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T-cells produce acidic niches in lymph nodes
to suppress their own effector functions
Hao Wu1,2,7, Veronica Estrella1,7, Matthew Beatty3, Dominique Abrahams1, Asmaa El-Kenawi 1,3,

Shonagh Russell 1, Arig Ibrahim-Hashim1, Dario Livio Longo 4, Yana K. Reshetnyak5, Anna Moshnikova5,

Oleg A. Andreev5, Kimberly Luddy1, Mehdi Damaghi1, Krithika Kodumudi3, Smitha R. Pillai 1,

Pedro Enriquez-Navas1, Shari Pilon-Thomas3, Pawel Swietach 6,8✉ & Robert J. Gillies 1,8✉

The acidic pH of tumors profoundly inhibits effector functions of activated CD8+ T-cells. We

hypothesize that this is a physiological process in immune regulation, and that it occurs

within lymph nodes (LNs), which are likely acidic because of low convective flow and high

glucose metabolism. Here we show by in vivo fluorescence and MR imaging, that LN para-

cortical zones are profoundly acidic. These acidic niches are absent in athymic Nu/Nu and

lymphodepleted mice, implicating T-cells in the acidifying process. T-cell glycolysis is

inhibited at the low pH observed in LNs. We show that this is due to acid inhibition of

monocarboxylate transporters (MCTs), resulting in a negative feedback on glycolytic rate.

Importantly, we demonstrate that this acid pH does not hinder initial activation of naïve

T-cells by dendritic cells. Thus, we describe an acidic niche within the immune system, and

demonstrate its physiological role in regulating T-cell activation.
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Lymph nodes (LNs) are anatomically and physiologically
complex organs that receive inputs from both lymphatic and
blood vasculatures, and consist of discrete zones for pro-

cessing and activating T and B cells (Fig. 1a). Despite their well-
characterised histology and recent insights into the functional
interplay between various resident cell-types and epithelial

structures1,2, relatively little is known of the physiological
microenvironment of LNs in situ, and how it may influence
immune cell functions. Notably, acidosis is known to inhibit
effector T-cell functions under cell culture conditions and in solid
tumours in vivo3,4, but the relevance of this observation in the
context of LN physiology has not been determined. Oxygen
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tension in LNs has been reported to be low5, and since hypoxic
tissues are generally acidic via increased glucose fermentation, we
hypothesized that LNs are also acidic.

Given the exquisite pH-sensitivity of cytokine release3,4,6,7, LN
acidity may have physiological consequences. For example, it may
be advantageous to refrain from secreting inflammatory cytokines
into a confined space of the LN. Aberrant activation of densely
packed T-cells can, for example, induce immunopathological
responses in both lymphoid and nonlymphoid tissues and, for
that reason, many checkpoints are in place to prevent overactive
lymphocytes in these organs8–10. While these checkpoints are
active under physiological conditions, a pathologically overactive
immune response can negatively impact lymph node structure
and function. Persistent immune activation within lymphoid
tissue, as seen with human immunodeficiency virus (HIV), results
in lymph node fibrosis, often restricted to the T-cell zone, leading
to diminished lymph node function and reduced peripheral T-cell
numbers11–13. Additionally, high levels of cytokines accumulating
within the T-cell zone would have detrimental effects on the
acquisition of adaptive immunity. For example, IFNγ, whose
expression is potently inhibited at low pH, alters T-cell polar-
ization and homeostasis, can induce apoptosis, and inhibit lym-
phangiogenesis14–16. However, without direct measurements of
pH in intact LNs, the physiological significance of this postulated
regulatory influence is untested.

Here, we use in vivo fluorescence and magnetic resonance
imaging to identify acidic niches in LNs. We further show that the
source of this acidity is the T-cells themselves, based on mea-
surements of lactic acid release and intracellular pH (pHi)
in vitro, and the lack of acidity in LNs from athymic nude or
lymphodepleted mice. We interpret the mechanism of LN acidity
in terms of a steady-state between activated acid production and
inhibitory feedback on glycolysis. We further show that the low
extracellular pH (pHe) of LNs does not impair the ability of
T-cells to become activated by antigen-presenting cells (APCs),
whereas it does suppress elaboration of cytokine production. Our
findings identify localized acidosis as a critical component of the
adaptive immune response.

Results
Paracortical zones are acidic niches inside the lymph node. The
pHe of inguinal LNs in C57BL/6 (B6) mice was probed using

pH-Low Insertion Peptide (pHLIP) a short peptide that under-
goes a conformational change at low pH to make it membrane
penetrant, where it can be persistent17–21. To visualize areas of
pHLIP insertion20, the peptide was conjugated to the fluorophore
Cy5.5, which emits in the far-red range for optimal signal-to-
background ratio. To deliver the construct to the LN, injections
(50 µl of 40 µM solution in PBS) were made into the right footpad
(Fig. S1). After either 4 h or 24 h, the mouse was put under
anaesthesia and its right inguinal LN was surgically exposed for
intravital imaging in a window chamber, which was then
mounted on an inverted laser-scanning confocal microscope22.
Fluorescence and transmission images were taken with excitation
lasers alternating between 633 and 514 nm, using either a low
(×1.6) or higher power (×10) objective. Fluorescence (650–700
nm) excited at 633 nm revealed the distribution of pHLIP, which
accumulates in acidic niches. High-power excitation at 514 nm
evoked autofluorescence (550–650 nm), which was used to
delineate the LN outline (hence size). Once optimized, the same
imaging settings were applied consistently in all experiments
using pHLIP. The ratio of transmission images acquired alter-
nately at the two excitation wavelengths generated a ratiometric
map that identified the vasculature on the basis of haemoglobin
absorbance properties (greater absorbance at 514 nm, compared
to 633 nm). Images obtained at various depths through an open
pinhole and the 10x objective were summed to generate a pro-
jection of total fluorescence across the z-axis of the LN
(Fig. S2a–c). To cover the entire area of the LN, high-resolution
imaging was performed in overlapping fields of view, and the
montage was assembled offline (MATLAB Control Point Selec-
tion tool). Analysis of pHLIP fluorescence indicated acidity in T-
cell rich (CD3+) paracortical zones, with the notable absence of
signal in B-zones in outer regions of the cortex (Fig. 1b, Fig. S2a).
These data were further quantified in terms of the frequency-
distribution of fluorescence intensity in the LN (Fig. S2d). This
analysis indicated no difference between animals injected with
pHLIP at 4 h or 24 h prior to imaging.

It is plausible that the source of acidity is an H+-ion transport
process of LN tubular structures, such as high endothelial
venules23,24. Transporters underpinning such fluxes include
omeprazole (OME)-sensitive P-type H+/K+-ATPases, bafilomy-
cin (BAF)-sensitive V-type H+-ATPases or 5-(N,N-dimethyl)
amiloride (DMA)-sensitive Na+/H+ exchangers. Alternatively,

