precip-
itation, vertical mixing, and advection) can significantly affect
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Fig. 1. Global distribution of 2020 ground-level air pollution anomalies. Ground station measures of NO2 (A), O3 (B), and PM2.5 (C) anomalies are mapped.
Anomalies are defined as deviations in 2020 January−May averages from 3-y baseline levels for the same dates and are not corrected for weather variability.
Insets show data density distributions for baseline and 2020 periods with median values as vertical lines.
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ground-level pollutant concentrations (12, 13). Although mea-
suring 2020 changes relative to previous years partially controls
for this, it does not fully account for anomalous weather during
2020 that may have confounded any observable effect of
COVID-19 lockdowns. Therefore, we used historical relation-
ships between weather and daily pollutant time series in a re-
gression model to estimate what the pollutant levels would have
been during lockdown dates. The COVID-19 lockdown effect
was then defined as the difference between observed and
weather benchmark pollutant levels (SI Appendix, Fig. S2). We
used ground-level measurements because they are more sensitive
to emission source changes and are more relevant to human
exposure and health risk.

Weather-Corrected Air Pollution Changes during Lockdown. As of 15
May 2020, the 34 countries considered had been in lockdown for
an average of 62 d, with China (113 d) and Italy (84 d) under-
going the longest lockdowns and Mexico undergoing the shortest
(50 d; SI Appendix, Fig. S1). During lockdown dates, ground-level
NO2 concentrations were, on average, 60% (population-weighted
mean with 95% CI: 48 to 72%) lower than those we would have
expected given the prevailing weather and time of year
(weather-corrected benchmark; Figs. 2A and 3A). Similarly, PM2.5
declined by 31% (17 to 45%), whereas O3 increased by 4% (−2 to
10%; Figs. 2 and 3). In absolute terms (Fig. 3A), this equates to an
11 μg·m−3 (9 μg·m−3 to 14 μg m−3) decline in NO2 and a 12 μg·m−3

(7 μg·m−3 to 18 μg·m−3) decline in PM2.5. The 4 μg·m−3 increase in
O3 (1 μg·m−3 to 8 μg·m−3) was lower in magnitude and less sig-
nificant. These results mirror the direction of change found in the
general trends for uncorrected ground-level (Fig. 1) and satellite-
derived pollutant dynamics (SI Appendix, Figs. S3 and S4). They
also corroborate preliminary (not peer-reviewed) findings from
studies in China (14), Spain (15), and the United States (16) which
have documented local declines in pollutant concentrations during
lockdown.
Globally, the timing of the deviation from benchmark levels

for NO2 was remarkably coincident with the start of lockdown
(Fig. 2 and SI Appendix, Fig. S5). This timing was strongly evi-
dent for PM2.5 in China (decline of 16 μg·m−3) and India (decline
of 15 μg·m−3), but less so for PM2.5 over European countries.
This may be because PM2.5 is significantly influenced by long-
distance atmospheric transport, and, therefore, the local effects
of economic activity over Europe may have been diluted or even
counteracted (17). As an example, in March, easterly winds
carried desert dust across Europe from west Asia, which resulted
in a temporal increase of AOD (18). Moreover, some PM2.5

sources, including agriculture and energy production, were not
disrupted by lockdown policy restrictions. This is also evidenced
in the two notable outlier countries exhibiting increases in PM2.5,
namely, Thailand and Australia (Fig. 3). There, the increases are
largely attributable to the recent wildfires and associated smoke
aerosol levels that have overwhelmed the effect of reduced
economic and transport activity (19, 20).
We find that the global NO2 and PM2.5 anomalies associated

with lockdowns normalized after about 2 mo (Fig. 2). This nor-
malization occurred in early April over China (SI Appendix, Fig.
S5), which is consistent with the release of lockdown on 8 April
over Wuhan province, the epicenter of the COVID-19 pan-
demic. NO2 concentrations normalize during late April and early
May over European countries, including Italy, Spain, and the
United Kingdom (SI Appendix, Fig. S5). This is likely a signal of
increasing economic activity coincident with the gradual easing
of lockdown restrictions around the world after countries have
successfully “flattened the curve” of COVID-19 infections (21).

