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Abstract

Machine learning is increasingly used in mental health research and has the potential to advance 

our understanding of how to characterize, predict, and treat mental disorders and associated 

adverse health outcomes (e.g., suicidal behavior). Machine learning offers new tools to overcome 

challenges for which traditional statistical methods are not well-suited. This manuscript provides 

an overview of machine learning with a specific focus on supervised learning (i.e., methods that 

are designed to predict or classify an outcome of interest). Several common supervised learning 

methods are described, along with applied examples from the published literature. We also provide 

an overview of supervised learning model building, validation, and performance evaluation. 

Finally, challenges in creating robust and generalizable machine learning algorithms are discussed.
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Introduction

Machine learning is a branch of computer science that aims to learn patterns from data to 

improve performance at various tasks (e.g., prediction; Mitchell, 1997). In applied 

healthcare research, machine learning is typically used to describe automatized, highly 

flexible, and computationally intense approaches to identifying patterns in complex data 

structures (e.g., nonlinear associations, interactions, underlying dimensions or subgroups). 

This definition is often used in contrast to “traditional” parametric methods that involve 

numerous statistical assumptions, and require a priori specification of dimensions or 
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subgroups of interest, the functional form of the relationship between predictors and the 

outcome, and interactions among predictors.

In clinical psychology and psychiatry, researchers are conducting increasingly broad and 

multi-modal assessments of mental disorder phenotypes and associated risk and prognostic 

factors (e.g., self-report measures, physiological factors, imaging data). It is now common 

for datasets to contain thousands of measurements, often assessed repeatedly over time. 

Machine learning can be applied to such complex data structures to aid the conceptualization 

of mental disorders (Galatzer-Levy et al., 2018), detect and predict of the risk and trajectory 

of symptoms (Shatte et al., 2019), and study treatment outcome and differential treatment 

response (Kessler et al., 2019). The goal of this paper is to provide a primer in supervised 

machine learning (i.e., machine learning for prediction) including commonly used 

terminology, algorithms, and modeling building, validation, and evaluation procedures. Prior 

to discussing supervised learning, however, it is first necessary to understand its distinction 

from unsupervised learning, and the types of research tasks for which each may be used.

When Can You Use Machine Learning?

The first step to determine if (and which) machine learning method(s) to use is specifying 

one’s research question. Using Hernán and colleagues’ framework, there are three major 

data science research tasks: description, prediction, and causal inference (Hernán et al., 

2019). Machine learning can be used for each of these three tasks, but traditional statistical 

methods may prove to be sufficient and more appropriate depending on the specific research 

question.

Description.

Description tasks involve using data to provide a quantitative summary of certain variables. 

An example of a descriptive question is: what is the proportion of individuals with 

posttraumatic stress disorder (PTSD) in a healthcare database? The answer to this question 

might be obtained straightforwardly using basic statistics (e.g., frequency of a diagnostic 

code), and machine learning might not be necessary. However, if there is a lot of 

misclassification of PTSD in the healthcare database, machine learning could be used to 

attempt to construct a PTSD profile that combines multiple sources of data such as other 

diagnostic codes (e.g., depression, generalized anxiety disorder), medications (e.g., 

prazosin), and free-text from clinician notes (e.g., description of avoidance behaviors and 

nightmares).

Unsupervised machine learning methods are particularly useful in description tasks because 

they aim to find relationships in a data structure without having a measured outcome. This 

category of machine learning is referred to as unsupervised because it lacks a response 

variable that can supervise the analysis (James et al., 2013). The goal of unsupervised 

learning is to identify underlying dimensions, components, clusters, or trajectories within a 

data structure. Several approaches commonly used in mental health classification and 

psychometric research fall under the umbrella of unsupervised learning including principal 

components analysis, factor analysis, and mixture modeling (one reason for our focus on 

supervised learning below). Accordingly, unsupervised learning can be used to identify 
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underlying or unobserved mental health dimensions and trajectories, and to determine how 

to best categorize dimensions into subtypes (e.g., diagnostic groups). Identification of data-

driven dimensions and subgroups may lead to the formulation of novel hypotheses 

surrounding a new symptom, phenotype, or diagnosis. When prospective data are available, 

unsupervised learning methods (e.g., growth mixture modeling; Jo et al., 2017) also can be 

used to identify heterogeneity in symptom or phenotype progression over time, which may 

improve our understanding of the pathogenesis, chronicity, and remission of mental 

disorders (i.e., using unsupervised learning to define data-driven mental health outcomes). 

Accordingly, unsupervised learning is relevant for studying mental disorders within 

conceptual frameworks such as the Research Domain Criteria (RDoC; Cuthbert & Insel, 

2013) or Hierarchical Taxonomy of Psychopathology (Kotov et al., 2017). Along these lines, 

unsupervised learning has been used to empirically derive classes of psychiatric symptoms 

that are transdiagnostic (Kircanski et al., 2017; Rosellini & Brown, 2014), and incorporate 

multiple levels of data (e.g., genes, circuits, physiology, behaviors; Wu et al., 2017), to 

develop alternative approaches to classification.