Fig. 1 Extracellular spaces of lymph node paracortical zones are acidic. a Cartoon of lymph node (LN) showing zones occupied by T and B cells, blood
vessels (B.V.) and the medulla (Me). Histological section of inguinal LN showing T-cell marker CD3 in paracortical zone (N= 3). b B6 mouse injected with
pHLIP (40 µM in 60 µl) into footpad, followed by intravital imaging of inguinal LN 24 h later in window chamber. Left: composite image collected with ×1.6
objective for pHLIP-Cy5.5 (red; excited at 633 nm), autofluorescence (green; excited at 514 nm) and vasculature (blue; determined from transmission
images). Right: montage of pHLIP fluorescence collected in overlapping fields of view with ×10 objective, summed across the depth of the LN (n= 10 mice).
Experiment repeated on B6 mouse injected via the intraperitoneal cavity with c 200 µl of 12.5 mg/kg omeprazole (OME) and 1 mg/kg of bafilomycin (BAF)
(n= 4). or d 200 µl of 5.2 mg/kg (5-N,N-dimethyl)amiloride (DMA) and 3.9 mg/kg acetazolamide (ATZ) 24 h prior to imaging (n= 3). e Experiment
performed on athymic nude mouse, with same imaging settings, showing absence of pHLIP signal (n= 8). f Summary data for mean pHLIP fluorescence
within LN boundary. Significance tested by one-way ANOVA with multiple comparisons (N= 5, 10, 4, 4, 8, 11); two sided at 5% significance. p-values
compared to control: Depleted: P= 0.0237, Nude: P= 0.0004. g Intravital imaging of pH-sensitive cSNARF1 fluorescence in inguinal LN. Mice were
injected with 70 kDa dextran-conjugated cSNARF1 into the tail-vein (20mg/ml in 100 µl). Measurements on control mice, or mice treated with LPS (n=
4). h Statistical distribution of pHe data analyzed by Gaussian mixed models to separate pixels into clusters, representing compartments. Plots shows the
pH-distribution in each of the LN compartments, averaged for all LNs. Note that compared to footpad injections, tail-vein injections detect an additional
compartment corresponding to blood vessels. i Summary data for each LN compartment from 4, 3, 4, 3 LNs, respectively. j MRI-CEST pH imaging of
control (B6) mice injected via i.v. with a 300 µl bolus of Isovue 370. pHe maps in inguinal LN region-of-interest are overlaid on anatomical T2-weighted
images. Mean ± SEM pHe measured in B6 (n= 6) and BALB/c (n= 5) mice. k Intravital imaging for hypoxic regions using 12.5 nmoles of ImageIT-Green
hypoxic probe injected into B6 mice via the footpad in a 50 µl volume. As a positive control, LNs were made anoxic by bubbling PBS with N2 and including
the O2-scavenger dithionite (1 mM), followed by cessation of circulation by cervical dislocation. Upper panels: composite image collected with ×1.6
objective for ImageIT-Green (green; excited at 514 nm) and vasculature (blue; determined from transmission images). Bottom panels: montage of ImageIT-
Green fluorescence collected in overlapping fields of view with ×10 objective, summed across the depth of the LN (N= 10 control and 10 anoxia). (Scale
bars= 1.0 mm for b–e, k; 0.5 mm for g).
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acidity may be attributable to the catalytic activity of membrane-
tethered, acetazolamide (ATZ)-sensitive carbonic anhydrases. To
test for the involvement of these acid-handling proteins, mice
received intraperitoneal injections of pairs of inhibitors (OME/
BAF or DMA/ATZ) and a footpad injection of pHLIP, 24 h prior
to imaging. These pharmacological interventions did not,
however, abolish acidic niches in LNs arguing against the
involvement of their target-proteins in acidifying the microenvir-
onment (Fig. 1c/d, Fig. S2b). An alternative source of acidity may
relate to the metabolic activity of T-cells residing in paracortical
zones. Indeed, activated T-cells are known to have a substantial
capacity to acidify media in vitro because of their high glycolytic
fluxes3,4,7,25,26. To test this mechanism, pHLIP was injected into
athymic nude mice that lack T-cells. In these animals, pHLIP no
longer accumulated in paracortical zones (Fig. 1e, Fig. S2c), and
its mean fluorescence decreased by ~80% (Fig. 1f). Because the
LNs of nude mice may become altered by long-term effects of T-
cell deficiency, we also tested whether acute lymphodepletion
would result in decreased LN acidity. Figure S3 shows that
injection of anti-CD4 and anti-CD8 antibodies successfully
depleted 80% of CD3+ cells in the spleen and inguinal LN
(Table S1). As shown in Fig. S2d and analysed in Fig. 1f, the LNs
of acutely lymphodepleted mice had a significant, >50% decrease
in pHLIP labelling. A statistical analysis of LN-averaged pHLIP
fluorescence shows that LN pH is related to the number of T-cells
residing in the LN (Fig. 1f).

While the spatial resolution of pHLIP fluorescence is excellent,
acquired images lack the quantitative power to define the level of
pHe in the LN. To determine this, B6 mice were injected with the
membrane-impermeable 70kDa-dextran derivative of cSNARF1
(cSNARF1-Dex), a ratiometric dye that provides a calibratable
readout of pH27. The settings used for imaging (×10 objective,
excitation 514 nm, emission measured simultaneously at 580 ±
20 nm and 640 ± 20 nm) were optimised to minimise artefacts
due to autofluorescence (Fig. S4a). A solution of cSNARF1-Dex
dye in PBS (100 µL of 20 mg/mL) was injected into either the tail-
vein or in the footpad, and fluorescence was subsequently
measured by intravital imaging in anesthetized mice using a
window chamber similar to that used for pHLIP imaging
(Fig. S4b, c). These cSNARF1-Dex images were ratioed offline
and converted to pHe maps using a calibration curve determined
in vitro in buffered saline (Fig. S4d). High-quality images could
be acquired 1 h after a tail-vein injection or 3 h after footpad
injection. Specifically, tail-vein delivery of cSNARF1-Dex allowed
for concurrent measurements of the pH inside blood vessels,
which conveniently served as a reference for alkaline pHe.
Analysis of pHe maps showed distinct areas of profound acidity
in paracortical areas of the LN (Fig. 1g). The intensity histograms
of pHe within the LN boundary were analysed by mixed Gaussian
modelling to determine the number of compartments that best
described the observed distribution (Fig. 1h). Notably, footpad
injections produced a two-compartment distribution, whereas in
tail-vein injections an additional alkaline compartment was
observed, which was attributable to blood vessels. Irrespective
of injection protocol, the most acidic LN compartments had a
mean pHe of ~6.3, and were surrounded by regions of mean pHe
~6.7 (Fig. 1i). The pH inside blood vessels was ~7.1, as expected
from venous blood draining from an acidic organ. To test if these
acidic niches could become ‘diluted’ in an enlarged LN, or
chemically neutralized with buffers, experiments were performed
on mice injected with lipopolysaccharide (LPS; 100 ng/kg i.p. 48 h
prior to imaging) to induce inflammation; or receiving oral
bicarbonate (200 mmol/L of NaHCO3 ad libitum 10 days before
imaging), which has been shown to neutralize the acidic pH of
tumors28. LPS treatment resulted in a significant (50%) increase
in LN volume (Fig. S5), but no effect on pHe (Fig. 1i). There was

also was no effect of NaHCO3 on pHe, arguing that the acidic
niches in LNs are robustly regulated to a specific acidic level by a
means of a feedback (“pH-stat”) mechanism, which could not be
disrupted by organ enlargement or systemic base-loading.
Consistent with this hypothesis, the LNs of NaHCO3-treated
mice contained ~50% higher concentrations of lactate (Fig. S6a,
b), despite no effect on pHe (Fig. 1i). In this scenario, the raised
buffering power allows a greater cumulative glycolytic flux,
reported in terms of lactate build-up because the magnitude of
the negative feedback via pHe is lessened (Fig. S6a, b). To confirm
that T-cells are the source of lactate, experiments on nude mice
LNs showed signficantly lower [lactate] compared to untreated
control mice (Fig. S6c).

Since intravital imaging may potentially introduce artefacts
from the necessary surgery, confirmation of low pHe in the LN
was sought using a noninvasive method based on chemical
exchange saturation transfer (CEST) magnetic resonance imaging
imaging29,30. With this technique, images (albeit with inferior
resolution to fluorescence microscopy) are collected from
different saturation frequencies in mice injected with the CT
contrast agent iopamidol (Isovue; Fig. S7a). This compound has
ionizable secondary amides that resonate at different frequencies
(Fig. S7b), which can be interrogated using frequency-specific
excitations. Since these resonances have distinct pH profiles
(Fig. S7c), the ratios of saturation occurring at the two frequencies
report pHe (Fig. S7d). The inguinal LNs of B6 and BALB/c mice
were determined to have a mean pH of ~6.4 (Fig. 1j), which is
consistent with measurements obtained by cSNARF1 fluorescence
microscopy.

