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Abstract
In this article we propose a modified compartmental model describing the transmis-
sion of COVID-19 in Morocco. It takes account on the asymptomatic people and the
strategies involving hospital isolation of the confirmed infected person, quarantine of
people contacting them, and home containment of all population to restrict mobility.
We establish a relationship between the containment control coefficient c0 and the
basic reproduction number R0. Different scenarios are tested with different values
of c0, for which the stability of a Disease Free Equilibrium point is correlated with
the condition linking R0 and c0. A worst scenario in which the containment is not
respected in the same way during the period of confinement leads to several rebound
in the evolution of the pandemic. It is shown that home containment, if it is strictly
respected, played a crucial role in controlling the disease spreading.

Keywords COVID-19 virus pandemic · Mathematical modeling of infection
disease · (SIAQRD) model · Disease free equilibrium stability

Mathematics Subject Classification 92D30 · 34D20

1 Introduction

The infectious diseases was always a challenge of scientific to prevent the pan-
demic spreading. Virology, biology, medicine, epidemiology as well as mathematical
modeling are involved in the understanding and fights against the spreading of
virus. Mathematicians have addressed this problem several years ago, giving birth
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to a new pattern of the epidemiology, the so-called “mathematical epidemiol-
ogy”, [1,8,9,13,25]. Compartmental models was built, with several configurations, to
describe the dynamic of the virus, [5,9,19,21,22,25]. In 1927, the concept of threshold
was highlighted by Kermack and Mc Kendrick who established the famous threshold
theorem [13]. It was proved that a threshold, representing the number of new cases
resulting by an infectious individual in a susceptible population, and quantified by the
basic reproduction number R0, allows crucial information on spreading of the dis-
ease. Indeed,R0 aims to ensure the stability of an equilibrium, mainly, a Disease-Free
Equilibrium (DFE), since ifR0 < 1 then the DFE is stable whereas it will be unstable
ifR0 > 1, [3,6,7,13,18].

In this work we are interested by the new disease Covid-19. It is well known
that this disease is caused by SARS-CoV-2 virus which is a member of Coronavirus
family. Covid-19 causes respiratory infections that may escalate to severe effects. The
main transmission routes of the SARS-CoV-2 virus are through coughing, sneezing,
contacting infected people, or touching items or surfaces that are contaminated with
fecal traces [2]. The severity of this virus lies in its spreading speed throughout the
world to becomes an epidemic.

In absence of the vaccine, governments adopted different types of strategies to pre-
vent worsening of the epidemic, as containment, quarantine,... Against to government
that opt for no restriction of people moving and following the idea that virus when
infecting population, this last becomes immune to it and then the pandemic decreases
to be a standard influenza infection, the Moroccan government has taken several mea-
sures to prevent the propagation of the virus: the hospital isolation of the individual
that are confirmed to be infected, the quarantine of interacting people and the strictest
containment strategy was imposed across the country, to restrict the population mobil-
ity.

Our goal in this work is to build a modified compartmental epidemiological (SIR)
model describing the transmission of theSARS-CoV-2virus under the policies adopted
in Morocco. In this model we incorporates the isolation of infected people, we take
account on the people moving freely and are infected but don’t have symptoms and
added the measure of the quarantine of the people interacting with an affected individ-
ual. The model is then described by a dynamical system enclosing a closed population
with Susceptible (S), confirmed Infected (I ), Asymptomatic (A), Quarantined (Q),
Recovered (R) and Died (D), peoples respectively. In literature, Several papers ana-
lyze the evolution of Covid-19 disease using (SIR) models, [4,10–12,14,15,20,24,27],
inwhich asymptomatic and quarantined peoples are considered. the aim of theseworks
is the calculus of the basic reproduction numberR0, the study of the local and global
equilibria stability and to analyze the impact of several factors as seasonal succession
[24], meteorological conditions, vaccination strategy, free medical care for the diag-
nostic COVID-19 patient, [11] and some local control strategies adopted for some
cities [12]. In some cases, an attention is given to stochastic approach, [15].