Prediction.

The second major data science task is prediction, which can involve a range of specific 

goals. For example, one conceptually driven prediction goal is to test the hypothesis that 

personality traits and trauma exposure increase risk for the subsequent development of major 

depressive disorder (i.e., testing the extent to which vulnerability and stress predicts 

psychopathology). Traditional statistical methods (e.g., logistic regression) can be used to 

test this hypothesis by obtaining interpretable estimates of the nature and statistical 

significance of associations between predictors and the outcome (e.g., odds ratio).

Another prediction task could involve using hundreds of variables to develop a risk score 

that accurately identifies who is most likely to experience major depressive disorder within 

three months of trauma exposure. Machine learning may be preferable to traditional 

statistical methods if the goal is prediction optimization in large/complex data structures 

because such methods have fewer and less restrictive statistical assumptions compared to 

traditional parametric methods (e.g., linear relationships, absence of multicollinearity). A 

related prediction goal is identifying the variables that most strongly contribute to prediction 

accuracy (e.g., identifying biological markers of a behavioral phenotype). Accordingly, some 

machine learning methods provide variable importance metrics (e.g., recursive partitioning, 

described below) that may be useful in generating novel hypotheses surrounding risk/

prognostic factors and their interactions (cf. testing a hypothesis focused on a specific piece 

of a conceptual model).

Supervised learning is used to describe prediction tasks because the goal is to forecast/

classify a specific outcome of interest (e.g., presence or absence of a mental disorder). 

Supervised learning has been applied to large data structures including demographic, 

clinical, and social predictors in order to develop risk scores predicting the onset and 

trajectory of a range of mental disorders (e.g., anxiety, depression, and trauma-related 

disorders) and suicidal behavior (Galatzer-Levy, 2015; Gradus et al., 2020; Kessler et al., 

2014; Rosellini et al., 2018; Rosellini et al., 2020). Supervised learning also has been used to 
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develop prognostic scores predicting the likelihood of responding to a particular mental 

health intervention (e.g., cognitive behavioral therapy for depression; obsessive-compulsive 

disorder program, Hasanpour et al., 2018; Webb et al., 2020). Risk and prognostic scores 

may be particularly useful for identifying individuals in need of preventive interventions or 

tailored/intensive treatment (based on high or low predicted risk/prognosis). Although most 

studies develop risk and prognostic scores using predictors assessed at a single time point 

(e.g., pre-treatment), there are a variety of ways to integrate repeated measures (time-varying 

predictors) into supervised learning algorithms (e.g., operationalizing predictors based on 

timing prior to outcome; utilizing a person-time data structure).

Causal Inference.

Causal inference involves estimating effects by comparing the outcomes among the exposed 

with the counterfactual outcomes if they had instead not been exposed. An example of this is 

estimating the suicide rate that would have been observed if all individuals in a study 

population had received a psychosocial suicide prevention intervention compared with the 

suicide rate if they had not received the intervention (i.e., determining the effect of treatment 

exposure on a specific outcome). To examine this type of causal question, clinical 

psychologists typically use a randomized controlled trial (RCT) design and traditional 

statistical methods.

However, causal inference can be applied to observational (i.e., non-randomized) data in a 

way that mimics a hypothetical randomized trial (Hernán et al., 2016). Causal inference 

methods have existed for decades (Rubin, 1974), but the integration of supervised learning 

methods is more recent. For example, classification and regression trees and random forests 

have been used to generate propensity score models used to adjust treatment effect estimates 

based on individual differences in the (non-random) likelihood of receiving a specific 

intervention (Lee et al., 2010). One increasingly popular approach to causal inference is 

targeted maximum likelihood estimation (TMLE; van der Laan & Rubin, 2006). TMLE is an 

attractive method because it has a double robustness property, meaning that the average 

treatment effect will remain unbiased as long as either the exposure regression or outcome 

regression is correctly estimated. Simulation studies have found that implementation of 

TMLE using supervised learning (i.e., ensemble methods, described below) helps protect 

against bias in treatment effect estimates (Schuler & Rose, 2017). It also is noteworthy that 

methods exist to use TMLE and supervised learning to develop optimized treatment rules 

(from RCT or observational data) for matching patients to the intervention most likely to 

provide benefit (Kessler et al., 2019).