Previous reports have suggested the existence of hypoxic
regions within the LN using flow cytometry of LN derived cells
exposed to the hypoxia adduct, pimonidazole5. Depletion of
oxygen could influence T-cell functions, either by acting along-
side the influence of low pH, or as the dominant modulator, with
low pHe merely being a collateral epiphenomenon31. To seek
evidence for hypoxic niches and their relationship with pHe, B6
mice were injected intraperitoneally with the hypoxic probe
pimonidazole; and 1 h later, inguinal LNs were excised and fixed
for immunohistochemistry. The pattern of pimonidazole staining
was sparse and weak, which argued against substantial hypoxia
(Fig. S8a). As a further test, the fluorescent hypoxia probe
ImageIT-Green was injected into the footpad of B6 mice and,
after 4 h, the inguinal LN was surgically exposed for intravital
imaging (excitation at 488 nm, emission 540 ± 20 nm) in a
window chamber. ImageIT-Green fluorescence is irreversibly
increased in regions with O2 tension lower than 5%, and thus
provides an independent assessment of hypoxic niches, even
when the LN is surgically exposed to the atmosphere. LNs
emitted only low levels of autofluorescence above background
(Fig. S8b), and similarly low levels of fluorescence following
injection of ImageIT, indicating that oxygen tension in the LN is
normally greater than 5% (Fig. 1k). As a positive control, LN
anoxia was produced by bathing the organ in deoxygenated (N2-
bubbled) PBS that contained the oxygen-scavenger, dithionite
(1 mM), followed by cessation of circulation by means of cervical
dislocation. Under these conditions, ImageIT fluorescence (and
hence hypoxia) was abundant (Fig. 1k). Thus, LN paracortical
zones are profoundly acidic, but not substantially hypoxic.

Acidic niches result from activated T-cells lactic acid. When
activated in vitro, T-cells undergo a dramatic increase in aerobic
glycolysis, considered necessary for engaging effector T-cell
functions3,4,7,25,26. Activation of T-cells with plate-bounded
anti-CD3ε antibody and soluble anti-CD28 antibody had a
rapid and robust effect on the extracellular acidification rate
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(ECAR), measured by a Seahorse extracellular flux (XF) analyser
(Fig. 2a). Note that although ECAR was lower in T-cells incu-
bated at a lower pH, addition of CD28 Ab increased the glycolytic
ECAR at both low and high pH. ECAR can be converted, using
data for buffering capacity, to a quantitative H+ production rate
(PPR) generated by T-cells, 48 h after their activation (Fig. 2b). At
pHe 7.4, the PPR of activated T-cells, isolated from B6 mice, was
equivalent to ~10 mmoles/min/(L of intracellular volume), after
accounting for buffering capacity (β= 3.78 mM/pH) and intra/
extracellular volume-ratios (chamber volume of 2.28 µL, cell
radius cell radius= 5.14 µm, SD= 0.68 µm, number of cells
100,000). This glycolytic rate is high; comparable to the most

metabolically-active cancer cells32–37, and may underpin the low
pHe observed in vivo in paracortical zones (Fig. 1a–j), provided
that the flux is sufficiently large in relation to fluid clearance by
perfusion of the LN. Steady-state lactate levels in inguinal LNs of
B6 mice were 9.4 ± 3.5 mM (N= 8), which is higher than levels in
LNs of nude mice (2.1 ± 0.9 mM; N= 8; Fig. S6c). Assuming that
the fluid clearance is comparable, these data indicate that the
products of T-cell glycolysis accumulate in LNs and are not
rapidly washed away with perfusion.

When metabolic flux measurements were repeated in media at
a reduced pHe, glycolytic flux decreased profoundly, along with a
concomitant increase in the O2 consumption rate, OCR (Fig. 2b).
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Although the increase in OCR (and hence oxidative ATP
production) was modest, it is sufficient to compensate for a loss
of glycolytic ATP production, assuming a ratio of ca. 18:1
(Fig. 2b). These results were also observed with OT-II (CD4+) T-
cells stimulated with OVA323–339 (ISQAVHAAHAEINEAGR)
peptide (Fig. 2b). These observations would argue that once pHe
had attained a low level, further acidification would be curtailed,
leading to steady-state. Since Seahorse measurements of rate are
performed over short periods of time, they cannot determine if
the high glycolytic rate of activated T-cells could be sustained
long enough to produce a meaningful accumulation of lactic acid
in vivo. To test this, OT-I (CD8+) T-cells, stimulated with
OVA257–264 (SIINAFEKL) peptide, were plated at low density
(500,000 cells/ml) at pH= 7.4. After 24 h, the media had
accumulated ~10 mM lactate (Fig. 2c), confirming the cells’
capacity to sustain a high glycolytic flux. Both lactate production
and glucose consumption decreased with decreasing pHe (Fig. 2c),
consistent with ambient acidity feeding back negatively on
glycolysis.

The scheme shown in Fig. 2d illustrates the proposed
relationship between extracellular acidity and T-cell glycolysis.
Here, pHe is predicted to stabilize at an acidic level once the
inhibitory feedback reaches a level that fully blocks any further
acid production by glycolysis. To determine if steady-state pHe
could be attained within a reasonable time-frame, T-cells from B6
mice were resuspended in lightly buffered media (2 mM Hepes+
2 mMMes) and plated at either 7.5 or 15 million/mL in small (60
µL) inspection chambers. Media of low buffering capacity (~3.78
mM/pH over the range 6.0–7.5) were chosen for this experiment
to allow metabolism from a relatively low density of cells to
measurably affect pH. Dextran-conjugated cSNARF1 (0.25 µg/µl)
was added to media to report extracellular acidification in real-
time (Fig. 2e). In this in vitro system, nonactivated (naïve) cells
represented LN-resident T-cells, and in separate experiments, T-
cells were activated to enhance metabolic rate further. Both
activated and naive T-cells caused a progressive decrease in pHe,
until this reached an acidic steady-state of pHe= 6.3 within
2–10 h for activated and nonactivated T-cells, respectively.
Notably, in vivo pH measurements using dextran-cSNARF-1
(Fig. 1g, h) also showed a pHe of ~6.3. The average density of T-
cells in LNs of B6 mice is 800 million/mL (Fig. S9). At these
densities, activated and naïve T -cells will, respectively, produce
~14 and 1.5 mM H+ per hour while in the inguinal LN, and even
at the lower rate, a steady-state pHe of 6.3 is attainable within 16
h, assuming restricted capillary perfusion. Activation of T-cells
thus serves to hasten the rate at which pHe stabilizes at its pH-

stat. In summary, our in vitro findings and in vivo correlates
indicate that activated T-cells can profoundly and rapidly acidify
their milieu, and maintain it at a reduced pHe.

To relate the in vitro findings to the conditions that prevail
inside LNs, a mathematical model was used to simulate steady-
state pHe and lactate levels. The volume of a mouse inguinal LN
is typically 2.5 µL38, half of which is occupied by the paracortex39,
and contains 1–4 million T-cells40. Only <10% of flow from the
afferent vessel supplying LNs perfuses the central regions
comprising the cortex and medulla, with the remaining flow
takes a peripheral route41. Central flow is equivalent to 5% of LN
volume per minute41, suggesting that the turnover of fluid in the
central region occurs in ~20 min, i.e. a relatively slow wash-out
which would favour metabolite build-up. The mathematical
model, presented schematically in Fig. 2f, includes variables
describing glycolytic rate, its pHe-dependence, fractional volume
of the intracellular space (vi), and turnover of extracellular fluid
(τ). Briefly, the intracellular compartment releases lactic acid into
a poorly-perfused extracellular space buffered with CO2/HCO3

−,
where lactate and H+ can accumulate and inhibit, via pHe, the
glycolytic rate. Results of simulations for various combinations of
vi and τ are shown in Fig. 2g; the thick line shows those
combination that predict experimentally measured values for pHe
(6.3; Fig. 1g) and lactate (9.4 mM; Fig. S6c). Replotting these
curves in Fig. 1h shows the range of τ and vi compatible with
experimental data. Since τ is estimated41 to be ~20 min, the best-
fitting vi is predicted to be ~0.7, i.e. a combined T-cell volume of
~0.9 µL (70% of half the LN paracortex volume, 1.25 µL) that
equates to 1.5 million T-cells. These values are well within the
range of measurements in LNs, arguing that the degree of acidity
measured in LNs can be adequately described by T-cell
metabolism, as shown in the model Fig. 2d.