Our approach is different, since the relationship between the compartments is dif-
ferent, we observe that the totality of confirmed infected individual comes from the
asymptomatic infected and quarantined people not from susceptible as explained in the
beginning of the following section. The second feature lies in the fact that the model
does not admit a stable endemic equilibrium point, but several Disease-Free Equilib-

123



Mathematical modeling of COVID-19 spreading with… 3

ria (DFE), since a coexistence of a stable number of infected and uninfected people
is not realistic due to the nature of Covid-19 virus spreading. Actually, as observed,
after the containment breaking, the number of new contamination increases in several
countries. Finally, our object is different, since we establish a relationship between the
pertinence of the containment strategies and a containment control coefficient.

Based on those considerations we build the model, study the positivity, boundness
and calculate the basic reproduction number R0 for a Disease-Free Equilibrium. We
discuss the containment strategy and establish a relationship between R0 and the
containment control coefficient c0, describing the degree of containment. We simulate
several scenarios by changing c0 and analyze the peaks of different situations and
diagram phases.We highlight in these simulations the required relation between the c0
andR0 together with the stability of a (DFE). Finally, we investigate in the simulations
a worst scenario in which the containment is not respected in the same way with time,
which leads to different coefficient c0. Using three values of c0, corresponding to three
phases in theMorocco containment, we produce simulations that are very close to real
data of active infected in Morocco.

This paper is organized as follows, in the second section we describe the model
compartments, study the positivity, compute the basic reproduction number R0. In
Sect. 3, we introduce the containment and establish the relation between R0 and the
containment control coefficient c0. Section 4, is devoted to simulations and discussion.
We termine by a conclusion and perspectives.

2 Mathematical model

2.1 Model without containment

Our model is a modified (SIR) model, it is conceptually different from literature
[11,12,15,24] since to build our model we formulates some assumptions governing
the interaction between compartments: firstly, we assume that the totality of confirmed
infected individual comes from the asymptomatic infected and quarantined people not
from susceptible. In fact, a susceptible person can be contaminated by an asymptomatic
infected individuals and then becomes themselves, in the first step, asymptomatic
infected. Indeed, in one hand, the contaminated individuals are contagious when they
are asymptomatic, otherwise, they are hospitalized and isolated and then can’t infect
others. On the other hand, once infected, a susceptible person goes through a virus
incubation period (3–14 days) [2], at this stage, this person has no symptoms.
Secondly, we assume that the time scale is short enough so that natural births and
deaths are neglected. We suppose also that a recovered person will be immunized and
can’t be infected again.

Finally, we suppose that the population is closed and divided on six compartments
of individuals, that are, S(t) Susceptible, I (t) Infected, A(t) Asymptomatic infected,
Q(t) Quarantined, Recovered R(t) and Dead D(t).

The evolution of susceptible people is given by the following equation

Ṡ(t) = −Sβ(A + α I ) + ξQ,
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Fig. 1 Diagram of the transition
between compartments

where −βSA describes susceptible individual that interacts with asymptomatic
infected individuals, acquires infection with transmission rate (contact rate) β and
becomes hence asymptomatic infected. −αβSI models the proportion of susceptible
people who have contacted a confirmed infected individual and are putted in quaran-
tine with rate α. ξQ is the proportion of quarantined population that are negatively
diagnosed with a release rate of quarantined compartment ξ .
The second equation describes infected individuals

İ (t) = θQ + δA − (μ + dI )I .

The term θQ describes the proportion of quarantined people that are diagnosed pos-
itive, θ is the rate of becoming contaminated. δA is the proportion of asymptomatic
people that becoming symptomatic with a rate δ, the term μI represents the portion
of recovered people and dI is the disease death rate.

The third equation describes the evolution of asymptomatic infected people,

Ȧ(t) = βSA − (δ + λ)A,

where λA represents the portion of asymptomatic individual that recovering by their
own immune systems, λ is the recovering rate.