In summary, machine learning may or may not be necessary depending on the goal of the 

study (e.g., interpretability versus prediction accuracy). The first question to consider is: 

what is the nature of the research question (e.g., descriptive, predictive, causal?). The follow 

up question is: what is the most appropriate statistical tool to answer this question with (e.g., 

traditional descriptive statistics or parametric regression versus more flexible unsupervised 

or supervised machine learning)?1
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Overview of Terminology and Supervised Machine Learning for Prediction 

Tasks

As described above, there are similarities in the broad tasks/goals of traditional statistical 

approaches and supervised machine learning. At the same time, this overlap is often missed 

because the machine learning literature uses different terminology (see Table 1). For 

example, rather than discussing predictors or covariates for an outcome or dependent 
variable, the machine learning literature refers to features that may be used to classify 

outputs or targets. Further, supervised learning to predict a categorical outcome is referred to 

as classification in the machine learning literature (cf. logistic regression), while prediction 

of a continuous outcome is referred to as regression (cf. linear regression). Below we 

summarize some of the most commonly used supervised learning methods and associated 

terminology. See also Table 2 for a brief description of each method, their strengths and 

weakness, and corresponding R packages2.

Recursive partitioning.

One of the most popular approaches to supervised learning are decision tree methods. 

Decision tree methods are non-parametric and thus highly flexible. For example, 

classification and regression trees (CART) involve dividing all possible values for all 

predictors into distinct and non-overlapping regions (i.e., the predictor space). This process, 

which automatizes detection of main effects (including non-linear associations) and 

interactions, is referred to as recursive partitioning. A tree is grown based on these non-

overlapping regions, with those at the bottom of the tree referred to as terminal nodes 
(distinguishable subgroups). For categorical outcomes, observations are predicted to belong 

to the most commonly occurring class/category in a node (James et al., 2013). For 

continuous outcomes, every observation that belongs to a particular node is predicted to have 

the mean of the response values within that node. To grow a tree, splits can be made based 

on a range of criteria. Using CART, for instance, splits are based on minimizing 

classification error (for categorical outcomes) or residual sum of squares (for continuous 

outcomes). In comparison, conditional inference trees are grown based on the strength of 

univariate associations (see Strobl et al., 2007). Individual decision trees have high visual 

interpretability and are useful for identifying nonlinear associations and interactions between 

variables (see Strobl, Malley, & Tutz, 2009 for a review of recursive partitioning).

Random forests are another recursive partitioning method that involves prediction based on a 

collection of individual decision trees. Random forests are referred to as an ensemble 
method -- multiple models (e.g., trees) are combined into a single random forest. To do this, 

the method creates bootstrapped copies of the original data and a single tree is estimated in 

each bootstrap. Random forests have a lower risk of overfitting than a single tree because 

1Although we broadly distinguish between supervised and unsupervised machine learning methods, semi-supervised machine learning 
also exists (i.e., learning based on a combination of labeled data/known outcomes and unlabeled/unknown underlying dimensions or 
subgroups). Semi-supervised methods are not reviewed here as there are fewer applied studies using mental health data.
2Most supervised learning approaches have a number of sub-configurations that can influence model performance and risk of overfit, 
referred to as hyper parameters or tuning parameters (e.g., classification tree depth; number of trees from which to build a random 
forest; lambda - the elastic net penalty term). Tuning parameters must be selected and adjusted (and ideally cross-validated) with 
careful consideration of risk of model overfit.
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multiple trees are averaged together to provide more accurate and stable predictions (James 

et al., 2013). Overfitting arises when a model corresponds too closely to a particular dataset 

and fails to accurately predict events in new samples (Hawkins, 2004). A disadvantage of 

random forests is that a collection of hundreds or thousands of trees is not as visually 

interpretable as a single tree. However, random forests compute measures of variable 

importance, which provide information on the extent to which each predictor improves or 

worsens model accuracy (e.g., mean decrease in accuracy) or discrimination ability (e.g., 

mean decrease in Gini). Of note, alternate parameterizations of CART and random forests 

algorithms (and variable importance metrics) should be used for data structures involving a 

combination of binary, categorical, and continuous variables (e.g., conditional inference 

trees; Hothorn et al., 2006; Strobl et al., 2007).

There are many recent applications of recursive partitioning in psychology and psychiatry 

(Gradus et al., 2020; Walsh et al., 2017). For example, Gradus and colleagues (2020) used 

classification trees and random forests to predict death by suicide from Danish population-

based registry data. The classification trees revealed specific combinations of risk factors 

associated with high risk of suicide (e.g., not being prescribed antidepressants, 

antipsychotics, or anxiolytics, but having a prior suicide attempt and having lower income). 

The random forests identified the most important variables for accurately predicting suicide 

deaths, which included antipsychotic prescriptions, alcohol-related disorders, and 

schizophrenia (Gradus et al., 2020). In another application of random forests, Walsh, Ribeiro 

and Franklin (2017) used electronic medical records to predict suicide attempts among 5,167 

adult patients with a claim code for self-injury. They found that prediction accuracy 

improved as the suicide attempt became more imminent (from 720 days to 7 days before the 

suicide attempt) and that predictor importance shifted over time. For example, some 

predictors were consistently important across time such as psychotic disorders, recurrent 

depression, and poisoning, whereas other predictors were important only several months or 

years before the suicide attempt (e.g., prescriptions for selective serotonin reuptake 

inhibitors, benzodiazepines, acetaminophen, and recent inpatient, outpatient, and emergency 

department visits, Walsh et al., 2017).

