
PERSPECTIVE

Polygenic inheritance, GWAS, polygenic risk scores,
and the search for functional variants
Daniel J. M. Croucha and Walter F. Bodmerb,1

Edited by Mary-Claire King, University of Washington, Seattle, WA, and approved July 2, 2020 (received for review May 22, 2020)

The reconciliation between Mendelian inheritance of discrete traits and the genetically based correlation
between relatives for quantitative traits was Fisher’s infinitesimal model of a large number of genetic
variants, each with very small effects, whose causal effects could not be individually identified. The de-
velopment of genome-wide genetic association studies (GWAS) raised the hope that it would be possible
to identify single polymorphic variants with identifiable functional effects on complex traits. It soon be-
came clear that, with larger and larger GWAS on more and more complex traits, most of the significant
associations had such small effects, that identifying their individual functional effects was essentially hope-
less. Polygenic risk scores that provide an overall estimate of the genetic propensity to a trait at the
individual level have been developed using GWAS data. These provide useful identification of groups of
individuals with substantially increased risks, which can lead to recommendations of medical treatments or
behavioral modifications to reduce risks. However, each such claim will require extensive investigation to
justify its practical application. The challenge now is to use limited genetic association studies to find
individually identifiable variants of significant functional effect that can help to understand the molecular
basis of complex diseases and traits, and so lead to improved disease prevention and treatment. This can
best be achieved by 1) the study of rare variants, often chosen by careful candidate assessment, and 2) the
careful choice of phenotypes, often extremes of a quantitative variable, or traits with relatively high
heritability.

GWAS | association mapping | polygenic scores

The key to Mendel’s successful demonstration of the
discrete nature of inheritance, without which it would
not be possible to maintain the genetic variability re-
quired by Darwinian evolution by natural selection,
was his careful choice of clearly dichotomous pheno-
types for study. Only in this way could he have ob-
served the simple ratios that defined his laws. That is
why we refer to clearly inherited, often extreme, dif-
ferences that are obviously familial, as “Mendelian.”

The ultimate reconciliation between Mendelian
discrete inheritance and the correlation between
relatives for continuously inherited traits, such as
height or weight, which had been clearly observed by
Francis Galton and his biometrician followers and
which implied inherited tendencies for such traits, was
provided by R. A. Fisher (1) in his seminal 1918 paper.

This was entitled “The correlation between relatives
on the supposition of Mendelian inheritance.” He
showed that the observed correlations could be
explained by a model in which a large number of dis-
crete inherited differences were each inherited
according to Mendel’s laws and where each had a
small effect on the quantitative trait in question. The
cumulative effect of such variants at many loci could
be assumed to lead to a normal distribution, and it was
in this paper that Fisher introduced the term variance
as we now know it and the concept of the analysis of
variance. This “infinitesimal model” is commonly con-
sidered to be the founding principle of quantitative
genetics. It explains observed correlations between
relatives based on Mendelian genetics but does not
attempt to identify the causal effects of particular
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genetic variants on the quantitative trait being studied. Fisher
returned only once to the analysis of quantitative inheritance us-
ing the infinitesimal model, and this was in the context of plant
breeding (2). Here, his aim was to show how statistical approaches
based on analyzing the quantitative distribution of a trait could be
useful even, as he put it, “when individual factors cannot
be recognized. . ..”

At that time, Fisher had become very interested in the
serological techniques then being developed by Charles Todd,
which were the basis for the later recognition of red cell blood
groups. Fisher suggested in a letter to Todd, with remarkable
foresight, that these techniques might be able to detect “the di-
rect products of individual genes rather than (those that) have
secondary reactions.” In this correspondence with Todd, Fisher
later said that he believed that such “work is going to lead to a
greater advance, both theoretical and practical, in the problems of
human genetics than can be expected from any further work on
biometrical or genealogical lines.” Here, he was foreseeing the
possibility of identifying biochemically the products of genes
whose variants determine a given human trait, and so identifying
the effects of a given variant on the trait at the molecular level.

The transition from the “work on biometrical or genealogical
lines” to the wish to identify the direct products of genes epito-
mizes the prevailing conflict in studying the genetics of complex
traits. This conflict is in the contrast between analyses that do not
aim to identify the contributions of individual genetic variants and
those that aim to understand the underlying molecular basis of the
trait variation through the identification of specific variants, in
genes with defined functions, that have clearly defined effects
on the trait. The concept of a gene in the context we are discus-
sing, is any defined mapped DNA sequence in the genome that
can have some functional effect and so within which a variant
sequence may have some detectable differential effect on a given
phenotype. It is this dichotomy of approaches between not iden-
tifying the contribution of individual variants, and understanding
their molecular function, which we analyze in this paper.