The equation of quarantined individual is given as

Q̇(t) = αβSI − (ξ + θ)Q,

all terms are already evoked.
Equations of recovered and died peoples are respectively

Ṙ(t) = μI + λA,

and

Ḋ(t) = dI I .

The schematic diagram of all compartments interconnection is given in the Fig. 1.
All parameters involved in the model are positive constants.
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Mathematical modeling of COVID-19 spreading with… 5

Using the above depiction, the dynamical system modeling the spread of the SARS-
CoV-2 virus is given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = −βS(A + α I ) + ξQ,

İ (t) = θQ + δA − (μ + dI )I ,
Ȧ(t) = βSA − (δ + λ)A,

Q̇(t) = αβSI − (ξ + θ)Q, on [0, t f ]
Ṙ(t) = μI + λA,

Ḋ(t) = dI I ,
wi th
S(0) = S0, I (0) = I0, A(0) = A0, Q(0) = Q0, R(0) = R0, D(0) = D0.

(1)
The total accumulative population N := S(t) + I (t) + A(t) + Q(t) + R(t) + D(t) is
constant since

dN

dt
= 0.

First of all, it is natural to ask whether this dynamical system provides a non-negative
trajectories or not.

Proposition 1 All trajectories of the the system (1) starting in R
6+ are non-negative.

Proof Remark firstly that from the equation of asymptomatic infected population in
system (1), we get

Ȧ(t) = (βS − δ − λ)A,

which implies that

A(t) = A(0)e

∫ t

0
(βS(τ ) − δ − λ)dτ

.

Hence, for A(0) ≥ 0, we obtain that

A(t) ≥ 0, ∀ t ≥ 0.

Now we check the sign of vector field in the boundaries of R
6+. For I = 0 and Q ≥ 0

we have

İ (t) = θQ + δA ≥ 0,

so, the vector field of I is pointed inside R
6+.

Similarly, for Q = 0 and S, I ≥ 0 we obtain

Q̇(t) = αβSI ≥ 0,
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and hence the vector field of Q is pointed inside R
6+. Using the same argument we

prove that vector fields of S, R and D are pointed inside R
6+. We conclude then that

all trajectories starting in R
6+ remains in it thereafter. ��

Proposition 2 All trajectories of the system (1) starting in R
6+ are bounded.

Proof The positivity of the trajectories and the fact that
dN

dt
(t) = 0, leads to bound-

edness of them. It follows that all trajectories starting in R
6+, belong to

{(S, I , A, Q, R, D) ∈ R
6+ | S + I + A + Q + R + D = N }.

��

2.2 Basic reproduction numberR0

A practical and efficient tool to prevent the spread of an epidemic, is the basic repro-
duction number R0, it can be interpreted as “the number of secondary infections
resulting from a single primary infection into an otherwise susceptible population”,
see [3,18]. Mathematically, we are interested by the value of R0 at an equilibrium
corresponding to a constant susceptible population in absence of the infectious agent,
commonly called the disease-free equilibrium (DFE). R0 aims to check the stability
of DFE, if R0 > 1, then DFE is unstable and a sustainable spread of the pandemic
occurs while ifR0 < 1, DFE is asymptotically stable and the disease will die out.
We invoke the theory of next generation operator [3,6,18], to compute the basic repro-
duction number. Note that since the population is closed then we can compute D
as

D = N − S − I − Q − A − R,

hencewe restrict our self to infected, susceptible and recoveredvariables (A, I , Q, S, R),
see [3,18]. Consider now a DFE equilibrium X∗ = (S∗, 0, 0, 0, R∗, D∗) of the full
system (1), with S∗ = N − R∗ − D∗ and Y ∗ = (0, 0, 0, S∗, R∗) its restriction to
subsystem (A, I , Q, S, R).