Acid inhibits T-cell lactic acid efflux and glycolysis. Glycolytic
inhibition at low pHe was studied further in terms of its dynamics
using the Seahorse analyser. Injection of a volume of HCl acid,
determined a priori to reduce the pH of lightly (2 mM) HEPES/
MES-buffered medium from 7.4 to 6.6, triggered a rapid fall in
extracellular acidification rate (ECAR) in activated T-cells from
B6 mice, which reversed with an injection of NaOH that restored
pHe back to 7.4 (Fig. 3a). Thus, the effect of acidosis on glycolytic
rate is acute and reversible, and its mechanism may involve a
dynamic resetting of pHi, which was tested in T-cells loaded with
cSNARF1, calibrated with nigericin (Fig. S10a) and imaged
confocally. Changes in pHe, produced by switching between
superfusates titrated to pH 7.4 or pH 6.6, evoked dynamic

Fig. 2 Feedback regulation of T-cell glycolysis by pH establishes an acidic extracellular milieu at the steady-state. a Time course of extracellular
acidification rate (ECAR) was measured by Seahorse in B6 T-cells (Mean ± SD, n= 7 biological samples.). Injection of activating antibody (or vehicle for
control) at 20min evoked an increase in ECAR, due to the activation of T-cell glycolysis. b Proton production rate (PPR) measured by Seahorse in B6 or
OT-II T-cells is reduced under acidic conditions. In paired experiments on B6 or OT-II T-cells, oxygen consumption rate (OCR), measured by Seahorse, is
increased under acidic conditions (two-tailed, unpaired t-test, mean ± SD, n= 8 biological samples. PPR (B6, p= 1.35E-11; OT-II, p= 1.62E-11), OCR (B6,
p= 2.22E-5; OT-II, p= 1.14E-5). Asterisks (***) represent p < 0.0001). c Glucose consumption and lactate production as a function of pHe in OT-I T-cells,
expressed as mean ± SD; n= 3 biological samples. Significance tested by one-way ANOVA with multiple comparisons p < 0.001. d Schematic diagram of
feedback loop between lactic acid production by glycolysis, and its inhibitory feedback by extracellular pH. e Time course of pHe measured in 60 µl
volumes of 5 mM HEPES-buffered media containing no cells, nonactivated T-cells or activated (CD3-coated plates, then incubated in media containing
2 µg/ml CD28) T-cells at the densities indicated. n= 3 biological replicates. Data shown as mean ± S.E.M. Activated T-cells acidify the restricted
extracellular volume towards pH 6.3 within several hours. f Schematic representation of mathematical model used to simulate the relationship between
extracellular pH and lactate for a system featuring glycolytic lactic acid production and feedback inhibition by extracellular pH, as determined from panel
e (i.e. linear inhibition towards zero production at pH 6.3), for a LN paracortex of intracellular volume fraction vi, and fluid turnover (perfusion) of τ.
(g) Results of simulation for extracellular pH (upper panel) and lactate (lower panel). Black line shows the combination of vi and τ that simulates
experimentally observed data for pHe (6.3; Fig. 1) and lactate (9.4 mM; Fig. S5). h Replotting of the best-fit curves from panel g. Red dashed line shows
solution of this mathematical problem using the literature value for τ of 20min. This indicates that ~70% of the paracortical zone is occupied by T-cells,
engaged in lactic acid production, the source of low pHe measured in LNs.
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Fig. 3 Mechanism of T-cell glycolysis inhibition by low pH. a An injection of HCl abruptly reduces extracellular acidification rate (ECAR) in OT1 and B6 T-
cells; this reverses upon an injection of NaOH. NaCl injections performed as sham controls. Solutions were lightly buffered with 2mM HEPES/MES mixture
and titrated to desired pH. Mean ± SEM (n= 4 biological replicates). b A reduction in extracellular pH (pHe) evokes a delayed fall in intracellular pH (pHi),
as measured from cSNARF1 fluorescence (2mM HEPES/MES mixture). Mean of 10 time course recordings; error bars not shown for clarity. c Fluorescence
imaging of cells under superfusion with CO2/HCO3

− buffer. Cells co-loaded with cSNARF1 (red) to report pH and Hoechst-33342 (blue) to exclude
nuclear areas from the analysis. Plot shows relationship between pHe and pHi at the steady-state in OT1 and B6 cells. Note the transmembrane [H+]
gradient, shown in inset, inverts near resting pHi. Mean ± SEM of 5 recordings of fields of view containing 40–60 cells. d Western blot for MCT1 (48 kDa)
and MCT4 (43 kDa) relative to actin (42 kDa) on lysates collected from B6 T-cells that had been incubated at pHe 7.4 or 6.6 (N= 3). (See Supplementary
Fig. S17 for full blot). e Measuring total MCT activity from the rate of pHi change driven by transmembrane lactate efflux. T-cells under superfusion were
equilibrated with one of the three conditions, 30mM lactate at pHe 7.4, 15 mM lactate at pHe 6.9 or 7.5 mM lactate at pHe 6.6. Note that, for lower pHe,
the lactate concentration was reduced to ensure that comparable levels of lactic acid are present at equilibrium. Rapid switching to lactate-free solution at
the same pHe evoked net lactate efflux. Apparent permeability to lactic acid can be calculated from the rate of pHi change, buffering capacity and
transmembrane gradient. To confirm that the ensuing pHi response was not rate-limited by the speed of solution exchange, one solution was labelled with
fluorescein sulphonic acid (FS) and the rate of fluorescence-change indicated an exchange time constant of 2.6 s. Mean ± SEM of 10 cells per condition.
f Apparent membrane permeability for NH3 (added as 15mM NH4Cl; n= 21) acetic acid (Ac; 30mM NaAcetate; n= 12) and lactic acid (7.5–30mM Na
Lactate) at high (n= 12), intermediate (n= 6), and low (n= 8) pHe. Indicated experiments performed in the presence of MCT inhibitors AR-C (AR-
C155858; 10 µM; n= 7) and SR (SR13800; 10 µM;; n= 7). Mean ± S.E.M. of 7–15 cells per condition. Box shows median and 25–75% percentiles and
whiskers show 10–90% percentile. g Steady-state relationship between pHe and pHi mapped for 2 mM HEPES/MES solution containing either normal
(140mM) or reduced [Cl] (7mM), iso-osmotically substituted with gluconate to offset pHi at constant pHe. Mean±SEM of 6 recordings with 40–60 cells
each. h EACR, calibrated to units of lactic acid-production rate (mM/min), is shown not to be a unique function of pHe; Data shown are Mean ± S.D., n= 14
wells over two independently seeded plates. i Data from g and h analyzed to generate a relationship between metabolic rate, extrapolated to lactate-free
conditions (see Eq. (1)). Best-fit is a simple function of pHi, described by a Hill curve.
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changes in pHi in the same direction but with a short delay and of
reduced amplitude (Fig. 3b). To determine if these pHi shifts were
stable over a longer period of time, T-cells were equilibrated in
media over a range of pHe, and their pHi was measured once it
reached steady-state. Upon decreasing pHe from 7.4 to 6.6, pHi
stably decreased by ~0.2 pH units (Fig. 3c). Critically, this
transduction of a pHe change into a sustained pHi signal allows
access to a myriad of protonatable targets in the cytoplasm42,
including enzymes in the glycolytic pathway43, such as highly
pH-sensitive phosphofructokinase-1 (Fig. S10b).