Polygenic Inheritance and the Location of Polygenes
The first use of polygenic in the context of quantitative inheritance
was by Mather (3) in 1941. He talked of polygenic characters and
polygenic variation and postulated that this type of inheritance,
following Fisher’s infinitesimal model, was controlled by a differ-
ent category of genes that he called “polygenes.” He accepted
that “it is possible that if some organism could be grown in a
constant environment and rendered homozygous for all but one
of the genes affecting a quantitative character, this one gene
might be observed to segregate and give sharply distinct classes
just as a qualitative gene does.”He also pointed out that although
“stature, for example, is usually a quantitative character,” there
were “qualitative” genes, for example, for dwarfism that could
affect this character in addition to the polygenes.

It was Thoday (4), a former pupil of Mather’s, who showed in a
paper entitled “Location of polygenes” how it was possible to
locate polygenes by, for example, mapping regions of the Dro-
sophila genome that had a statistically significant large effect on
bristle number in Drosophila, his model quantitative trait. Jinks, a
Mather disciple and a distinguished and influential British genet-
icist, took the opposite view to its extremes and would not accept,
for example, that for certain diseases, including diabetes, that
could be interpreted through a threshold model (5) as quantitative
traits, it could be possible to find specific genetic variants at

defined genes with recognizably large effects on the chance of
getting diabetes.

HLA and Disease Associations
While there were claims of associations between ABO types and
certain diseases starting in the early 1950s, it was the really striking
associations of HLA types with autoimmune diseases, notably
HLA-B*27 with ankylosing spondylitis (6), that changed the whole
field of studying multifactorial inheritance by looking for associa-
tions between phenotypes and specific, possibly causal, genetic
variants. The first suggestion that linkage disequilibrium (LD) with
an unobserved causal variant could account for associations be-
tween a genetic variant and a disease was made by Bodmer (7),
based on early data on Hodgkin’s disease and this idea was fur-
ther developed in the context of autoimmune diseases by
McDevitt and Bodmer (8). The role of HLA in the control of the
immune response provided a clear rationale for testing these as-
sociations. Early examples of the use of LD with common HLA
polymorphic alleles for identifying causal variants in novel closely
linked genes are the discovery of the key role of an HLA-DQ allele
in susceptibility to type I diabetes through the initial disease as-
sociation with HLA-B*8,15 and then HLA-DR*3,4 (9, 10), and
the discovery of HFE gene variants as the main underlying cause
of hereditary hemochromatosis through its association with
HLA-A*3 (11).

Genome-Wide Association Studies
It was an obvious possibility to extend the HLA and disease as-
sociation studies to looking for the association between any
marker and a disease on the assumption that this could lead, by
LD, to the discovery of the functionally relevant variant in the vi-
cinity of the gene carrying the associated variant (12). Thus, the
interpretation of the reason for an observed association between
a given identified variant and a given phenotype is that either
there is a direct effect of the variant on the phenotype or that the
association is due to the effect of one or more as-yet-not-
identified variants all in strong LD with observed associated vari-
ant, and collectively with a larger effect on the phenotype being
studied than the originally associated variant.

Many initial studies looking for such disease associations in
genes chosen as likely functionally relevant candidates proved
difficult to repeat. This was, presumably, because of a combina-
tion of inadequately sized studies and the inevitable difficulty in
choosing the right candidates. The development of DNA tech-
nologies for working with very large numbers of polymorphic
variants (defined usually by a minor allele frequency of greater
than 5%) then provided the basis for genome-wide association
studies (GWAS) as we now know them, that did not make any
assumptions about possible candidates. This, however, raised the
problem of correcting for multiple comparisons, the need for
which had already been realized for the HLA and disease studies,
but now was required on a hugely larger scale. Very large-scale
studies became necessary for reaching significant P values that
needed to be about a million times smaller than the conventional
5% or 1% levels when testing for association with 500,000 to
1 million SNPs (single-nucleotide polymorphisms).

Clearly, the larger the effect, the higher the chance of finding a
significant association for a given size of study and given allele
frequency. It soon became clear, however, that the chance of
finding effects with an odds ratio (OR) (from 2 × 2 associations
between a givenmarker and a particular disease) even of ∼1.5 was
quite small. Even at this level, proving that a variant truly has a
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functional effect on a trait is very challenging. In the hope of
finding variants with larger effects, the suggestion was made that
these might be found at lower frequencies, of say 1% or less, in
carefully chosen candidate genes, for example, those in which
obviously deleterious mutations had large effects on a trait [see
Frayling et al. (13), Bodmer (14), and, for more historical detail,
Bodmer and Bonilla (15)]. While contributing to the possible un-
derstanding of the functional basis of a trait, as determined by
variants in genes with known functions, the approach of looking
for rare variants did not necessarily aim to explain a large pro-
portion of the overall genetic variance in the studied traits.