Explaining the Spatial Variation in Change. Despite the overall av-
erage decline in air pollution during lockdown, there was sub-
stantial variation between countries, in terms of both the
direction and magnitude of change (Fig. 3). The declines in NO2
were relatively ubiquitous over space (28 out of 34 countries;
Fig. 3); however, O3 and PM2.5 anomalies were more variable.
We posit that this spatial variation is likely due to a combination
of 1) unaccounted for meteorological and environmental factors
that affect ambient air pollution chemistry or 2) country-specific
differences in the way lockdown regulations influenced pollution
emission sources across economic sectors.
Our weather benchmark models were not able to explain all of

the temporal variance in NO2 (R2 = 0.52), O3 (R2 = 0.59), and
PM2.5 (R

2 = 0.34) (SI Appendix, Table S1). This is not surprising,
given that pollutants like O3 are affected by nonlinear chemical
interactions with volatile organic compounds (VOCs) and NOx,
mediated by mesoscale and urban canopy circulation patterns (22).
For instance, the emission decline of NOx (=NO+NO2), mostly as
NO, could lead to reduced local titration of O3 (reaction of NO with
O3). The O3 titration effect is relevant locally and within the plan-
etary boundary layer, whereas, farther downwind, photochemical O3
formation, with a catalytic role of NOx, is a more important factor.
For example, in China, the population-weighted O3 is found to in-
crease with decreasing NO2 across the lockdown; this indicates
predominance of a VOC-limited regime in China, whereas reduc-
tion in population-weighted O3 with decrease in NO2 in India sug-
gests a NOx-limited regime prevailing there (SI Appendix, Fig. S5).
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Fig. 2. Lockdown ground-level air pollution anomalies relative to weather benchmarks for NO2 (A), O3 (B), and PM2.5 (C). The daily population-weighted
average (n = 34 countries) ambient pollutant concentrations observed 1 mo before and up to 15 May after lockdowns are plotted in red. Benchmark levels
which represent expected concentrations considering time of year and prevailing weather are plotted in black with 95% CIs.
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Note that lockdown impacts on NO2, which has an atmospheric
lifetime of about a day, are clearly discernible locally, whereas those
on O3 with a lifetime of several weeks are affected by long-distance
transport associated with specific weather patterns. Further, O3
photochemistry in temperate latitudes during the February/March
period is still slow due to low solar irradiation, whereas, at lower
latitudes, pollutant O3 buildup can be significant.
The alternative explanation for the spatial variability in pol-

lutant changes during lockdown is that confinement regulations
had varying effects on emission sources between countries. Re-
cent analyses of the 17% decline in CO2 emissions during lock-
downs have indicated substantial variability between economic
sectors (23), with the largest declines taking place in the surface
transport sector. Sector allocations of CO2 emissions vary be-
tween countries. For example, the transport sector contributes
8% toward CO2 emissions in China, whereas, in the United

Kingdom, allocation is 4 times higher (23). Therefore, one might
expect large variations in emission declines (particularly for
NO2) between countries, given that the lockdowns brought about
the greatest change in the transportation sector.
We explored nationally aggregated citizen mobility datasets

published by Google (https://www.google.com/covid19/mobility/)
and Apple (https://www.apple.com/covid19/mobility/) and found
a significant association between country-specific NO2 declines
and reductions in work commutes (P < 0.05; Fig. 4A) and vehicle
driving activity (P < 0.05; Fig. 4B). There were no significant
relationships for O3 and PM2.5 anomalies. This suggests NO2 has
a stronger coupling to land transportation and small-business
activity declines during lockdown compared to O3 and PM2.5.
In many countries, PM2.5 is more strongly linked to residential
energy use, power generation, and agriculture (7). Given that
walking and cycling are attributes of social distancing measures
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(24) that are expected to continue for some time (25), reduced
NO2 emissions and therefore exposure levels may be sustained
over the near future.