The coupling between pHe and pHi arises from changes in
transmembrane acid-base traffic, including that carried by H+

-monocarboxylate co-transporters (MCTs). Low pHe thermo-
dynamically hinders H+-lactate export44, leading to an intracel-
lular retention of H+ and lactate ions. Both MCT1 and MCT4 are
present in T-cells, and their expression remains stable even at low
pHe (Fig. 3d; S17). Flux carried aboard MCTs was quantified
from the rate of pHi change evoked by the withdrawal of
extracellular lactate, which was performed using a rapid perfusate
switching system44 (Fig. 3e). MCT transport capacity, quantified
in terms of an apparent permeability to lactic acid, was 180 µm/s
in T-cells from B6 mice (Fig. 3f). The measured permeability to
acetic acid (a smaller organic acid) and NH3 (a gas) were lower
(~110 and ~30 µm/s, respectively), indicating that lactate is
transported by means of a protein-facilitated process. This
transporter is likely a MCT, as the inhibitors AR-C155858 and
SR13800 (10 µM) reduced lactic acid permeability to 20 µm/s, i.e.
to the level of protein-unassisted permeability across the lipid
matrix (Fig. S10c, Fig. 3f). When measurements were repeated at
lower pHe (6.6 and 6.9), lactic acid permeability was reduced
substantially, consistent with a thermodynamic inhibition of
MCT1. Reduced MCT transport capacity ultimately leads to an
intracellular acidification and lactate retention, both of which
feedback negatively on glycolysis. Given that glycolytic flux is
ultimately limited by the rate of end-product removal, this action
of pHe can explain the glycolytic suppression attained at low pHe,
even in activated T-cells with high glycolytic capacity4,45.

To confirm that changes in pHi mediate the pHe-glycolysis
relationship, ECAR measurements were performed under condi-
tions that selectively manipulated pHi at constant pHe. To raise
pHi in acidic media (a ‘rescue’), NaCl in the perfusate was
reduced by iso-osmotic replacement with Na-gluconate (Fig. 3g).
This ionic substitution alters the transmembrane Cl−-driving
force for acid-loaders (including Cl−/HCO3

− exchangers), which
leads to import of HCO3

− into cells. Strikingly, the glycolytic rate
(Jglyco), reported as ECAR, was not a unique function of pHe
(Fig. 3h); instead, it could be described by a simple mathematical
function of pHi and intracellular [lactate]:

Jglyco ¼ JMAX
glyco ´

Kn

H½ �in þ Kn ´
Q

lactate½ �iþ Q
ð1Þ

Where K and Q are the apparent binding constants for H+ and
lactate ions, respectively, and n is the Hill coefficient for the
binding of H+ ions. Knowing the transmembrane pH gradient
(Fig. 3c), metabolic rate (Fig. 2a), and membrane permeability to
lactic acid (Fig. 3f), it is possible to predict cytoplasmic [lactate] at
steady-state (Table S2) and, by best-fitting these data to Eq. (1),
describe the relationship between pHi and glycolytic flux (Fig. 3i).
This relationship, determined for both B6 and OT1 T-cells, was
highly cooperative (n= 4.39) and with half-maximal activation
near resting pHi (−log(K)= 7.095), i.e. consistent with a highly
pH-sensitive response. The effect of end-product inhibition by
lactate ions was best described by Q of 2.1 mM. To test this
model, some predictions of Eq. (1) were confirmed experimen-
tally. At constant pHe and pHi, the addition of lactate is expected
to reduce glycolysis by end-product inhibition. Since the L- and

D- isoforms are transport substrates for MCT, both will similarly
influence transmembrane traffic, but only the L-isomer will
produce end-product inhibition via stereo-specific lactate dehy-
drogenase (LDH). Indeed, the L-isoform produced a stronger
inhibition of ECAR (Fig. S10d; to 21% of control vs. 58% of
control with D-lactate). Consistent with this, Eq. (1) predicts that,
at constant pHi, L- and D-lactate would respectively reduce Jglyco
to 24% and 44% of control.

Acid suppresses cytokine release but not T-cell activation. The
powerful inhibition of glycolysis at low pHe is expected to sup-
press effector T-cell functions3,4. In keeping with previous
findings7,25,26, CD3/CD28-activated T-cells isolated from B6 mice
had dramatically reduced interferon-gamma (IFNγ) secretion
when incubated for 24 h at pHe 6.6, compared to time-matched
controls incubated at pHe 7.4 (Fig. 4a). The reduction in mea-
sured IFNγ at low pH was not an artefact of a conformational
disruption to the epitope detected by the ELISA method because
immunoreactivity for known quantities of synthetic IFNγ
remained stable over a wide range of pHe (Fig. S11a). Acid
inhibition of IFNγ elaboration was titratable in four different
strains of T-cells: (i) B6 T-cells stimulated with anti-CD3/anti-
CD28, (ii) OT-I (CD8+) T-cells stimulated with OVA257–264

peptide, (iii) Pmel (CD8+) T-cells stimulated with gp-100 pep-
tide, and (iv) OT-II (CD4+) T-cells stimulated with OVA323–339

peptide (Fig. 4b). The inhibitory effect of acid was reversible: T-
cells stimulated at pHe 7.4 had reduced IFNγ secretion when
restimulated at pH 6.6, but could readily resume IFNγ production
when transferred back to an alkaline environment (Fig. 4c). The
actions of acidity were not limited to IFNγ, as IL-2 release was
also inhibited at low pHe (Fig. 4d). Acid inhibition of cytokine
release was not attributable merely to a generalized failure of
exocytosis, as measurements on a large panel of cytokines indi-
cated that, whilst most had reduced secretion at low pHe, some
cytokines (MDC, MIG, and IP-10) showed greater secretion in
acidic conditions (Fig. 4e; Fig. S11b, c). Although there was an
inhibitory effect on cytokine secretion, acidosis did not con-
sistently inhibit the proliferation rate of B6, Pmel, OT-I, or OT-II
T-cells stimulated with anti-CD3 antibodies (Fig. 4f) or specific
antigen (data provided with review).

While we have shown that a major effect of pHe on T-cell
activation is mediated via inhibitions of glycolysis, it does not rule
out specific acid-mediated ligand interactions; such as VISTA
binding to co-inhibitor PSGL-146. Hence, it was important to
investigate other candidates for parallel mechanisms linking
acidosis with reduced cytokine elaboration. Other potential H+-
sensing mechanisms include, inter alia, activation of acid-sensing
receptors or channels47 or the modulation of Ca2+ signalling48.
Two acid-sensing G-protein coupled receptors, GPR65 (TDAG8)
and GPR68 (OGR1), are expressed in T-cells7, but activated T-
cells obtained from Gpr65- or Gpr68-knockout mice remained
inhibited under acidic conditions (Fig. S12a). Furthermore, small-
molecule inhibitors of OGR1 and GPR4 (BA-39-PQ30-1, NE-52-
QQ57-1, gifts from Novartis) failed to rescue cytokine release
under acidic conditions (Fig. S12b, c). Inhibition of TRPV1, an
acid-sensing ion channel, did not rescue IFNγ production either
(Fig. S12d). Acid-sensing ion channel (ASIC)49,50 isoforms 1 and
3 are also expressed in T-cells7, but the potent and specific
inhibitors, A-317567, APETx2, and psalmotoxin51,52, were unable
to restore T-cell function at low pHe (Fig. S12e–g). Similarly,
amiloride and cariporide showed no ‘rescue’ effect on IFNγ
(Fig. S12h, i). The only treatments found that at least partially
raised IFNγ production at acidic pH were phorbol esters and
histone deacetylase inhibitors (Fig. S12j/k), but these effects were
only modest. T-cell Ca2+ signalling is thought to respond to low
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pHe through the pH-sensitivity of Ora1 Ca2+ channels53,54.
However, low pHe did not meaningfully change store-operated
Ca2+ entry interrogated by a standard protocol (Fig. S13). Thus,
ruling out the contribution of these other mechanisms leads us to
conclude that inhibition of glycolysis via the intracellular build-up
of lactate and H+ ions are responsible for T-cell inactivation by
low pH.