Following the same approach of [3], we consider the infected bloc Ic = (A, I , Q),

d IC
dt

(t) = H (Y ),

where Y = (A, I , Q, S, R) and

H (Y ) :=
⎛

⎝
βSA − (δ + λ)A

θQ + δA − (μ + dI )I
αβSI − (ξ + θ)Q

⎞

⎠

Consider now, the Jacobian matrix A = DI ∗
C
H , where I ∗

C is such that Y ∗ =
(I ∗

C , S∗, R∗) = (0, 0, 0, S∗, R∗) is the DFE equilibrium.

123



Mathematical modeling of COVID-19 spreading with… 7

We get

A =
⎛

⎝
−(ξ + θ) 0 αβS∗

0 βS∗ − (δ + λ) 0
θ δ −(μ + dI )

⎞

⎠ .

The matrix A can be decomposed on

A = M − D,

where

M =
⎛

⎝
0 0 αβS∗
0 βS∗ 0
θ δ 0

⎞

⎠ and D =
⎛

⎝
(ξ + θ) 0 0

0 (δ + λ) 0
0 0 (μ + dI )

⎞

⎠

We observe that M ≥ 0 and D > 0 is a diagonal matrix.
With those considerations, the basic reproduction number R0 is given by

R0(S
∗) = ρ(MD−1),

= max

{
β

(δ + λ)
S∗,

√
αβθ

(μ + dI )(ξ + θ)
S∗

}

(2)

where ρ(B) denotes the spectral radius of the matrix B.
We obtain hence the following result which highlights the link between the stability
of the DFE equilibrium X∗ = (S∗, 0, 0, 0, R∗, D∗) of the full system (1) and the
threshold 1 of R0(S∗).
Theorem 1 IfR0(S∗) > 1 then the DFE equilibrium X∗ is unstable.
IfR0(S∗) < 1, then the DFE equilibrium X∗ is asymptotically stable.

For the proof we can see [3].

3 Containment

As shown for the reproduction number, the eradication of the pandemic depends on
the threshold value, 1, of R0(S∗) at the disease-free equilibrium point, but this value
depends on several parameters, among others β and S∗. According to the expression
of R0(S∗) at a DFE equilibrium X∗ = (S∗, 0, 0, 0, R∗, D∗), the eradication of the
pandemic is constrained by

R0(S
∗) < 1,

which is equivalent to fulfill

β

(δ + λ)
S∗ < 1
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8 M. Serhani, H. Labbardi

Fig. 2 The components (S1, I1) = (S∗
1 , 0) of a stable FDE point X∗

1 = (S∗
1 , 0, A∗

1, Q
∗
1, R

∗
1 , D∗

1 ) and the
components (S2, I2) = (S∗

2 , 0) of an unstable FDE point X∗
2 = (S∗

2 , 0, A∗
2, Q

∗
2, R

∗
2 , D∗

2 ), with S∗
1 < S∗

2

and

√
αβθ

(μ + dI )(ξ + θ)
S∗ < 1,

which are equivalent to

β < βc(S
∗) := min

{
δ + λ

S∗ ,
(μ + dI )(ξ + θ)

αθ S∗

}

. (3)

So, it’s necessary that the transmission rate β of the virus must be lower than a critical
level βc(S∗) depending on S∗. Hence, with a high spreading virus (β large), to be

stable, a DFE must have
δ + λ

S∗ and
(μ + dI )(ξ + θ)

αθ S∗ sufficiently larges, which can

occurs with small values of S∗ and in presence of suitable parameters values. This fact
can be interpreted, since the population is closed, as there is a large number of infected
individuals and the pandemic achieves a high peak before to decrease, as shown in
Fig. 2.

To avoid the outbreak of the pandemic, the transmission rate must be controlled,
but it is well known that β depends on whether the virus is spreading, which depends
itself on the population managing strategy adopted by governments. Among control
strategies used to prevent spreading of disease, the containment for all people through-
out the country, is used to restrict the population mobility and limit the possibility of
contamination. With this strategy we can reduce the spreading rate.