Implications
Reducing economic activity to levels equivalent to a lockdown
state may be impractical, yet maintaining “business as usual”
clearly exacerbates global pollutant emissions and ambient ex-
posure levels. Our study documents the dramatic short-term
effect of global reductions in transport and economic activity
on reducing ground-level NO2 and PM2.5, with mixed effects on
O3 concentrations. Short-term epidemiological analyses suggest
that pollutant reductions may have offset COVID-19 deaths (14,
26, 27); however, the full extent to which this is true remains to
be seen. In some settings where household (indoor) air pollution
from solid fuel use is widespread, overall exposure may have
increased as a result of lockdown policies (28). As the pandemic
plays out, empirical data will emerge to fill in the knowledge gaps
and uncertainties associated with the air pollution health burden
attribution. Nevertheless, finding means to curb air pollutant
emissions remains important, and here we provide empirical
evidence at a global scale for a coupling between vehicle trans-
port reduction and declining ambient NO2 concentrations. This
provides justification for city-level initiatives to promote public
transport systems as well as pedestrian and cycling activity.
Finding economically and socially sustainable alternatives to
fossil fuel use in industries, transportation, and power plants, and
cleaner fuels for use in households, are additional means of
reaching the pollutant declines we have observed during the
global response to COVID-19 (29, 30).

Materials and Methods
In brief, the methodological workflow (SI Appendix, Fig. S2) described below
involves collecting satellite and ground station air pollution time series data
to estimate anomalies during the 2020 COVD-19 period relative to different
baseline levels. We collected satellite data to provide a global perspective of
pollutant trends over regions where there is a scarcity of ground air quality
stations. However, we focus on weather-corrected ground station data be-
cause ambient pollutant concentrations are more relevant to public health
than satellite-derived tropospheric column concentrations. Regression

models are used to correct for the potential effects of weather-related
variations on ground-level pollutant levels during lockdown. The sample
of countries used in each step varies dependent on the data availability.
Results for ground station data cover 34 countries, while satellite data cover
48 countries.

Satellite Data.All remote sensing data analyses were conducted in the Google
Earth Engine platform for geospatial analysis and cloud computing (31). All
data were extracted at a global scale and aggregated to the population-
weighted mean for each country. Population data were obtained for 2020
from the Gridded Population of the World v4 dataset (32). Data outside of
inhabited areas (ocean, freshwater, desert, etc.) were excluded from the
analysis using the Global Human Settlement Layer produced by the Euro-
pean Joint Research Centre which defines inhabited rural and urban ter-
restrial areas (33). We did this because our main hypothesis was linked to
human exposure, and, therefore, we aimed at pollution measures that were
relevant to inhabited land surfaces.

We collected nitrogen dioxide (NO2) and ozone (O3) data from the Tro-
pospheric Monitoring Instrument (TROPOMI), onboard the Sentinel‐5 Pre-
cursor satellite (34). TROPOMI has delivered calibrated data since July 2018
from its nadir‐viewing spectrometer measuring reflected sunlight in the
visible, near‐infrared, ultraviolet, and shortwave infrared. Recent work has
shown that TROPOMI measurements are well correlated to ground measures
of NO2 (35, 36). We filtered out pixels that are fully or partially covered by
clouds, using 0.3 as a cutoff for the radiative cloud fraction. As a proxy for at-
mospheric PM2.5, we collected AOD data from the cloud-masked MCD19A2.006
Terra and Aqua Multi-angle implementation of Atmospheric Correction collec-
tion (37) derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS). This dataset has been successfully used to map ground-level PM2.5

concentrations (38, 39). Global median composite images for NO2, O3, and AOD
were then calculated for the months of January to May in 2019 and 2020.