Results thus far indicate that T-cells residing in restricted
niches of paracortical zones will produce an acidic steady-state
pHe as their lactic acid output comes into balance with feedback
inhibition through reduced MCT activity and glycolytic flux
(Fig. 3e). The attained steady-state pHe is sufficient to suppress

cytokine secretion (Fig. S12a–k), and while this would protect the
LN from damage caused by cytokines, a comparable inhibitory
effect on the ability for T-cells to undergo activation would be
deleterious to the acquisition of adaptive immunity. To test if
exposure to acidity also affects antigen activation, naïve T-cells
isolated from OT-I mice were incubated, without stimulation, at
either pHe 6.6 or 7.4 for 24 h. Cells were subsequently activated
with OVA257–264 peptide at pHe 7.4. Measurements of IFNγ
secretion performed 24 h later showed significant IFNγ secretion
(measured by ELISA) in both groups, indicating that precondi-
tioning at low pHe did not impair the ability of T-cells to be
activated (Fig. 4g). The extent of T-cell activation was also
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assayed in terms of the proportion of IFNγ positive (IFNγ+) cells,
determined by flow cytometry at 3 h and 24 h after activation
with peptide. A significant increase in the percentage of IFNγ+

cells was observed after 24 h in both the control and acid
preconditioned groups (Fig. S14; S18).

To evaluate whether low pHe can affect T-cell activation by
APCs, the process was modelled in vitro by co-culturing T-cells
with monocyte-derived dendritic cells (DCs) and antigen
(OVA257–264) at either pHe 7.4 or 6.6. No differences in the
expression of the DC marker CD40 were observed at either low or
control pHe, thus any potential actions of acid cannot be argued
in terms of insufficient stimulation by DCs (Fig. S15a). DCs
efficiently took-up FITC-tagged OVA protein (Fig. S15b) and
presented OVA257–264 peptide equally avidly at pHe 6.6 and 7.4,
indicating that acidosis did not impair the ability of DCs to
process and present antigen to T-cells (Fig. S15c). These findings
are in broad agreement with prior reports demonstrating that low
pHe does not attenuate DC antigen-presenting activity55,56. T-
cells activated by DCs at the reduced pHe of 6.6 produced less
IFNγ at 24 h after primary activation, but a further 24-h period in
alkaline conditions without the continued presence of DCs fully
restored IFNγ production (Fig. 4h). Intriguingly, only a 3-h
period of rest at pHe 7.4 was sufficient to increase the number of
IFNγ-positive cells measured by flow cytometry (Fig. 4i; S18),
indicating that the inhibitory actions exerted on T-cells by
acidosis in the LN can be reversed once the T-cells re-enter the
circulation. The restoration of effector functions, assayed in terms
of IFNγ-positive cells, was also observed when T-cells were
activated with OVA257–264 peptide, irrespective of the presence of
DCs (Fig. S16). In summary, T-cell effector functions could be
restored promptly upon exposure to alkaline conditions, even if
the activation by DCs had occurred at acidic pHe.

Discussion
We describe a naturally occurring acidic niche in the body, one of
a few sites wherein low pH may play an integral role in normal
physiological function. Specifically, our results demonstrate a
potential role for the LN microenvironment in shaping T-cell
biology. Within the structurally-restricted extracellular spaces of
paracortical zones, T-cells activated by antigen-presenting cells
(e.g. DCs) produce an acidic environment, set by the balance
between the enhanced capacity to generate lactic acid glycolyti-
cally and the ensuing negative feedback exercised by acid inhi-
bition of MCT and glycolytic enzymes. Whilst this low pHe does
not block the process of activation by antigen, it will suppress the

production and release of many (but not all) cytokines, thereby
possibly protecting the LN from premature and unwarranted
release of inflammatory and anti-inflammatory cytokines. The
complexity of these cytokines’ interactions within a LN are poorly
understood and perhaps one function of this acid-induced inhi-
bition of T-cells is just to simplify this milieu within the confined
space of a LN. Once outside the acidic LN, effector functions of
egressing T-cell become rapidly uninhibited. This effect of pH on
T-cells is consistent with the emerging notion that “the role of
extracellular acidosis is not clearly immunosuppressive, but can
have both promoting and suppressive effects on different classes
of immune cells”57. Our mechanism explains the apparent
paradox of how the LN is able to host processes that underpin T-
cells activation, while at the same time suppressing T-cells from
invoking their effector functions while in residence. This phy-
siological mechanism may, however, be exploited by tissues
seeking to evade immune surveillance, such as solid tumours. In
the case of tumours, however, acidity can be manipulated, as
demonstrated by the efficacy of systemic buffers on improving T-
cell checkpoint blockade therapy7. Tertiary lymphoid structures
(TLS) are ectopic lymphoid-like organs found in nonlymphoid
tissues, which develop under conditions of persistent chronic
inflammation, such as in tumours, in autoimmune syndromes,
and inflammatory disorders58. Some TLSs exist as sophisticated,
segregated structures that bear resemblance to LNs59. It is plau-
sible that these TLSs, sharing structural similarities with LNs,
would also manifest an acidic pH, therefore locally inhibit T-cell-
dependent immune functions. Accumulating evidence supports
that TLSs are important in antitumoural immunity60, therefore
increasing T-cell function by selectively manipulating the pH of
tumour-associated TLSs, may benefit immunotherapy.

Methods
Isolation and activation of T-cells. Female B6 (C57BL/6), Pmel, OT-I, OT-II and
TDAG8-knockout (TDAG8 KO) mice on the C57BL/6 background were bred and
housed at the Animal Research Facility of the H. Lee Moffitt Cancer Center and
Research Institute (Tampa, FL). Naïve T -cells were isolate from mice spleen using
T-cell column (R&D system). T-cells from B6 mice and TDAG8-knockout mice
were cultured in complete medium with 5 µg/mL plate-bounded anti-CD3 anti-
body and 2 µg/mL soluble anti-CD28 antibody for 48 h. Isolated Pmel, OT-I and
OT-II T- cells are cultured in complete medium with 5 µg/mL gp-100 25–33 peptide,
10 µg/mL OVA SIINFEKL peptide and 10 µg/mL OVA 323–339 peptide, respectively.
IFN-gamma was measured by ELISA (BD Biosciences). All animal experiments
were approved by the Institutional Animal Care and Use Committee and per-
formed in accordance with the U.S. Public Health Service Policy and National
Research Council Guidelines. Jurkat cells were maintained in RPMI-1640 medium
with 5% FBS. Jurkat cells were stimulated with phorbol 12-myristate 13-acetate

