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Machine learning for chemical
discovery

Alexandre Tkatchenko® 1™

Discovering chemicals with desired attributes is a long and painstaking process.
Curated datasets containing reliable quantum-mechanical properties for millions
of molecules are becoming increasingly available. The development of novel
machine learning tools to obtain chemical knowledge from these datasets has
the potential to revolutionize the process of chemical discovery. Here, | com-
ment on recent breakthroughs in this emerging field and discuss the challenges
for the years to come.

Toward chemical discovery revolution

Computational design and discovery of molecules and materials relies on the exploration of
increasingly growing chemical spaces!? (see Fig. 1). The discovery and formulation of new
drugs, antivirals, antibiotics, catalysts, battery materials, and in general chemicals with tailored
properties, require a shift of paradigm to search in unchartered swaths of the vast chemical
space®. From the fundamental perspective of quantum mechanics (QM), this paradigm shift
stems from the fact that molecular properties exhibit complex correlations®, which yields whole
Pareto fronts of candidate molecules in multiproperty optimization algorithms, enabling “free-
dom of design”. As an example, taking data for more than 100,000 small drug-like molecules, it
is found that their molecular electronic (highest occupied molecular orbital-lowest unoccupied
molecular orbital) gap is not correlated at all with their polarizability, in contrast to widely
quoted chemical rules. This implies that it is possible to design highly conductive and weakly
interacting molecules, or molecules that exhibit stability to dielectric breakdown and yet are
strongly interacting.

Obviously, chemical discovery concerns not only with finding “this special molecule”, but also
predicting reaction pathways and interactions between molecules, optimizing catalytic condi-
tions, eliminating undesired side effects, among many other important degrees of freedom.
Given this vast space of possibilities, a statistical view on chemical design and discovery is
mandatory (see Fig. 1). This is the main reason behind the current rise of machine learning (ML)
techiques applied to molecular and materials science. The current situation can be compared to
the huge advances made by the sustained development of quantum chemistry and solid-state
electronic structure codes for modeling molecules and materials during the 1980s and 1990s. The
development of steadily more accurate quantum-mechanical approximations and increasingly
efficient electronic-structure codes lead to the “chemical modeling revolution”. In a similar vein,
the development of novel ML methods, combined with first principles of quantum and statistical
mechanics, and fed with increasingly available molecular big data, could lead to the “chemical
discovery revolution”.
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Fig. 1 Schematic illustration of using machine learning in the process of chemical discovery. Subsets of relevant chemical compound space (CCS) are
sampled to create datasets of molecular structures. High-throughput quantum-mechanical (QM) calculations are subsequently used to construct QM
molecular property datasets. Quantum machine learning (QML) algorithms are employed to enable interpolation and analysis of QM properties in CCS.
QML model analysis is combined with chemical knowledge to extract insights into CCS, for example by constructing and analyzing Pareto fronts. Finally,
the CCS can be further extended and explored with the accumulated knowledge from QML. The main applications of QML up to now cover CCS of small
molecules and ordered extended solids. However, the applicability of QML should be further extended to biomolecular systems, nanostructures, surfaces,
organic framework materials, supramolecular systems, and even quantum-mechanical model systems (see central panel).

Chemical discovery and ML are bound to evolve together, but
achieving true synergy between them requires solving many
outstanding challenges. The potential of using ML for increasing
the accuracy and efficiency of molecular simulations has been
established beyond any doubt3-¢. Data-driven high-throughput
materials discovery has also been established as a field of its own”.
Physically inspired ML algorithms can identify new drug candi-
dates, find new phases in amorphous materials’, carry out
molecular dynamics with essentially exact quantum forces!?, and
offer unprecedented statistical insights into chemical environ-
ments' 12, Up to now, most of these applications were done
under idealized conditions. Future work should concentrate on
enabling tighter embedding of molecular simulations and ML
methods, combining QM and statistical mechanics via ML algo-
rithms, developing universal ML approximations for covalent and
non-covalent molecular interactions, and developing algorithms
for targeted exploration of large chemical spaces. Obviously, all of
these advances should be continuously assessed on growing
community-curated datasets of microscopic and macroscopic
molecular properties.

From molecular big data to chemical discovery

The quality and reliability of ML models in any scientific domain
depends on the increasing availability of data. The first applica-
tions of ML to molecular and materials modeling in 2010-2012
relied on small datasets containing QM properties for 102-103
systems. The development of physics-inspired ML models and
sophisticated atomistic descriptors have been crucial for
increasing the predictive power of ML models by at least two

orders of magnitude in the past 8 years>—an incredible scientific
progress. Today, advanced ML models are capable of achieving
predictive accuracy in QM properties of large molecular datasets
by learning from just 1 to 2% of the data’. Such data efficiency
and accuracy are essential for enabling in silico chemical
discovery.