Ground Station Data. Although satellite data have the advantage of wall-
to-wall global coverage, there are some drawbacks: 1) TROPOMI does not
extend back far enough to obtain an adequate baseline measure with which
to compare 2020 concentrations; 2) MODIS and TROPOMI collect informa-
tion within either the total (O3 and AOD) or tropospheric (NO2) column
which does not necessarily reflect pollutant levels experienced on the
ground. Therefore, we also collected NO2, O3, and PM2.5 data from >10,000
in situ air quality monitoring stations to supplement the satellite data. These
data were accessed from the OpenAQ Platform and originate from gov-
ernment- and research-grade sources. See https://openaq.org/#/?_k=d8f1zb
for a list of sources. Despite the reliability of the sources, we inspected
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pollutant time series for each country and removed spurious outliers in the
data with z scores (40) exceeding an absolute value of 3 (within 3 SDs from
the mean). Following quality control, we were left with data representing 34
countries. When aggregating data to country level, we used population-
weighted means based on the population density within 10 km of each
ground station.

Quantifying Air Pollution Anomalies. We used two approaches to quantify
air pollution anomalies coincident with COVID-19 during January to May
15, 2020. We refer to these as 1) the Jan-May differential and 2) the
lockdown differential (SI Appendix, Fig. S2). For the Jan-May differen-
tial, we calculated average pollutant levels for January−May each year
between 2017 and 2020. The differential was defined as the difference
between 2020 values and the average of those for a 3-y baseline
(2017−2019). For satellite data, the baseline was the 2019 January−May
average due to limited temporal extent of TROPOMI data; however, for
ground stations, we considered a 3-y (2017−2019) average for the
January−May period.

Air pollution anomalies measured with the Jan-May differential approach
may smooth over the effect of COVID-19 given that country-specific lock-
downs or mitigation actions occurred at different times. For instance, China
went into lockdown in January, whereas the majority of lockdowns in other
countries occurred in March (SI Appendix, Fig. S1). Therefore, we attempted
to isolate the effect of COVID-19 mitigation measures by calculating lock-
down pollutant levels for each country separately. We utilized a dataset that
consolidates national policy regulations relating to COVID-19 confinement
measures (10). The start of lockdown was calculated separately for each
country as the average date on which policies for stay-at-home restrictions,
mobility restrictions, and workplace closures were announced (SI Appendix,
Fig. S1).

Air pollution anomalies measured during lockdowns are not necessarily
attributable to reduced economic activity, but may be an artifact of mete-
orological variability coincident with the onset of COVID-19. Therefore, we
adopted a weather benchmark modeling approach to predict what the

expected air pollution levels for 2020 lockdown dates should have been
given the prevailing weather conditions and time of year. We used mul-
tiple linear regression as a modeling framework after testing both Random
Forest and generalized linear models which had lower predictive accuracy
based on assessing model performance by predicting against a withheld
validation dataset. We built separate linear regression models for each
country and pollutant type, where daily pollutant concentrations were
regressed on a number of explanatory variables including temperature,
humidity, precipitation, wind speed, day of year, day of week, week of
year, and month of year. Weather data were downloaded from the Global
Forecast System of the National Centers for Environmental Prediction be-
tween January 2017 and 15 May 2020. We calculated the sin and cos
component of the day, week, and month variables to account for their
cyclical nature. Using models trained on historical data (before 1 January
2020), we predicted the expected pollutant levels for lockdown dates. The
modeled differential is then the difference between this predicted
benchmark value and the observed pollutant concentrations during lock-
down (SI Appendix, Fig. S2). This differential can be attributed to COVID-19
mitigation measures with greater confidence than simple comparisons
with 3-y baseline values.

Data Availability. Data and scripts used to produce this analysis are available
at this GitHub repository: https://github.com/NINAnor/covid19-air-pollution.
Explore data from the present manuscript interactively here: https://nina.
earthengine.app/view/lockdown-pollution.
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