Fig. 4 T-cell effector functions are inhibited at acidic pH. a Interferon γ (IFNγ) production from C57BL/6 (B6) T-cells is reduced at low pHe, as
determined by ELISA; n= 3, p= 0.00013. b INFγ production, measured over a range of pHe in T-cells from B6 mice as well as three antigen-specific
strains. n= 3. IFNγ levels were compared with those at pHe 7.4 within each strain. B6 (pHe 6.8, p= 0.0034; pHe 6.6, p= 0.00013), OT-I (pHe 6.6, p=
0.0013), Pmel-1 (pHe 6.8, p= 0.017; pHe 6.6, p= 6.25E-6), OT-II (pHe 6.6, p= 0.046). c Time course of IFNγ levels in media following pH-manoeuvres
that demonstrate the reversal of acid inhibition upon subsequent exposure to alkaline pH (rescue experiment); n= 3. d Interleukin-2 (IL-2) release,
measured by ELISA in Pmel-1 and OT-II T-cells and a Jurkat leukaemia cell line, is reduced at low pHe; n= 3. Pmel-1, p= 8.77E-6; OT-II, p= 6.85E-9; Jurkat,
p= 5.64E-8. e Relationship between cytokine levels at low and high pH, determined in paired experiments by the Cytokine Beads Array (CBA) assay. For
most cytokines, with the exception of those highlighted in red (IP-10, MIG, MDC), acidic conditions evoked a reduction in release. f Rate of B6 cell
proliferation measured by CellTrace Violet assay. g IFNγ production was measured, by ELISA, at the end of a 24 h preconditioning period (no OVA added)
at either pHe 6.6 or 7.4, and then at the end of a consecutive 24 h period in the presence of antigen (OVA) at pHe 7.4. IFNγ production can be activated
irrespective of whether cells had been preconditioned at pHe 6.6 or 7.4; n= 3. pHe 6.6 precondition, p= 2.82E-5; pHe 7.4 precondition, p= 4.25E-7.
Asterisks (****) represent p < 0.0001. h IFNγ production by T-cells activated with dendritic cells (DC) and antigen (OVA) measured after 24 h at pHe 6.6
or 7.4, followed by measurements at the end of a subsequent 24 h period without stimulation at pHe 7.4 (rest). T-cells can become activated by DC/OVA
at acidic or alkaline pHe, and fully retain the capacity to produce cytokines when transferred to alkaline media; n= 3. pHe 6.6 activation, p= 3.22E-7; pHe
7.4 activation, p= 0.29. Asterisks (****) represent p < 0.0001. i Flow cytometry. Intracellular IFNγ staining of T-cells activated with DC and antigen (OVA)
measured after 24 h of treatment in either pHe 6.6 or 7.4 (top panels). Cells were then transferred to pHe 7.4 to rest in the absence of DC and OVA, and
measurements were performed after 3 h of resting. All the experiments were repeated at least twice and expressed as mean ± SD and analyzed by two-
tailed, unpaired t-test unless indicated otherwise. Significance level: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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(PMA, Cat#8139, Sigma–Aldrich) and phytohemagglutinin, M form (PHA-M,
Cat# 10576015, Gibco) for 24 h.

Animals. All animals were maintained under Institutional Animal Care and Use
Committee (IACUC) at H. Lee Moffitt Cancer Center. Eight-to ten-week old
Balb/c, C57BL/6, and nu/nu mice (male, 22–25 g) were purchased from The
Jackson Laboratory and housed in ventilated isolette cages at ambient temperature
and humidity with 12 h light dark cycles.

LN lactate measurement. Inguinal lymph nodes (LNs) excised from a consistent
anatomical location were surgically remove from immunocompetent C57BL/6 (B6)
or nude mice, weighted and flash frozen in liquid nitrogen immediately. Tissue was
homogenized in 0.2 mL 80% methanol and the supernatants obtained after 10 min
of centrifugation at 15,000 × g were collected for biochemical analysis. Lactate
concentration was measured by a fluorometric method using Lactate Assay Kit
(BioVision, inc. Cat#K607).

Seahorse measurements of metabolism. Extracellular acidification rate (ECAR)
and oxygen consumption rate (OCR) were measured by Seahorse XF96 Analyzer
(Agilent). Cells were cultured with bicarbonate-free RPMI-1640 medium with
2 mM HEPES and 2mM MES. The buffering capacity was determined to calculate
the proton production rate (PPR).

Flow cytometry. Fresh isolated T -cells were activated at pHe 7.4 or pHe 6.6 for
72 h. Cells were collected and wash by PBS twice, then stained in FACS buffer with
the following antibodies for flow cytometric analysis: CD3, CD4, CD8, CD44, and
CD62L (see Supplementary Table S3 for antibody information). Live/Dead fixable
near-IR (Invitrogen) was used to exclude dead cells before analysis. To analyze
intracellular marker IFNγ, cells were incubated with 1 µL/mL GoldgiPlug (BD
Bioscience) for 3 h, stained with surface marker and Live/Dead dye, fixed and
permeabilized by Fixation/Permeabilization Solution Kit (BD Biosciences), and
then stained with anti-IFNγ antibody. Samples are analyzed by LSR II Flow Cyt-
ometer (BD Biosciences). Multiple antibody lot numbers were used and each was
validated by the flow cytometry core facility according to the manufacturer prior to
used and titered for appropriate staining by us. In general, antibodies were used at a
dilution of 1 ul per 100 ul staining buffer per 106 cells.

Antibodies. Anti-pimonidazole antibody (#PAb2627, a rabbit polyclonal antibody)
was purchased from Hyproxyprobe, Inc (Burlington, MA) and used at a 1:100
dilution; anti-CD3 antibody (#M3072, a rabbit monoclonal antibody) was pur-
chased from Spring Bioscience Corp. (Pleasanton, CA) and used at a 1:100 dilution;
anti-CD28 antibody (37.51, 16-0281-82) was purchased from Thermofisher
(Waltham, MA) and used at a concentration of 1 ug/mL; anti-CD4 antibody
(GK1.5, BE0003-1) was purchased from Bioexcell (Lebanon, NH) and used at a
concentration of 3 ug/ul; anti-CD8 antibody (2.43, BE0061) was purchased from
Bioexcell (Lebanon, NH) and used at a concentration of 3ug/ul.

In vivo depletion of CD4 and CD8 T-cells. C57B6 mice were injected IP with
CD4 (GK1.5) and CD8 (2.43) depleting antibodies at a dosage of 300 ug/mouse for
three consecutive days to initiate depletion. Depleted state was then maintained by
additional dosing every 3 days until initiation of imaging studies. Depletion status
was verified by flow cytometry on isolated lymph nodes and spleen of depleted and
nondepleted mice.

Cytokine beads array assay. T-cells were activated for 48 h and restimulated at
pHe 7.4 or pHe 6.6 for 24 h. Culture medium was collected for cytokine beads array
analysis according to the manufacturer’s manual (BioLegend). Briefly, 25 µL culture
medium was sequentially mixed with antibody-conjugated beads, detection anti-
body and SA-PE. Washed samples were analyzed by flow cytometer.

Cell proliferation assay. Fresh prepared T-cells were washed by PBS twice and
stained with 2 uM CellTrace Voilet (Invitrogen) in PBS for 10 min, and incubated
in complete medium for another 20 min to quench residual dye. After two wash
with complete medium, cells were activated at pHe 7.4 or pHe 6.6 for 72 h. After
activation, cells were collected and stained with surface marker and live/dead dye
for before analysis.

Cytotoxicity assay. For the cell lysis assay, the Xcelligence system (Roche Diag-
nostics) was used to monitor cellular events without incorporation of radioactive
labels. Fifty microliter of complete media (CM) was added to 96XE-plates. Twenty
thousand target cells (B16 or B16 pulsed with OVA peptide) were seeded into the
wells of 96XE-Plates in 50 μL of CM and incubated on the Real Time Cell Analyzer
overnight in a CO2 incubator to monitor cell adhesion and growth. Effector cells
(OT-I T-cells) activated for 24 h with OVA peptide in media at pH 6.6 or pH 7.4
were added to plate at 25:1 ratio in a volume of 100 μL/well. Co-cultures were
assessed by the system for 20 h. Results are expressed as percent lysis determined

from Cellular Index (CI) normalized as (nCI): % of lysis= [nCI (no effector)− nCI
(effector)]/nCi (no effector) × 100.

Phosphofructokinase-1 (PFK-1) activity assay. T-cells from spleens of B6 mice
were activated for 48 h and washed by PBS twice, and homogenized in M-PER
Mammalian Protein Extraction Reagent (cat#78501, ThermoFisher) with HaltTM

Protease Inhibitor Cocktail (1:100, cat#87786, ThermoFisher). The supernatants,
after 10 min of centrifugation at 15,000 × g, were collected for enzymatic analysis.
Ten microlotre of supernatants were added to 2 mL of reaction buffer (50 mM
HEPES, 1 mM ATP, 1 mM fructose-6-phosohate, 2 mM MgCl2, 0.2 mM NADH,
1 U/mL aldolase, 5 U/mL triosephosphate isomerase, 1 U/mL α-glycerophosphate
dehydrogenase, pH varied between 6.6 and 7.4) to initiate the reaction and the
change in absorbance at 340 nm were measured spectrophotometrically every 10 s
to calculated the enzyme activity.