Recently, focus has been shifting towards constructing and
exploring increasingly larger chemical spaces. Datasets such as
QM9!3, ANI-1x'4, and QM7-X!> contain QM properties for up
to 107 molecular structures and enable essentially complete cov-
erage of the chemical space of small drug-like molecules. These
data has been used in many applications, for exampling to con-
struct fast-to-evaluate neural network potentials for small mole-
cules'b16,  develop  improved  semiempirical  quantum
methods!”18, and obtain new insights into partitioning of
molecular quantum properties into atomic and fragment-based
contributions! 12,

Another unique application of ML for molecular modeling is
ML-driven molecular dynamics simulations. ML force fields are
able to combine the accuracy of high-level QM with the efficiency
of classical force fields. For example, the gradient-domain ML
force fields enable MD simulations of small molecules with
essentially exact quantum treatment of both electrons and
nuclei'®—a task which was considered unattainable just a few
years ago. For elemental solids, Gaussian approximation poten-
tials (GAP)!? are nowadays used to carry out MD simulations of
unit cells with thousands of atoms and to obtain new insights
into, for example, amorphous states of matter?.

Both wide exploration of chemical space and long time-scale
MD simulations for single molecules are enabling tools for

2 NATURE COMMUNICATIONS | (2020)11:4125 | https://doi.org/10.1038/541467-020-17844-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

COMMENT

chemical discovery. Another important application of ML is
inverse design of molecules with targeted properties. Ultimately,
ML should also enable in silico guided discovery of novel mole-
cules and materials and confirm such discoveries with experi-
mental data. Indeed, successful ML-driven discoveries have been
made in the search for organic light-emitting diodes??, redox-flow
batteries?!, and antibiotics?2, among many other examples.

The most remarkable aspect of ML for chemical discovery is
that the corresponding statistical view on chemical space often
enables asking new questions and obtaining novel insights. The
holistic analysis of large swaths of chemical space leads to dis-
coveries of molecules with unexpected properties!?, offers hints
for new chemical reaction mechanisms?3, or even suggests new
physicochemical relations?»2>. Such novel discoveries are often
made by interdisciplinary teams of researchers that are able to
synergetically combine their knowledge of physical laws and
constraints, chemical intuition, and sophisticated ML algorithms.

Future of ML for chemical discovery

Current successful applications of ML for chemical discovery
have only scratched the surface of possibilities. There are many
conceptual, theoretical, and practical challenges waiting to be
solved to enable the “chemical discovery revolution”. Here I
discuss the challenges that I consider to be the most pressing and
interesting at this moment.

A universal ML approach should have the capacity to accu-
rately predict both energetic and electronic properties of mole-
cules. In addition, such an approach should uniformly describe
compositional (chemical arrangement of atoms in a molecule)
and configurational (physical arrangement of atoms in space)
degrees of freedom on equal footing. Most existing ML approa-
ches only describe a restricted subset of relevant degrees of
freedom and physicochemical observables. Further progress in
this field requires developing universal ML models for a diverse
set of systems and physicochemical properties shown in Fig. 1.

From the perspective of atomic interactions, current ML
representations are successful in describing local chemical
bonding, but they completely miss long-range electrostatics,
polarization, and van der Waals dispersion interactions. Com-
bining intermolecular interaction theory with ML is an important
direction for future progress towards studying complex molecular
systems.

An emerging idea is to combine ML with approximate
Hamiltonians for electronic interactions based on density-
functional theory, tight-binding, molecular orbital techniques,
or the many-body dispersion method. The ML approach is used
to predict Hamiltonian parameters and the quantum-mechanical
observables are calculated via diagonalization of the corre-
sponding Hamiltonian. The challenge is to achieve tighter inte-
gration between ML and approximate Hamiltonians and to find
an appropriate balance between prediction accuracy and com-
putational efficiency.

Validation of ML predictions ultimately requires comparison
to experimental observables, such as reaction rates, spectroscopic
observations, solvation energies, melting temperatures, among
other relevant quantities. Calculating these observables demands
a tight integration of QM, statistical simulations, and fast ML
predictions, all integrated in a comprehensive molecular simula-
tions framework®.

Solving many of the challenges posed above will require
coming up with creative interdisciplinary approaches combining
quantum and statistical mechanics, chemical knowledge, and
sophisticated ML tools, firmly based on growing datasets that
cover increasingly broader domains of the vast chemical space.
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