Let c0 be the containment control coefficient with which we can reduce spreading
of pandemic, the value of c0 is correlated to whether the containment is made. We
define hence a new rate of contamination (contact)
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Mathematical modeling of COVID-19 spreading with… 9

β ′ = 1

c0
β, (4)

and substitute in themodel (1) the factor β by β ′.We show now that a DFE equilibrium
point X∗ = (S∗, 0, 0, 0, R∗, D∗), to be stable, must be such that the containment
control coefficient c0 is upper than the basic reproduction number R0 for the model
without containment.

Corollary 1 Consider the system (1) with containment control coefficient c0. Then a
DFE equilibrium point X∗ = (S∗, 0, 0, 0, R∗, D∗) is stable if

c0 > R0(S
∗). (5)

Proof In the case where β is substituted by β ′ of the Eq. (4), the basic reproduction
number will be given by

R0(c0, S
∗) = max

{
β

c0(δ + λ)
S∗,

√
αβθ

c0(μ + dI )(ξ + θ)
S∗

}

.

As shown in theorem (1), to be stable, the DFE point X∗ must be such that

R0(c0, S
∗) < 1,

we get then

c0 > max

{
β

(δ + λ)
S∗,

√
αβθ

(μ + dI )(ξ + θ)
S∗

}

which means that

c0 > R0(S
∗).

��
Let us remark that for c0 = 1 there is no containment and in this case

R0(S
∗) = R0(1, S

∗).

4 Numerical simulations

Our hope in this section is to illustrate with simulations the outcomes of previous
sections. Let us first discuss the estimation of the parameters values based on literature
and the publicly announced data by Moroccan government. The contamination rate

β = s
p

N
,
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Table 1 Model (1) parameters

Parameter Description Estimated value Interval range References

β Contamination rate 0.324324 · 10(−7) – [17,23]

α Rate of quarantined
susceptible peoples that
contacting an infected
individual

0.16 – [11]

ξ Release rate from quarantined
to susceptible

0.872 [0.86 , 0.9] 1 − θ

θ Rate of quarantined
becoming infected

0.128 [0.14 , 0.1] [16]

δ Release rate from
asymptomatic to
symptomatic

0.2 – 1 − λ

μ Rate of recovering from
infected

0.15 – [16]

dI Infecting died rate 0.039 – [16]

λ Rate of recovering from
asymptomatic people

0.8 – [26]

where s is te number of contacts that a person can meet in one day, estimated at s = 40
persons, and p is the percentage of contamination for an infected individual in one
day, estimated at p ≈ 3%, see [17,23]. N = 37 · 106 is the Moroccan population.
Hence

β = 0.324324 · 10−7.

The rate of quarantined individual that becoming infected, θ is estimated by using the
average of confirmed infected individual proportions among quarantined peoples, see
[16].
The Release rate from quarantined to susceptible people is given as

ξ = 1 − θ,

where

θ = Number of quarantined people becoming infected

Number of quarantined people
.

The value of θ is given in Table 1 with an interval range taking account of data in [16].
All values of parameters are listed in the Table 1.

We simulate the actual and forecast evolution of the epidemic in Morocco under
different values of the control coefficient c0 using Matlab software.

Wesuppose the evolution starts from (S0, I0, A0, Q0, R0, D0) = (N−68, 1, 7, 60, 0, 0)
at 02 march 2020.
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Fig. 3 The evolution of susceptible population without containment c0 = 1

Fig. 4 The evolution of infected population without containment c0 = 1

Figures 3 and 4 illustrate the evolution of susceptible and infected populations
respectively, for c0 = 1, i.e. without containment. We observe that the decline of
susceptible population is accentuated and the infection achieves a very high peak.
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Fig. 5 The evolution of susceptible population with different values of the control containment coefficient
c0

For S∗ = N − 106 = S∗ = 3.6 · 107, the pandemic is still spreading, and we have

R0(1, S
∗) = R0(S

∗) = 1.1676, (6)

which bear out the condition (5), since

c0 ≯ R0(S
∗).