Some large effects found by early GWAS were previously well
established by linkage or candidate gene association studies (16),
for example, NOD2 in Crohn’s disease (17, 18) and INS in type
1 diabetes (19). However, two of the early studies showed quite
strong effects of common variants on myocardial infarction (20)
(ORs 1.5 to 1.8) and age-related macular degeneration (21) (OR ∼
7.5), which pointed to relatively unexpected biological mecha-
nisms due to being located in genes that probably would not have
been chosen as candidates a priori. Later, GWAS of Crohn’s dis-
ease (22) and type 1 diabetes (23) yielded a handful of additional
relatively large effects, which later became a pattern across
autoimmune diseases.

The record of GWAS in driving the discovery of biological
causes of phenotypes has, however, in general been disappoint-
ing. Advocates point to the discovery of the effect of FTO varia-
tion on obesity and body mass index (24) and of C4 genes on
schizophrenia (25) as examples of GWAS generating novel bio-
logical hypotheses that have then gone on to be tested experi-
mentally (26). The FTO effect on obesity is notable for being large
relative to other GWAS hits not previously discovered by candi-
date gene approaches, with an OR of 1.67 for the effect of
the homozygote risk genotype (rs9939609 A/A) (27). Experimen-
tal work has verified that the C4 genes that are differen-
tially expressed between schizophrenia cases and controls, are
expressed in relevant regions of the human brain and influence
the extent of synaptic pruning in mice (25), but it remains unclear
whether these phenomena are causally connected with schizo-
phrenia development in humans. There have also been studies
suggesting that genetically supported targets for drug develop-
ment chosen from disease GWAS could improve the eventual
drug approval rates, although it is not clear how this would be
applied in practice, or how great the improvement would be (28,
29). More recently, GWAS significant associations (or “hits”) with
common diseases have conformed overwhelmingly to a standard
pattern of many small “polygenic” effect variants (OR < 1.2) at
moderately or highly polymorphic SNP loci (minor allele fre-
quency > 1%) (26), and similar results are found for continuous
phenotypes such as height and IQ (30, 31).

In the attempt to bridge the gap between the finding of ge-
netic variants with well-defined functional effects on a trait, and
those that collectively account for a significant proportion of the
genetic variance of a trait, larger and larger GWAS, including large
replicates, are being carried out. These very large-scale studies
naturally also increase the problem of spurious associations due to
population stratification, more especially so if the effect sizes are
small, although sophisticated methods have been developed for
attempting to correct these biases (32).

Fig. 1 shows the median sizes of ORs for new GWAS hits
obtained each year, for the seven diseases originally studied by
the Wellcome Trust Case Control Consortium (16). ORs were
obtained from the National Human Genome Research Institute

(NHGRI)/European Bioinformatics Institute (EBI) GWAS Catalogue
(33), which collates results of all GWAS hits with combined dis-
covery and replication P values less than 1 × 10−5. We restricted
the analysis to studies where replication of initial associations
was reported.

The increase in the sizes of GWAS has led to a gradual de-
crease, with time, in the median size of genome-wide significant
ORs, so that now a high proportion of the variants assumed to be
relevant have ORs well under 1.1.

Establishing the role of small effect variants is extremely diffi-
cult. These are likely to exert their influences on phenotypes
through very indirect mechanisms, far downstream from their
proximal functions, giving rise to a large number of potential
candidate functions to investigate. Although much progress has
been made to improve fine-mapping methods (34, 35), estab-
lishing which variants are causal, among an associated set in LD,
remains challenging when their effects on the phenotype are so
small. Thus, at the level of effect sizes with ORs mostly well under
1.1, it is virtually impossible to identify unequivocally a particular
variant’s functional effect on the trait being studied.

The situation is now approaching Fisher’s infinitesimal model,
with individual variants whose specific contribution to the function
of a trait is not identifiable. Perhaps these are really the polygenes
postulated by Mather and his colleagues. However, the question
arises, notwithstanding these small individual effects of variants,
whether the pattern of variants associated with a given trait can
nevertheless provide some useful overall indication of biologically
relevant functions.

In the absence of a small number of variants with large or
moderately large effect sizes that can be followed up for their
individual functional effects, it is possible to assess whether, out of
a large number of phenotypically associated SNP variants, there is
a disproportionate number belonging to certain biological cate-
gories, for example being expressed in a specific tissue or acting
in a particular enzyme pathway. Thus, under the polygenic model,
where there are large numbers of hits with small effect sizes, the
functional annotations of hits can be inspected to establish
whether, for a given trait, there is such overrepresentation in
particular pathways or gene ontology categories.

For example, in a large-scale GWAS of major depression (36),
gene set analysis based on mRNA expression data in different
tissues showed that only brain samples showed significant en-
richment. Within this, the association was with neuronal gene
expression rather than other cell types in the brain. There was an
indication that the brain regions most associated were those that
might be expected for major depression. While this information
gives some general clues to functional effects of SNPs associated
with major depression, the study only explained a minor fraction
of the likely total genetic variation affecting major depression, and
the ORs of the significant SNPs only ranged from 0.95 to 1.04.
Similar results have been obtained, for example, for studies on
neuroticism (37) and IQ (38).