Support vector machines.

Support vector machines are intended for classification in which there are two classes (e.g., 

cases or controls) in a multidimensional space (i.e., across many variables). To differentiate 

between classes of individuals, support vector machines identify a hyperplane, which is a 

boundary that maximally separates classes (i.e., outcome categories). Support vector 

machines apply a data transformation that project the data into a higher dimensional space to 

find a separating decision surface. This process is referred to as a kernel function. Although 

support vector machines can result in highly accurate prediction using flexible non-linear 

kernels, they are also limited by being a black box approach in the sense that metrics are not 

provided for how predictors are combined to optimize the hyperplane.

In one of the first applied psychopathology forecasting studies, Galatzer-Levy and 

colleagues (2014) used support vector machines and longitudinal data to predict a chronic 

trajectory of PTSD symptoms among individuals admitted to an emergency department 
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following the experience a traumatic event (Galatzer-Levy et al., 2014). This study 

compared the prediction accuracy of three models which used: 1) all available predictors (n 

= 68), 2) a subset of predictors selected using a predictor selection algorithm (n = 16), and 3) 

only acute stress disorder symptoms. The model with only 16 predictors (e.g., event/injury 

characteristics, use of tranquilizers, psychological symptoms, etc.) performed just as well as 

the model using all available predictors, which suggests that it is possible to accurately 

forecast PTSD using a small number of clinical assessment tools (Galatzer-Levy et al., 

2014). In another application of support vector machines, Månsson and colleagues (2015) 

assessed neural predictors of long-term treatment outcome among patients with social 

anxiety disorder one year after completion of an internet-delivered cognitive behavioral 

therapy intervention. Support vector machine classification revealed that the initial blood 

oxygen level-dependent responses to self-referential criticism in the anterior cingulate cortex 

predicted long-term response with high accuracy (Månsson et al., 2015).

Regularization.

Regularization (or penalization) methods are an extension of conventional regression that 

involve shrinking coefficients to zero (least absolute shrinkage and selection operator 

(LASSO) regularization), toward zero (ridge regularization), or some combination of the two 

(elastic net), to optimize prediction accuracy while preventing model overfit (Hastie, et al., 

2009). LASSO, ridge, and elastic net use regularization terms that penalize a model for 

increasing complexity (e.g., having more predictors than observations; large number of 

collinear predictors). This is beneficial because increasing model complexity may lead to 

increased risk of overfitting -- models may find trivial patterns (noise) that are unique to a 

specific dataset but are not generalizable to external datasets. LASSO is often used for 

variable selection and may be particularly applicable in settings with a large number of 

predictors (and small number of observations), and when the goal is to achieve a sparse 

model with only a subset of the variables predicting an outcome. At the same time, LASSO 

is limited in that it can arbitrarily select predictor coefficients to shrink to zero among highly 

correlated sets, which may not always be desirable (e.g., for well-established or conceptually 

important predictors). In comparison, ridge regression can result in non-parsimonious 

models that retain all predictors. Elastic net was designed to combine ridge and LASSO 

penalties, permitting the development of parsimonious models with greater stability and 

accuracy than ridge or LASSO (Zou & Hastie, 2005). Elastic net identifies the optimal 

penalty term using an internal cross validation procedure (see Model Building and 

Validation for a definition of cross validation).

One applied example is from Kessler and colleagues (2015), who used elastic net to identify 

a subset of predictors that yielded high model accuracy for predicting suicides in the 12 

months after psychiatric hospitalization in U.S. Army soldiers, with the goal of targeting 

expanded post-hospital care. Elastic net was specifically used to address the problem of 

multicollinearity among the original set of hundreds of predictors. The best performing 

model included sociodemographic characteristics (e.g., male, late age of enlistment), 

criminal offenses (e.g., weapons possession, verbal violence), prior suicidality, aspects of 

prior psychiatric inpatient and outpatient treatment, and specific disorders diagnosed during 

the hospitalizations (Kessler et al., 2015). Regularization methods also have been used to 

Jiang et al. Page 7

Behav Ther. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predict trajectory of depressive symptoms (Chekroud et al., 2017). For example, Chekroud 

and colleagues (2017) used elastic net to identify 25 out of 164 variables that optimally 

predicted change in three empirically defined depressive symptom clusters over treatment: 

core emotional symptoms, sleep problems, and atypical symptoms (e.g., psychomotor 

agitation).

Comparing algorithms and stacking methods.