Immunochemistry. Murine inguinal lymph nodes were surgically removed from
C57BL/6 mice, fixed in formalin and paraffin embedded. Slides were prepared with
4-µm thick tissue slices and stained using a Ventana Discovery XT automated
system (Ventana Medical Systems) as per manufacturer’s protocol with proprietary
reagents. The primary antibodies were used to detect pimonidazole (1:100,
Hyproxyprobe #PAb2627) and CD3 (1:100, Spring Bioscience #M3072) expression.
Slides were incubated with Ventana OmniMap Secondary Antibody followed by
Ventana ChromoMap kit to detect the proteins staining and then slides were
counterstained with Hematoxylin.

Superfusion. Superfusion experiments were performed in a plastic chamber
(Pecon, TempController 2000-2) supplied by a solution line with a switcher that
changed between one of two lines (the other being diverted to the waste bottle).
The plastic chamber was mounted on a confocal microscope and heated to 37 °C by
small scale temperature incubator (The Cube Life Imaging Services). Solution
exchange was attained with a time constant of 2.6 s. Solution flows were 2–4 ml/
min.

Solutions and media. (i) Solutions for seahorse experiments: 2 mM HEPES, 2 mM
MES, 5.3 mM KCl, 5.6 mM Na-Phosphate, 11 mM glucose, 133 mM NaCl, 0.4 mM
MgCl2, 0.42 mM CaCl2, titrated to given pH with NaOH. For reduced Cl−

experiments, 133 mM NaCl was replaced with 133 Na-Gluconate and MgCl2 and
CaCl2 were raised to 0.74 and 1.46 mM, respectively, to account for gluconate-
divalent binding. Amount of dilute HCl or NaOH added to medium to reduce pH
to target level was determined empirically. Solutions for pH measurements under
superfusion: For pH 7.4, 133 mM NaCl, 5.3 mM KCl, 10 mM Glucose, 1 mM
CaCl2, 1 mM MgCl2, 22 mM NaHCO3. For lower pH, NaHCO3 was reduced
(compensated by NaCl) to attain a target pH, according to the Henderson Has-
selbalch equation (pH= 6.15+ log([HCO3

−]/[CO2]), where [CO2] is 1.2 mM for
5%. All solutions were bubbled in 5% CO2. (iii) Solutions for Ca2+ imaging: For pH
7.4, 133 mM NaCl, 5.3 mM KCl, 0.8 mM MgCl2, 0.9 mM Na-Phosphate, 22 mM
NaHCO3 and either 1.8 mM CaCl2, 0.5 mM CaCl2 or 0.5 mM EGTA. For pH 6.6,
NaHCO3 was reduced to 2.75 mM and NaCl raised accordingly. All solutions were
bubbled with 5% CO2/balanced air. (iv) Calibration solutions for nigericin:
145 mM KCl, 1 mM MgCl2, 0.5 mM EGTA, 10 mM HEPES, 10 mM MES and pH
adjusted with NaOH to required level.

Confocal imaging. Imaging was performed on an SP5 system (Leica Micro-
systems). Cellular measurements were performed with an oil-immersion ×63
objective and intravital microscopy was performed with a dry ×1.6 or ×10 objec-
tive. The following excitation (ex) and emission (em) wavelengths were used:
dextran-conjugated cSNARF1 (cat#D3304, Invitrogen): 514 nm ex, 580/640 nm em
(during lymph node imaging); Hoechst 34580 (cat#H21486, ThermoFisher):
405 nm ex, 420 nm; FuraRed: 488 nm ex, 585/685 nm; pHLIP-Cy5.5: 633 nm ex,
>700 nm. Settings were optimized to obtain maximal quality under the constraints
of temporal resolution.

Lymph node imaging. The inguinal lymph node is exposed for imaging on the
confocal microscope by performing a midline incision to separate the skin from the
peritoneum. The skin is pinned down and the excess fat around the inguinal lymph
node is carefully removed with sterile Dumont #5 forceps. Once cleared and
exposed, a 3D printed window chamber, with a 12 mm in diameter window, is
placed over the lymph node area. The chamber is secured using a tissue adhesive
(3 M Vetbond #1469SB) and 12 mm Micro coverslip (cat# 72226-01 Electron
microscopy sciences). We ensure that the lymph node region underneath the
coverslip does not dryout by injecting 200 µl of 1× PBS. Mice were kept under
anesthesia (1.5% isofluorane) throughout the surgical procedure and in a 37 °C
warming chamber during imaging. To measure pH in the inguinal lymph node,
mice were injected with dextran-conjugated cSNARF1 (cat# D3304, Invitrogen) at
a concentration of 20 mg/ml in 100 µl via their tail-vein or footpad. To determine
whether inflammation or buffering would change the pH of the lymph node
microenvironment, mice were treated with lipopolysaccharide (LPS, cat# L3012,
Sigma–Aldrich) at a concentration of 1000 ng/kg (i.p. injection) for 48 h or
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provided mice with 400 mM NaHCO3 ad libitum for 9–10 days, respectively, before
imaging the mice with dextran-conjugated cSNARF1.

Image analysis. Cytoplasmic pH was measured by gating pixels according to a
threshold level of Hoechst signal within cSNARF1-positive pixels. Fluorescence at
580 and 640 nm was averaged, background offset and ratioed for each particle
representing a cell. For time course experiments, pHi was probed in the entire cell to
allow for faster acquisition rates. Buffering capacity was measured from the change
in weak acid/base concentration, assuming passive equilibration, and the pH
change. Transmembrane acid-base fluxes were therefore calculated as the product of
pH change and buffering capacity. Cell surface area/volume ratio assumed spherical
symmetry i.e. 3/radius. For intravital microscopy, image montages were constructed
with in-house software that aligned fluorescence or anatomical landmarks.

CEST imaging. Magnetic resonance data were acquired with a 7T horizontal
Bruker scanner equipped with nested 205/120/HDS gradient insert and a bore size
of 310 mm. A 35mm Litzcage coil (Doty Scientific) was used to carry out all
experiments. Before imaging, animals were placed in an induction chamber and
anesthetized with 3% isoflurane delivered in 1.5 litre/min oxygen ventilation. After
complete induction, animals were restrained in a custom-designed holder and
inserted into the magnet while constantly receiving isoflurane (1–3%) within the
0.6 litre/min oxygen ventilation. Body temperature (37° ± 1 °C) and respiratory
functions were monitored continuously (SAII 177 System) during the experimental
time. Coronal T2-weighted fast spin-echo multislice images were acquired with
TE/TR [echo time/repetition time]= 31ms/2271ms, field of view (FOV)= 80 ×
30mm2, matrix= 256 × 96, yielding a spatial in-plane resolution of 312 μm and with
slice thickness of 1.5mm. These images were used as anatomical reference for the pH
map. MRI-CEST pH images were acquired by adapting a previously described
protocol29; TE/TR= 10ms/10 s, the saturation used was 3 µT during 5 s, same FOV
than T2w images but matrix= 171 × 64. Only one slide was imaged containing the
inguinal lymph node. Animals were injected with ISOVUE370 (Bracco Imaging,
Milano, Italy) at 300 ul iv bolus injection; followed by an i.v. infusion of 300 µl/h. To
create the CEST maps, an in-lab designed Matlab code was used. The pH values were
calculated after a calibration curve done in the same system with 20mM ISO-
VUE370 phantoms titrated at several pH values in the range 5.5–8.

Statistics. All statistical tests had a significance level of 5% in a two-tailed test. For
comparisons between two samples, a t-test was used. For more than two samples, a
one-way ANOVA with multiple comparisons was used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
High-resolution image data are available upon request from either of the corresponding
authors (PS or RJG). All other relevant data are available in the article, supplementary
information, or from the corresponding authors (PS or RJG) upon reasonable
request. Source data are provided with this paper.

Code availability
Custom code was developed for image processing of data in Fig. 1g–i, and for steady-
state modeling of Fig. 2g, h. It allowed ad hoc image stitching, curve fitting, etc. It is
available upon request to corresponding author PS.
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