The EA3 study on educational attainment, a highly polygenic
trait, is another notable recent example of this type of analysis
(39). A very large number of category enrichment analyses was
performed on 1,271 independent genome-wide significant sig-
nals detected in a GWAS of 1.1 million individuals with educa-
tional attainment data. The authors highlight two broad findings.
First, the most significantly prioritized genes that were implicated
as causal show trajectories of expression in the brain that are in-
creased before the late prenatal stage of development and de-
cline thereafter. Weaker, newly discovered, associations showed

18926 | www.pnas.org/cgi/doi/10.1073/pnas.2005634117 Crouch and Bodmer

https://www.pnas.org/cgi/doi/10.1073/pnas.2005634117


no such trajectory. This suggests a modestly disproportionate
influence of brain development relative to active brain functioning
in determining differences between individual abilities underlying
educational attainment, which is perhaps not surprising. Second,
genes expressed in glial cells are relatively weakly enriched for
educational attainment SNPs compared to those expressed in
neurons. Thus, the enrichment effects reported for glial cells are
1.08 for astrocytes and 1.09 for oligodendrocytes, in contrast with
1.33 for neurons. The extent to which such studies make a de-
finitive contribution to the functional genetic understanding of
such complex traits is surely questionable.

In any large-scale GWAS, while the cutoff point for including
SNPs of interest is based on some chosen upper threshold P
value, after allowing for multiple comparisons, it remains possible
that with large enough sample sizes there could eventually be a
very long tail of SNPs with very small ORs. This notion has been
extended by Boyle et al. (40) to what they call the “omnigenic”
model. They base this on two key issues: 1) that a very long tail of
SNPs with very small effects could account for a high proportion of
the population genetic variance in a complex trait, and 2) that a
high proportion of genes is involved in two or more pathways that
might seem unrelated, such as the brain and the immune system,
or contribute to basic functions common to many cell types, such
as replication or protein processing. GWAS, such as those we
have quoted above, suggest that, in many cases, subsets of genes
with notably higher ORs, although still quite low, can be found
that do focus broadly on certain tissues, notably the brain. This, of
course, does not rule out the possibility that most of the pop-
ulation heritability for a trait could be explained by the very long
tail of very low OR SNPs. In a further development of the omni-
genic model, Liu et al. (41) find evidence that there are SNPs in
“core” genes that contribute more or less directly to a trait and the

rest that contribute what they refer to as peripherally, namely in-
directly via effects on the levels of gene expression of the core
genes. Thus, they propose a dichotomization of SNPs, effectively
by their effect sizes, as in the studies mentioned above. It is not
clear, however, in what way this contributes to a better under-
standing of the genetic control of quantitative traits at a functional
level. The omnigenic model simply seems to make the case for a
greater contribution to potential functional understanding of ge-
netic contributions to a quantitative trait from what they call the
core genes, namely those with the highest ORs that fit into de-
fined functional categories, relative to the much larger tail of very
low OR SNPs, which nevertheless may contribute most to the
trait heritability.

Many GWAS disease associations are cis-expression quanti-
tative trait loci, influencing the mRNA expression levels of nearby
genes due to their locations in regulatory elements, and coloc-
alization analysis often confirms that the same association signal is
responsible for both expression level changes and effects on
disease risk (42). Although this implies that, in these cases,
changes to the expression levels of specific genes have causal
effects on disease, these genes are likely to be separated from the
key disease-influencing molecules by several steps in a molecular
pathway, and will be linked to many other molecules by similar
degrees of separation. Thus, although it may be possible to es-
tablish the proximal function responsible for a GWAS signal, this
does not change the fact that, when variants’ phenotypic effects
are small, these will have little relevance to disease etiology.

Polygenic Risk Scores
The obvious question that arises from our discussion so far is, what
use can be made of GWAS results that do not give useful insights
as to the functional effects of specific genetic variants. This is the
question that Fisher et al. (2) addressed: “When individual factors
cannot be recognized the analytic method of genetic study can-
not even be commenced, and the question arises as to whether
genetics as a science has any further resource to offer.” Fisher
emphasized that in plant and animal breeding, the extent of ge-
netic variance in a character would determine the scope for re-
sponse to selection for a quantitative trait and this could be
calculated without knowledge of the individual genetic factors
involved. The larger the number of such factors, the greater the
opportunity for continued success in selective breeding.

Goddard and his colleagues (43, 44) have been the pioneers of
the application of SNP data to selective plant and animal breed-
ing. They introduced the concept of an individual’s breeding
value based on a weighted sum of the effects of a number of SNPs
on a given quantitative trait, where the weights are based on the
effect sizes of the SNPs estimated from a GWAS of the trait in
question. This approach to selection based on breeding values
has had an enormous effect on the efficacy of selection, com-
pletely bypassing the need for progeny testing.