Figures 5, 6, 7 and 8 represent the evolution of S, I , A and Q curves, in which
we test different values of containment control coefficient c0 to show the impact

of containment on the pandemic spreading. We choose c0 = 1

0.849
, c0 = 1

0.847
,

c0 = 1

0.844
and c0 = 1

0.84
as degrees of containment respect. The choice of c0

values remains theoretical but illustrative, we choose them closer together since a
very small variation on it, provides a very important change in the evolution of curves.

Figure 5 shows that the higher is the containment control coefficient c0 (i.e. con-
tainment more respected), the more susceptible population is conserved. Figure 6
illustrates the evolution of infected population. The higher is c0, the lower is the peak.

The same conclusion can made for Figs. 7 and 8 since increasing c0 has as conse-
quence the decrease of peak of asymptomatic and quarantined population respectively.

Figure 9 is an illustration of the phase diagram (S, I ), it is observed that the higher
is the coefficient c0, the lower is the peak of infected people and the higher is the
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Fig. 6 The evolution of infected population with different values of the control containment coefficient c0

Fig. 7 The evolution of asymptomatic populationwith different values of the control containment coefficient
c0

number of susceptible at the DFE equilibrium. Indeed, we have

S∗
3

(

c0 = 1

0.849

)

< S∗
4

(

c0 = 1

0.847

)

< S∗
5

(

c0 = 1

0.844

)

< S∗
6

(

c0 = 1

0.84

)

.
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Fig. 8 The evolution of quarantined population with different values of the control containment coefficient
c0

Fig. 9 The phase diagram of (S, I ) with DFE equilibria associated to different values of c0

Comparing this situation with that where there is no containment (6), i.e. where
c0 = 1, we get with the same value S∗ = 3.6 · 107 that

R0(c0, S
∗) = 0.9913, for c0 = 1

0.849
,

R0(c0, S
∗) = 0.9889, for c0 = 1

0.847
,
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R0(c0, S
∗) = 0.9854, for c0 = 1

0.844

and

R0(c0, S
∗) = 0.9808, for c0 = 1

0.84
,

It is clear that with the containment the equilibrium point X∗ = (S∗, 0, 0, 0, R∗, D∗)
is stable and the pandemic can be eradicated, this conclusion is perfectly in accordance
with the condition (5), since the small value of c0 is such that

1

0.849
= 1.1778 > R0(S

∗) = 1.1676.

Consider now a DFE equilibrium with S∗
6 ≈ 3.642 · 107, calculate the basic repro-

duction number R0(c0, S∗
6 ) for each c0.

The calculus give

R0(c0, S
∗
6 ) = 1.0028, for c0 = 1

0.849

and

R0(c0, S
∗
6 ) = 1.0005, for c0 = 1

0.847
.

It appear that for the control containment coefficient c0 equal at
1

0.849
or

1

0.847
the equilibrium point is unstable, since R0(c0, S∗

6 ) > 1, which can be interpreted by
the fact that the condition (5) is violated:

1

0.849
= 1.1778 < R0(S

∗
6 ) = 1.1812

and

1

0.847
= 1.1806 < R0(S

∗
6 ) = 1.1812,

On the other hand, we have

R0(c0, S
∗
6 ) = 0.9969, for c0 = 1

0.844

and

R0(c0, S
∗
6 ) = 0.9922, for c0 = 1

0.84
.
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16 M. Serhani, H. Labbardi

Fig. 10 Evolution of infected population with three phases of home containment (red curve). Evolution of
the real active infected population (star curve)

The equilibrium point with component S∗
6 is stable which comes from the fact that the

condition (5) is fulfilled, indeed:

1

0.844
= 1.1848 > R0(S

∗
6 ) = 1.1812

and

1

0.84
= 1.1904 > R0(S

∗
6 ) = 1.1812.