Although we review some of the most popular supervised machine learning algorithms used 

in the clinical psychology and psychiatry literature above, a growing number of other 

approaches exist (e.g., neural networks, gradient boosting, Friedman, 2002; Ripley & Hjort, 

1995). Different algorithms may result in better or worse performance, and it is crucial to 

test different algorithms to compare performance. Most supervised learning methods can be 

applied to complex data structures including a combination of categorical and continuous 

predictors. However, some methods have been adapted in order to handle predictors that 

vary in their scale of measurement or number of categories (e.g., conditional inference trees 

is an adaption of CART). Further, some methods tend to perform better or worse with binary 

versus continuous predictors (see Kotsiantis et al., 2007). For these reasons, researchers 

interested in comparing different algorithms may need to operationalize predictors using 

different approaches (e.g., using continuous predictors as well as creating dummy variables 

based on which quintile a score falls in).

Methods also are available to stack (ensemble) several different supervised learning 

approaches into a single composite algorithm with optimized prediction. Super learning, for 

example, involves generating a consolidated algorithm from multiple supervised learning 

methods (van der Laan et al., 2007). Briefly, super learning is implemented four steps. First, 

a user-specified library of algorithms is specified (e.g., classification trees, random forests, 

support vector machines, elastic net, LASSO, and ridge regression). Second, each algorithm 

in the library is implemented using k-fold cross validation (see Model Building and 

Validation) in order to compute individual-level predicted values. Third, the outcome is 

regressed onto the predicted values from each algorithm in the library. This determines the 

best weighted combination of the individual algorithms. Fourth, each algorithm is fit on the 

full dataset and combined with the weights, creating a super learner prediction function.

In one recent application, Rosellini and colleagues (2020) used super learning to develop 

algorithms predicting the onset of internalizing disorders between Waves 1 and 2 of the 

National Epidemiological Survey on Alcohol and Related Conditions (n = 34,653). Risk 

scores were developed for five disorders (generalized anxiety, panic, social phobia, 

depression, mania) using over 200 predictors and a library of nine different supervised 

learning algorithms (Rosellini et al., 2020). As expected, the composite super learner 

ensemble resulted in better prediction than individual algorithms from which it was 

developed. Nevertheless, the difference in performance across algorithms was sometimes 

small, including when compared to logistic regression. At the same time, it is important to 

note that other studies have found substantially better performance of super learning relative 

to individual algorithms including logistic regression (Bergquist et al., 2017; Kessler et al., 

2014).
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Sample size considerations.

It is not possible to provide precise rules about sample size requirements for supervised 

learning. In general, prediction performance improves as sample size increases. The methods 

described in the section above have been implemented in samples as small as a few hundred 

observations (Askland et al., 2015; Poulin et al., 2014), as well as in samples with over 

100,000 observations (Gradus et al., 2020; Ilgen et al., 2009; Kessler et al., 2017). 

Nevertheless, other algorithms (e.g., neural networks) may require especially large samples 

to develop accurate predictions from certain types of data (e.g., text or image data). In 

smaller samples, performance may be poor or very similar to traditional regression methods. 

Simulation can be used to estimate how prediction error (e.g., mean squared error) may vary 

at different sample sizes. Along these lines, the machine learning literature sometimes 

generates learning curves to plot how model performance would improve as the number of 

observations increases (Figueroa et al., 2012).

Model Building and Validation

Predictor selection.

Mental health is shaped by the complex interplay between genetics, physiology, health 

behaviors, and social and environmental factors. In rich datasets that capture these multiple 

levels of information, the number of measured variables per subject can substantially exceed 

the number of subjects. Researchers should be cognizant that preparing such complex data 

structures for supervised learning (e.g., creating thousands of predictors) can be very time 

consuming. Moreover, one might assume that supervised learning accuracy will improve as 

the number of variables used to fit a model increases. In reality, test error (i.e., poor 

performance in independent samples) tends to increase as the number of input variables 

increases, unless the variables are truly associated with the response (James et al., 2013). 

Overfitting is more likely to occur when the dimensionality of the dataset (i.e., number of 

predictors, intercorrelations) is excessively high relative to the number of observations. 

Indeed, a central issue surrounding supervised learning is the bias-variance tradeoff; fitting a 

model that is complex and flexible enough to accurately predict an outcome (i.e., 

minimizing bias), but not so complex and flexible that noise is used to predict the outcome 

(i.e., minimizing variance/model overfit).

To mitigate these biases, predictor selection or data reduction typically occurs prior to 

supervised learning. Reducing the number of variables reduces the dimensionality of the 

data, and several approaches exist (e.g., for a review see Heinze et al., 2018). For example, 

variables that are highly correlated may provide little independent information. As 

mentioned above, one approach to selecting individual predictors among highly correlated 

sets is to use to use LASSO regression and retain predictors with non-zero coefficients. 

Alternatively, if correlations among predictors are due to substantive, conceptual overlap, 

unsupervised machine learning methods first may be used to operationalize a smaller set of 

underlying dimensions, components, or classes (Huys et al., 2016).
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Cross validation.