An equivalent to the breeding value in human applications has
been called the polygenic risk score (PRS) and provides an esti-
mate of the genetic propensity to a trait at the individual level.
This is calculated by computing, for each individual, the sum of
the effects of risk alleles corresponding to a phenotype of interest,
with each allele weighted by its effect size estimated from an in-
dependent GWAS on the phenotype. If the phenotype is, for
example, breast cancer, then the PRS should give the genetic risk
of an individual getting breast cancer based on their particular
combination of at-risk alleles. The application of this information
could then be, for example, to give women with a PRS above

Fig. 1. Decrease in GWAS hits’ effect sizes from the NHGRI-EBI
GWAS catalog, for seven diseases initially studied as part of the
Wellcome Trust Case Control Consortium between 2007 and 2019.
Interquartile ranges are shown, along with the number of hits
published in each year. The diseases are rheumatoid arthritis, Crohn’s
disease, type 1 diabetes, type 2 diabetes, coronary artery disease,
hypertension, and bipolar disorder.
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some chosen level more frequent breast cancer screens or start
their screening at a younger age. The benefit would only come if
these criteria for screening were more stringent than those gener-
ally applied. The general aim of the application of a PRS is to sit-
uations where individuals with a high PRS could benefit from
particular treatments or behavioral modifications, for example with
respect to diet or exercise, or by taking an appropriate medicine.

Calculating PRSs has now become a popular application of
GWAS datasets to a wide variety of phenotypes, from height and
body weight to cardiovascular disease and rheumatoid arthritis.
Thresholds can be applied to determine the optimum number of
SNPs to include, with filtering, for example, based on each SNPs’
GWAS P value (e.g., a threshold of 1 would include all SNPs, and a
threshold of 5 × 10−8 would include only those considered to be
genome-wide significant hits) (45, 46). For many phenotypes,
models that use a large number of SNPs with effects too small to
be individually significant outperform those using a smaller
number of confirmed associations, in line with the trend toward
decreasing sizes of effects for GWAS hits and with the evidence
that much of the overall genetic variance for such a trait probably
lies in the long tail of very low-level effect SNPs (47, 48). However,
recent work using thousands of whole-genome sequenced indi-
viduals with height and BMI measurements strongly suggests that,
at least for these phenotypes, rare variants that are poorly LD-
tagged by common variants can explain the remaining genetic
variation (49). Although the distribution of effect sizes among
these variants is still unknown, it is quite possible that many will
have quite large effects, which would be identifiable via DNA
sequencing but are not detected by conventional GWAS using
only markers with minor allele frequencies >1%.

The predictive performance of PRSs is in many cases quite
good. For example, individuals with a cardiovascular PRS in the
top 8% were found to have relative risk (RR) of 3 for developing
the condition when compared to the rest of the population, with
somewhat lower percentages of individuals meeting this level of
risk when applying the same approach to arterial fibrillation, in-
flammatory bowel disease, breast cancer, and type 2 diabetes
(50). In a separate dataset, individuals in the top 20% of cardio-
vascular disease PRSs had a hazard ratio of 4.17 when compared
to the bottom 20% (51). These levels of effects may be sufficient to
justify the use of PRSs for clinical screening of individuals to detect
those in the extreme tail who may be invited for preemptive
treatment or monitoring. However, it is not clear that it would be
ethical to exclude individuals from such a screening process on
the basis that their PRS is low, as they may nevertheless be at
some significant risk. Preventative medicine often comprises
lifestyle advice such as eating less or not smoking, and it could be
argued that everyone should be encouraged to follow such advice
regardless of their genetic predisposition. If the advice is to take a
medicine, such as statins, the issue is whether to take it at all or to
change the dosage. It is not clear, however, whether if, say, a PRS
were calculated for heart disease at an early age one could give
any other advice concerning diet and smoking than that which
should be given to everybody whatever their PRS level.

It is important to realize that PRS scores may be significantly
different in different populations, even though the populations
may share common relatively large effect SNPs (52, 53). There are
three key reasons for this. In most cases, disease-associated alleles
will not be causal. As the LD between causal and associated al-
leles is likely to differ between the population the PRS is trained
on and the one it is applied to, the estimates of allelic effect sizes
will often be biased for the latter. Second, even when LD is similar

in each population, if there is less allelic variation at the associated
SNPs in the application population, this will lead to lower pre-
dictive power in the PRS. Third, predictions will be affected by the
presence of admixture from the application population in the
training population dataset. Widespread application of PRSs
may, therefore, eventually require quite long-term, large-scale
population-specific studies to justify their application in any given
situation (54).

Search for Functional Variants
Genetic mapping to inform the molecular basis of any phenotype
eventually depends on the molecular and functional understand-
ing of the effects of variants with sufficiently large and individually
identifiable effects on the phenotype. For clearly Mendelian traits
segregating in families, positional cloning to identify the genes that
explain the trait segregation, and through that the underlying
function, has become relatively straightforward.