The simulations of the containment strategy throughout the control containment coef-
ficient c0 show the efficiency of this strategy to reduce the magnitude of the epidemic
and prevent spreading of it.

4.1 Worst scenario

In this subsection of simulation we would test a worst case in which the home con-
tainment is not respected in the same way throughout all duration of the containment.
This fact can be interpreted by the changing in the containment control coefficient. As
remarked in the pandemic situation in Morocco, the confinement passes through three
phases: the first phase was the establishment of the containment, the second phase
was the prolongation of it with less respect, and the third phase is the actual critical
phase in which the containment is very badly respect by population and a widely
non-compliance with the instructions is observed.

The Fig. 10 shows a comparison between the infected population produced by the
model with three phases of c0 (red curve) and the real situation of the active infected
people (star-curve (∗)) in Morocco, see [16].
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Fig. 11 Diagram phase susceptible/infected population (S, I ) with different values of the control contain-
ment coefficient c0

The real situation is very close to the simulation predicted by the model with three
phases of home containment. By bringing together the real data of active infected
population and the simulation results of the model, it appears that the Moroccan
situation goes through three values of the coefficient of containment control c0 =

1

0.844
, c0 = 1

0.846
and c0 = 1

0.851
.

Figure 11 presents the diagram phase of the susceptible/infected population in the
case of three phases home containment. Comparing this curve with that of the Fig. 9

(c0 = 1

0.844
), we show that the new curve has three local maximums, describing the

change of the infection rate, instead one global maximum.
Let us analyze the basic reproduction numbers of S∗

7 = 3.63 · 107 and S∗
8 =

3.645 · 107.
Firstly, we have

R0(S
∗
7 ) = 1.1773

and

R0(S
∗
8 ) = 1.1822.

Now for c0 = 1

0.844
we get

R0(c0, S
∗
7 ) = 0.9936
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and

R0(c0, S
∗
8 ) = 0.9977,

so these (DFE) are stable for the one phase home containment as shown in Fig. 9,
since the curve decreases at these points. This fact is consistent with the condition (5)

1

0.844
= 1.1848 > R0(S

∗
7 ) = 1.1773

and

1

0.844
= 1.1848 > R0(S

∗
8 ) = 1.1822

Otherwise, for the three phases home containment, S∗
7 = 3.63 · 107 corresponds to

c0 = 1

0.851
and S∗

8 = 3.645 · 107 corresponds to c0 = 1

0.846
.

Hence

R0

(
1

0.851
, S∗

7

)

= 1.0019

and

R0

(
1

0.846
, S∗

8

)

= 1.0001.

It follows that these points are unstable as confirmed by the condition (5), since

1

0.851
= 1.1750 ≯ R0(S

∗
7 ) = 1.1773

and

1

0.846
= 1.1820 ≯ R0(S

∗
8 ) = 1.1822.

5 Conclusion

In this work, a (SI AQRD) was built, integrating asymptomatic people and the isola-
tion of infected person, the quarantine of contacting people and the home containment
of all population, strategies. It is established by theoretical investigation and illus-
trated by simulations that the level of containment is very important to prevent the
disease spreading in the absence of vaccine. Several scenarios are tested with different
values of the containment control coefficient c0. A relation between the basic repro-
duction number and c0 was carried out, showing that, a home containment not suitably
practiced may lead to a persistence of the pandemic beyond the provided period.
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However,weknow that the information on the evolution of the pandemic depends on
various factors, as the number of tests, which vary considerably each day, detection of
person who contacting an infected people,... So, without full data on the real evolution
of the pandemic, especially for asymptomatic infected people, it is very hard to estimate
parameters, our contribution on the estimation of them is an assignment that must be
performed in the next work. Secondly, the choice of containment control values are
made theoretically, and it is shown that some values coincide with the real situation in
Morocco, it will be interesting to correlate these values with a percentage of the quality
of the home containment level, obviously with an important work on the quantification
of the confinement.
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