After data processing and reduction, supervised machine learning methods may be 

implemented2. Ideally, prediction algorithms are developed (i.e., fitted) in one sample and 

then evaluated (i.e., applied) in an independent sample. In the machine learning literature, 

this is referred to as having a training set versus test set of observations. However, 

researchers may not have immediate access to an external dataset for validation. When 

external observations are not available, internal validation methods typically are used to 

estimate test error. The test error is the average error of a method used to predict a response 

on a new observation (i.e., a data point not used in training/fitting).

One approach to internal validation is the simple method of randomly dividing a dataset into 

a training set and a test set (i.e., hold-out set), fitting the model on the training set, and then 

applying the model to the validation set. Although this validation set approach is 

conceptually simple and easy to implement, it has disadvantages including fluctuating test 

set error (depending on which observations are included in the training and validation sets), 

limited overall performance because of reduced sample size (i.e., some observations cannot 

be used for training, (James et al., 2013), and increased risk of false positive findings 

(Källberg et al., 2010). K-folds cross-validation is a refinement of the validation set 

approach that addresses its disadvantages. K-fold cross validation involves randomly 

dividing the set of observations into k groups (i.e., folds) of approximately equal size. The 

supervised learning method is fit on k-1 folds, with the left-out folds treated as validation 

sets. This procedure is repeated k times, thus a mutually exclusive group of observations is 

treated as the validation set each time. This process results in k estimates of the test error, 

and the k-fold cross validation estimates are computed by averaging these estimates. 

Although k-fold cross validation is a common and preferred approach (James et al., 2013), 

leave-one-out cross-validation may be more appropriate for smaller datasets with no more 

than a few hundred observations (i.e., k-folds cross-validation where k is equal to the 

number of observations minus 1).

Performance evaluation.

For continuous outcomes, supervised learning performance is typically assessed based on 

mean squared error or R-squared (referred to as the coefficient of determination in the 

machine learning literature). However, when the outcome is binary, performance is more 

often evaluated using sensitivity, specificity, positive and negative predictive value, area 

under the receiver operating characteristic curve (AUC), and calibration. Sensitivity (recall 
in the machine learning literature) is the proportion of subjects predicted to be positive (have 

the outcome occur) among all those who are truly positive, while specificity is the 

proportion of subjects predicted to be negative among all those who are truly negative. 

Positive predictive value precision in the machine learning literature) is the proportion of 

subjects who are truly positive among all those who are predicted to be positive, and 

negative predictive value is the proportion of subjects who are truly negative among all those 

who are predicted to be negative. A simple 2×2 contingency table that displays the actual 

outcome x predicted outcome (confusion matrix in the machine learning literature) may be 

used to calculate these performance metrics. Researchers may wish to calculate these 

metrics using several different risk thresholds, particularly when it is more important to 
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identify true cases than true non-cases, or vice versa (i.e., prioritizing sensitivity and positive 

predictive value versus specificity and negative predictive value; Kessler et al., 2015; 

Rosellini et al., 2020).

AUC, in comparison, reflects the overall ability of a test to distinguish between subjects with 

and without the outcome. AUC is also known as the concordance statistic or c-statistic, and 

is one of the most commonly reported measures of supervised learning performance because 

of its ease of interpretation. Values range from 0 to 1, with <0.50 indicating prediction no 

better than chance; 0.50–0.70 indicating poor prediction; 0.70–0.79 indicating acceptable 

prediction; 0.80–0.89 indicating excellent prediction; and >0.90 indicating outstanding 

prediction (Hosmer & Lemeshow, 2013). However, because it is a measure of overall 

performance, the utility of AUC is limited if sensitivity or positive predictive value (i.e., true 

positives) are more important than specificity or negative predictive value (e.g., when 

determining suicide risk; see also Wald & Bestwick, 2014). Finally, one underreported 

metric of model performance is calibration, or goodness of fit (Bouwmeester et al., 2012). 

Calibration refers to the extent to which a model correctly estimates the absolute risk. In 

other words, calibration is the level of agreement between the values predicted by the model 

and the observed values. Poor calibration may lead to underestimation or overestimation of 

the outcome of interest (Alba et al., 2017).

Challenges and Future Directions

A major challenge in developing useful machine learning algorithms is measurement error. 