It is important to recognize that most large-effect variants will
not lead to a clustering of extreme phenotypes within families.
This is because the penetrance of rare variants, even if they have
relatively large effects, is likely to be fairly low and certainly well
below 50%. Most matings involving a rare dominant risk variant,
D, will be Dd × dd. It can be shown, for example, that even for a
penetrance of 20%, which is high for a variant with an OR of 3, only
5.2% of families with four offspring will include more than one
affected offspring. Only when penetrances are well above 50%
does one approach a familial concentration that begins to look
like a standard Mendelian segregation. This means that for ge-
netic effects that are not associated with a very high Mendelian-
level penetrance, family studies will be of little use, at least in the
average Western society (15). The question now is, what are the
best approaches to finding specific functional variants with well-
defined effects on multifactorial and quantitative traits that do not
obviously show Mendelian segregation in families.

The early discoveries of remarkably strong associations be-
tween particular HLA types and diseases were the first clear ex-
amples of the use of population-marker association studies to gain
insight into the functional basis of a disease [see Tomlinson and
Bodmer (55) for a historical perspective]. These studies estab-
lished the rationale for GWAS and raised the hope that many
more sufficiently strong marker–disease associations that threw
light on disease causality would be found. The reality, however,
has been that such strong associations are quite uncommon and
seem mostly to involve polymorphisms that have been associated
with strong effects of natural selection. In addition to the HLA
associations connected with immune functions, other examples
include the well-known associations of the hemoglobin gene and
G6PD polymorphisms with malaria and the more recently de-
scribed association of certain APOL1 variants prevalent in certain
West African populations with kidney disease and resistance to
Trypanosoma brucei-caused African sleeping sickness (56).

In these examples, the relevant polymorphisms are maintained
by some sort of balancing selection, sometimes frequency de-
pendent, as in the case of HLA, or simple overdominance, as in
the case of the hemoglobinopathies. High-frequency polymor-
phisms due to prior positive selection may just remain in a large
population for very long periods of time even after the selection
that established them has stopped, so long as there is then no
counterselection. This, for example, is likely to be the case for past
epidemics that led to selection for new resistant genetic variants.

It seems unlikely that many, if any, further large-effect common
variants for complex multifactorial phenotypes will be found by
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more GWAS performed in the standard way, since so many have
already been conducted at extremely well-powered levels for
detection of quite small effects.

Many GWAS have been done on specific infectious diseases,
including HIV [see e.g., Newport and Finan (57) and Klebanov
(58)], revealing some interesting possible candidate functional
genes other than those associated with the HLA and related sys-
tems. In addition, early GWAS on type 1 diabetes by Todd et al.
(23) revealed suggestive functional effects of non-HLA variants
involved in immune functions. Another interesting application of
GWAS is to the study of severe allergies and drug responses,
where very strong associations with particular HLA types, and with
no other variants, genome-wide, have shown that those associ-
ated HLA types are the only significant determinants of the idio-
syncratic reaction [see, e.g., Hung et al. (59) and Daly et al. (60)].

These results emphasize that one reason for the low success
rate of many GWAS in finding variants with relatively large ORs is
due to the complex mixture and variation in expression of the
phenotypes studied. This suggests that there is still scope for the
discovery of functionally meaningful individual variants in the study
of more narrowly defined phenotypes.

Rare Variants with Large Effects
Conventional GWAS have not included rare variants with fre-
quencies substantially lower than 1% mainly because it was as-
sumed that good statistical power to detect variants whose effect
sizes were as low as ORs of around 1.2 or less would require unre-
alistically large sample sizes to achieve significance. Although it is

possible to impute genotypes at rare variants based on LD infor-
mation from sequencing reference panels, together with GWAS SNP
data, accuracy will typically be low for those with less than around
0.5% frequency. Common variants cannot associate with disease by
tagging an unobserved rare, large-effect disease-causing variant, due
to insufficient levels of LD. For example, r2 = 0.02 is the highest
possible correlation coefficient that can be observed for LD associ-
ation between 0.05 and 0.001 frequency variants.

Some studies incorporating whole-exome or whole-genome
sequencing have begun to find statistically significant associations
of very-low-frequency, large-effect variants on common pheno-
types. To do this, associated variants are filtered to consider only
those with frequencies <0.1%, and to use a variety of criteria, such
as whether the variants are nonsense, splice influencing or mis-
sense, in a way that is likely to affect protein function, so that only
variants with likely functional effects are included for analysis. This
helps to increase the effective power of a study by reducing the
extent of correction for multiple comparisons (61–64).

Particular success in the search for rare variants has been
achieved in psychiatric diseases including, for example, schizo-
phrenia where several studies of family and unrelated samples
have found a number of examples of relatively large-effect, low-
frequency variants (65–68).

Like any genetic mapping association, rare variant associations
cannot be assumed to be causal without, first, analysis of associ-
ations between the phenotype with all available haplotypes
formed by the focal variant, and physically proximal variants in LD
(i.e., fine mapping). Second, causality can only be unequivocally
established via functional experimental work.

Rare Variants in Candidate Genes
Another approach to finding rare variants of presumed functional
effects is to look for them in candidate genes, as described by
Bodmer and Bonilla (15). Candidates may be chosen by two cri-
teria: 1) genes in which obviously severe disruption of function
gives rise to an extreme, usually clearly familial, abnormal version
of the phenotype being studied, and 2) genes unequivocally
known to be involved in the biology of the phenotype based on
biochemical and physiological studies. Specific variants of func-
tionally relevant effect are then sought by genome sequencing of
the chosen candidate genes in individuals with the relevant
phenotype. The frequencies of putative variants found in this way
in individuals with the phenotype under study are then compared
with those in controls, just as in a GWAS. This strategy involves a
much-reduced constraint on power because the multiple-
comparison correction need only take into account the number
of candidates chosen for the study. The initial stimulus for the
suggestion that rare variants could be found in appropriately
chosen candidate genes came from the observation of missense
variants in the APC gene, whose severe mutations cause familial
polyposis coli, which were associated with a much milder form of
polyposis (13, 69). The idea was then confirmed by additional
studies on colorectal adenomas (70) and high-density lipoprotein
cholesterol levels (71). For more recent discussions on approaches
to rare variant analysis, see Lee et al. (72) and Povysil et al. (73).

As the number of candidate genes may be relatively large, and
there are very large numbers of rare variants present in even a
single gene, it is likely that such studies will benefit from going
beyond the standard statistical approach of testing each variant
independently and Bonferroni correcting P values, for example
using gene-based rare-variant burden tests (74, 75).

Fig. 2. Exact and closed-form calculations of relative risks (RRs),
similar to ORs, for association of a binary variable produced by
thresholding of a continuous characteristic with mean zero and SD of
1 (details in SI Appendix). Phenotypic threshold is represented by the
x-axis, with units in standard deviations of the continuous phenotype.
Proportions of individuals falling below various thresholds are shown
above the plot. The different colored lines refer to different
regression coefficients for the continuous phenotype on allele count.
The phenotype is modeled as a mixture of two normal distributions,
with individuals coming from the higher mean distribution if they
possess a dominant genotype. The allele frequency is 5%.
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Choice of Phenotypes: Distribution Extremes
AsMendel taught us, the choice of phenotype is the key to finding
clear-cut patterns of inherited variation. This is reflected in the fact
that larger variant effect sizes are obtained by GWAS for more
narrowly defined disease such as type I diabetes, specific infec-
tious diseases, adverse drug reactions, and severe specific aller-
gies, as already discussed, rather than for broader categories such
as mental or heart disease. Clearly, the more narrowly a disease
can be defined using medical and biological criteria, generally
reducing the heterogeneity of causal mechanisms, the greater the
chance of finding specific functionally relevant genetic variants. It
is also important to mention that there is a variety of types of
genetic disease heterogeneity. Different variants in the same
gene may have different effects, variants in different genes may
have similar effects, and different combinations of genes may
have similar effects.

For quantitative traits, it is likely to be the upper and lower
extreme tails of a distribution that will yield the most biologically
homogeneous individuals best suited for the search for specific
relatively large-effect variants. In that case, looking for rare vari-
ants in the tails would suggest that these should be overrepre-
sented in any sampling design. A further possibility is to use
genomic data, or for humans, where available, twin data, to
choose quantities with relatively high heritability. This is how we
have identified specific large-effect genetic variants for particular
recognizably different facial features (76).

Regression Analysis of Quantitative Phenotypes and
Thresholds for Effect Size
The standard approach to a GWAS of a quantitative trait is, for
each SNP, to regress the measurements for the three genotypes
for the SNP allele pair against the number of minor frequency
alleles carried, namely 2, 1, and 0. The slope of this regression is
then a measure of the quantitative effect size and the P value is
that for the difference of the slope from 0. To standardize com-
parisons between SNPs, the actual effect size is taken to be the
linear regression coefficient divided by the SD of the phenotype.
Just as for a discrete dichotomized phenotype, the steeper this
normalized slope, the greater is the SNP effect on the quantitative
trait measure and so the more likely it is that the effect can be
interpreted at the functional level either due to the SNP variant
itself, if it is in a functional part of the genome, or by a variant in a
nearby functional region in strong LD with the “discovery” SNP.

To compare effect sizes measured in this way with ORs from
2 × 2 contingency tables obtained for discrete “all-or-none” var-
iables, such as diseases, it is necessary to dichotomize the con-
tinuous variable by choice of a threshold, such that one category is
defined to be all values above the threshold and the other those
values below the threshold. The resulting 2 × 2 contingency table
can also be used to test for the significance of the SNPs’ associ-
ation with the quantitative trait, but usually with some loss of
power. However, it is the OR from this 2 × 2 table that provides the
most important impression of effect size, namely how likely is it
that variant-carriers fall into the group with differential biological
features relative to noncarriers. This is because any experimental
follow-up of variants associated with continuous phenotypes, as
for binary phenotypes, would usually require designation of
samples to “case” and “control” groups.