Measurement error arises when information is not correctly captured in the study database 

due to faulty instruments, respondents provide inaccurate information due to poor recall or 

sensitive issues, or mistakes are made in coding data (Lash et al., 2009). Measurement error 

can be large for complex phenomena such as neural and psychological processes. In the 

machine learning literature, measurement error is referred to as label noise (Frénay & 

Verleysen, 2014). Label noise has been shown to lead to inaccurate predictor selection and 

rankings (Frénay et al., 2014; Gerlach & Stamey, 2007; Shanab et al., 2012) and to decrease 

prediction performance (Lachenbruch, 1966; Nettleton et al., 2010; Wilson & Martinez, 

2000). Thus, it is important to use well-validated (e.g., gold-standard) measures whenever 

possible. A prediction can only be useful if it is based on valid measurements, and serious 

consideration should be given to the quality of the data used to build a model. Nevertheless, 

in the absence of (or in addition to) well-validated measures, many statistical methods exist 

for mitigating the impact of measurement error, including using latent variable measurement 

models (i.e., operationalizing a construct using several measures, Brown, 2015), quantitative 

bias analysis (Lash et al., 2009), multiple imputation-based corrections that treat 

measurement error as a missing data problem (Cole et al., 2006; Edwards et al., 2013), 

Bayesian methods (Hubbard et al., 2019), and more. Currently, measurement error 

adjustment methods are seldom applied to machine learning. A potential reason for this is 

the lack of validation studies that provide estimates of a misclassified variable’s 

classification probabilities (e.g., sensitivity and specificity), which are often needed for 

measurement error correction methods. Measurement error could lead to machine learning 

algorithms not being transportable to different settings and populations.
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A second and related major challenge is external validation. This challenge has considerable 

overlap with current issues surrounding replication and reproducibility in psychological 

science (Tackett et al., 2017). Most studies use a single dataset for model development and 

validation. Although internal cross-validation may reduce the risk of overfitting a model, it 

is better to examine (i.e., replicate) performance of a model in an external sample. At the 

same time, a challenge of validating an algorithm in an external dataset is heterogeneity in 

the way that variables are measured across studies/samples (both predictors and outcomes). 

Variables in one dataset may be measured differently in the external validation dataset. This 

may occur when variables are assessed using different instruments (e.g., Structured Clinical 

Interview for the Diagnostic and Statistical Manual of Mental Disorders, 5th edition vs. 

Composite International Diagnostic Interview), or categorized using different cutoff values. 

Measurement heterogeneity can lead to miscalibration and affects discrimination and 

prediction accuracy (Luijken et al., 2019). To improve our ability to reproduce and replicate 

results, it is important for researchers to transparently report all measurement instruments 

administered and how variables were operationalized, machine learning algorithms and 

tuning parameters tested, software used, and also provide open sharing of data and code. 

Such efforts are possible using study preregistration, open access/science portals, and 

detailed supplemental materials. Virtually all of the studies reviewed above included 

supplemental materials providing additional details surrounding the creation of study 

variables, how supervised learning methods were implemented (e.g., tuning parameters), and 

results (e.g., relative performance of different classifiers). Other transparency methods are 

increasingly being used (see current projects on https://osf.io/, e.g., Hsu et al., 2020). 

Although more common in the physical health prediction literature, researchers also should 

follow standard reporting guidelines such as the Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement (Collins et al., 

2015), which are currently being adapted for machine learning applications (Collins & 

Moons, 2019).

A third challenge is the computational intensity and efficiency of many machine learning 

methods, especially with large datasets (e.g., memory limitations; runtimes ranging from 

several hours to several weeks). Advances in computing may alleviate some concerns 

regarding computational intensity, but there is a large carbon footprint associated with using 

exceptionally large cloud computing resources (Strubell et al., 2019). Further, there is the 

potential for negligible incremental performance compared to traditional approaches and 

thus machine learning may not be preferable or efficient for certain data structures 

(Christodoulou et al., 2019). Moreover, even if incremental performance over traditional 

methods is large, it may not be clinically meaningful. For example, rare outcomes such as 

suicide mortality are often predicted with low positive predictive values, even when using 

machine learning (Belsher et al., 2019). Unlike sensitivity, the positive predictive value of an 

algorithm is dependent on the prevalence of the outcome/disease in the study population. 

The relative importance of sensitivity versus positive predictive value depends on 

intervention cost-effectiveness and availability of resources. A test with good sensitivity but 

poor positive predictive value will capture most cases, but there will be many false positives. 

Accordingly, algorithms with low positive predictive value could be used in conjunction 

with affordable/low-resource interventions (e.g., suicide assessment at annual physical 
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examination), but expensive/high-resource interventions such as a 12-week cognitive 

behavioral therapy program would not be practical because most “high risk” individuals will 

not actually experience the outcome.

Conclusions

Researchers must be thoughtful in determining if machine learning is the method best suited 

to their research question of interest, as well as cautious in the application and interpretation 

of such highly flexible methods. Whenever possible, studies using machine learning 

methods should compare performance against traditional statistical approaches that may 

perform similarly and be much more interpretable. Additional research is also needed to 

determine how measurement error affects various machine learning algorithms, and develop 

ways to harmonize measures to make external validation (i.e., replication) is more feasible. 

If methods are developed to address these challenges, machine learning has the potential to 

vastly improve our ability to understand and predict mental disorders and associated adverse 

outcomes.
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Table 1.