Under reasonable assumptions, there is a one-to-one mathe-
matical relationship between continuous and categorical effect
sizes. It can be shown (SI Appendix) that when samples are di-
chotomized into those that are phenotypically extreme and

nonextreme using a threshold, the RR relating genotype to ex-
treme status is approximately the following:
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where β is the regression coefficient on risk allele number, p is
the allele frequency, s is the SD of the phenotype within ge-
notype groups, and t is the number of SDs (for a standard
normal variable) taken as the threshold for extreme status.
The approximation of Eq. 1 can be used to relate RRs obtained
for categorical phenotypes, often for example disease status,
to the equivalent effect sizes for continuous traits, as shown in
Fig. 2 (an exact calculation produced using normal density and
cumulative distribution functions is also shown). The RR is sim-
ilar to the OR when the trait in question, in this case extreme
status defined as lying above the threshold, is fairly rare.

The figure shows that as the threshold for the choice of ex-
treme phenotype (t) increases, the corresponding effect size (RR)
increases exponentially, provided that it is greater than zero. In-
creasing the threshold stringency clearly increases the probability
of the risk variant being found in the upper extreme group.
However, there is in another sense a diminishing return from
doing this because it reduces the size of the target population for
finding the risk variant. Note that even for β = 0.2, the RR hardly
rises above 1.5 for a 1% upper threshold, while most GWAS hits
reported for quantitative traits have β well below 0.2 or even 0.02.

In a “biobank” type of study design, where individuals are not
selected but sampled randomly with respect to their phenotype,
as we have already mentioned use of the continuous phenotypes
will usually provide more statistical power than the dichotomized
phenotypes for rejecting the null hypothesis of zero effect. The

Fig. 3. Schematic distribution of the relationship between variant
frequency, effect size, and abundance.
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exception is when the number of phenotyped individuals is rela-
tively small, and there is a large number of unphenotyped indi-
viduals to potentially use as controls. In this situation, using
phenotypic extremes as cases will often provide more power.
Furthermore, given limited resources, there is an argument for
oversampling the extreme category for genotyping whenever this
is feasible, to counterbalance any possible loss of power, since it is
always likely that there will be an excess of unphenotyped controls
and using these will have a minimal effect on an association study
since the phenotype extremes will be a small proportion of such
controls. However significant departures from the null hypothesis
of zero effect are evaluated, we advocate the use of dichotomized
phenotypes for assessment of effect sizes, as 1) the resulting ORs
permit comparisons with ORs for categorical phenotypes, usually
diseases, that are widely used, and 2) continuous phenotypes are
best used as a guide for identifying subsets of individuals that are
likely to be homogeneous for specific biological features.

Effect Size Versus Statistical Significance
Many GWAS and sequencing studies have failed to detect asso-
ciations with rare, large-effect variants that pass stringent
genome-wide corrections for multiple comparisons based only on
P values (26). Given the greater biological insight that is provided
by large-effect variants, it may be reasonable to accept them as
significantly associated at a higher false-positive rate than that
used for small-effect variants. This approach is commonly taken in
gene expression studies, where “volcano plots” of effect size
versus significance are used to select variables that have a satis-
factory combination of both (76, 77). Empirical Bayesian shrinkage
methods (78) may be the best approaches for selecting large-
effect variants for follow-up, allowing accurate assessments of
posterior distributions of variants’ effect sizes without resorting to
subjective fully Bayesian inference. From this information, it is

straightforward to compute the probability that a variant has an
effect size greater than some minimum effect size of interest.

Conclusions
A schematic distribution of the relationships between variant
frequency, effect size, and abundance that we have discussed in
this analysis is given in Fig. 3. The largest category is the poly-
morphic polygenic variants discovered by large-scale GWAS
from which it is not possible to obtain useful functional infor-
mation on single variants. These variants can, however, be
used to estimate individual overall genetically based risks (PRS),
which may be a basis for recommendations of medical treat-
ments or behavioral modifications to help reduce the risks. Each
such claim will, however, need very careful investigation on a
population-by-population basis before its practical use can be
justified.

The challenge now is to use limited genetic association studies
to find individually identifiable variants of significant functional
effect. This can best be achieved by 1) the study of rare variants,
often chosen by careful candidate assessment, and 2) the careful
choice of phenotypes, often extremes of a quantitative variable,
or traits with relatively high heritability.

It is, therefore, the rare variants of moderately large effect that
will be the main basis for finding individually identifiable func-
tional variants that can help to understand the molecular basis of
complex diseases and traits, and so lead to improved disease
prevention and treatment.
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