Comparison of terminology in traditional statistics vs. supervised machine learning

Traditional statistics Machine learning

Prediction Supervised learning

Predictors/covariates/independent variables Features

Outcome/dependent variable Output/target

Prediction of categorical outcomes Classification

Prediction of continuous outcomes Regression

Number/overlap of predictors Dimensionality

R-squared Coefficient of determination

Sensitivity Recall

Positive predictive value Precision

Contingency table Confusion matrix
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Table 2.

Brief descriptions of common approaches to supervised learning

Algorithm R package Description Strengths/Limitations

Conventional
Regression stats

• Traditional parametric linear or logistic 
regression

Strengths:

• Easily interpretable

Limitations:

• Prone to overfit if independent 
variables are highly collinear

• Optimal functional form and 
interactions must be specified 
a priori

Decision tree
Classification and 
regression trees 
(Breiman et al., 
1984)
Random forest 
(Breiman, 2001)
Bayesian 
regression trees 
(Chipman et al., 
2010)

rpart
randomFor est 
party
BART

• Decision tree methods automatize 
detection of interactions and non-linear 
main effects

• Predictors are partitioned (based on 
values) and stacked to build decision 
trees and ensemble an aggregate 
“forest”

• Random forests builds numerous trees 
in bootstrapped samples and generates 
an aggregate tree by averaging across 
trees (reducing overfit)

• Bayesian trees are based on an 
underlying probability model (priors) 
for the structure and likelihood for data 
in terminal nodes; aggregate tree is 
generated by averaging across tree 
posteriors (reducing overfit)

Strengths:

• Decision trees are visually 
interpretable

• Random forests have lower 
risk of overfitting than a single 
tree

• Variable importance metrics 
provided

Limitations:

• Individual classification trees 
may overfit the data

• Forests are not visually 
interpretable (e.g., variable 
importance metrics do not 
indicate direction of effects)

Support vector 
machines
(Steinwart & 
Christmann, 2008) 
Linear kernel 
Polynomial kernel 
Radial kernel

e1401

• Support vector machines treat each 
predictor as dimensions in high 
dimensional space and attempts to 
identify the best hyperplane to separate 
the sample into classes (e.g., cases and 
non-cases)

• Goal is to find the hyperplane with the 
maximum margin between the two 
closest points in space

• Captures linear associations, but 
alternate kernels can be used to capture 
nonlinearities

Strengths:

• Performs well when with 
highly complex data (e.g., text, 
images) including when 
number of predictors is larger 
than the number of 
observations (“high 
dimensional” data)

Limitations:

• More prone to overfit than 
other algorithms (e.g., 
regularization)

• “Black box” algorithm; 
metrics are not provided for 
how predictors are combined 
to optimize hyperplane (may 
be unclear why predictions are 
accurate)

Regularization 
(Friedman et al., 
2010) Ridge 
Elastic net Lasso

glmnet

• Penalized regression reduces overfit 
due to collinear independent variables

• Ridge regression shrinks coefficients 
for collinear independent variables 
toward zero, but does not fully-
eliminate any independent variable

• Elastic net regression allows various 
penalties where coefficients for 
collinear independent variables are 
shrunk toward zero (but not to 

Strengths:

• Penalization decreases risk of 
overfitting when variables are 
highly correlated

• Can be used for variable 
selection

Limitations:

• LASSO may arbitrarily select 
which coefficients to shrink 
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Algorithm R package Description Strengths/Limitations

eliminating contributions to the 
predicted probability) and/or to zero 
(eliminating their contributions to the 
predicted probability)

• Mixing parameter penalty (alpha) is set 
somewhere between .01 and .99.

• Lasso regression shrinks coefficients 
for collinear covariate coefficients to 
zero, eliminating their contributions to 
the predicted probability

(e.g., conceptually important 
predictors)

• Regression coefficients may 
not be interpretable after 
shrinkage

• Cannot calculate standard 
errors for coefficients

Super learning SuperLearner

• Ensembles a composite algorithm from 
any number user-specified approaches 
to supervised learning (e.g., a single 
algorithm based on all of the above 
approaches)

• Outcome is regressed onto predicted 
values estimated by individual 
algorithms

• Implemented using k-folds cross-
validation

Strengths:

• Combines predictions from 
multiple machine learning 
methods to optimize prediction 
performance

Limitations:

• Computational intensity and 
efficiency; individual 
algorithms (including logistic 
regression) may perform 
comparably

Other useful R 
packages

swirl
caret h2o mlr
shiny

• Text-based interface that teaches 
programming, data manipulation, and 
analysis in R

• Broad machine learning packages able 
to implement many forms of 
supervised learning, feature selection, 
and cross-validation

• Used to develop interactive web-apps - 
e.g., risk calculators based on 
prediction functions developed in R
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