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Abstract: There is growing interest in the contribution of the marrow niche to the pathogenesis of
bone marrow failure syndromes, i.e., aplastic anemia (AA) and myelodysplastic syndromes (MDSs).
In particular, mesenchymal stem cells (MSCs) are multipotent cells that contribute to the organization
and function of the hematopoietic niche through their repopulating and supporting abilities, as well
as immunomodulatory properties. The latter are of great interest in MDSs and, particularly, AA,
where an immune attack against hematopoietic stem cells is the key pathogenic player. We, therefore,
conducted Medline research, including all available evidence from the last 10 years concerning
the role of MSCs in these two diseases. The data presented show that MSCs display morphologic,
functional, and genetic alterations in AA and MDSs and contribute to immune imbalance, ineffective
hematopoiesis, and leukemic evolution. Importantly, adoptive MSC infusion from healthy donors
can be exploited to heal the “sick” niche, with even better outcomes if cotransplanted with allogeneic
hematopoietic stem cells. Finally, future studies on MSCs and the whole microenvironment will
further elucidate AA and MDS pathogenesis and possibly improve treatment.

Keywords: aplastic anemia; myelodysplastic syndromes; mesenchymal stem cells; bone marrow;
microenvironment; hematopoietic stem cell transplant

1. Introduction

Mesenchymal stem/stromal cells (MSCs) are multipotent cells that may be isolated from the bone
marrow, umbilical cord blood, placenta, or adipose tissue [1,2] and they contribute to the organization
and functioning of the hematopoietic niche [3–5]. According to the International Society for Cellular
Therapy, the term “mesenchymal” is used for cells that are plastic-adherent in culture and express
CD73, CD90, and CD105, but not CD14, CD34, CD45, CD79α, and human leukocyte antigen-D-related
(HLA-DR). MSCs are able to differentiate into fibroblasts, osteoblasts, adipocytes, and chondroblasts [6]
and to transdifferentiate to tissues of neuroectodermal origin (i.e., neurons or glial cells). In bone
marrow (BM), endothelial cells are a known source of MSCs [7] and regulate hematopoietic stem
cell (HSC) proliferation and differentiation by tight spatial colocalization with perivascular cells [8]
and through secretion of E-selectin [9], cytochemokines, [10], and crosstalk molecule expressions
such as Jagged1 and CXCL12 [11–13]. In the niche, MSCs also interact with the adrenergic fibers
of the autonomic nervous system to regulate hematopoiesis, as described in several hematologic
diseases [14,15].

Several studies have shown that MSCs have systemic immunoregulatory and immunosuppressive
properties [16–20]. For instance, MSCs express cell surface molecules with an immunosuppressive
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capacity, such as programmed death ligand 1 (PD-L1) and Fas ligand [21,22]. Moreover, MSCs interact
with T- and B-cells, NK cells, monocyte-derived dendritic cells, and neutrophils by direct cell-to-cell
adhesion and/or secretion of soluble molecules, the so-called MSCs’ secretome. Among the various
mediators, it is worth mentioning the key molecules involved in both BM niche physiology and
pathology, such as interferon-γ (IFN-γ), interleukin-1β (IL-1β), transforming growth factor (TGF)-β1,
indoleamine-2,3-dioxygenase (IDO), IL-6, IL-10, prostaglandin-E2, hepatocyte growth factor, tumor
necrosis factor (TNF)-α, nitric oxide (NO), heme oxygenase-1, and HLA-G5. Concerning innate
immunity, MSCs display anti-inflammatory properties by suppressing neutrophil respiratory bursts
and prolonging granulocyte survival through IL-6 and STAT-3 signaling. Moreover, they inhibit
mature dendritic cell differentiation by decreasing the expression of toll-like receptors 3 and 9 [23].
Finally, MSCs suppress NK proliferation and cytotoxicity. Regarding adaptive immunity, MSCs may
repress T-helper type 1 (Th1) and Th17 polarization [24–26]. Specifically, they are able to induce
anergy of activated T-cells and to elicit T-regulatory cell (Tregs) expansion via IL-10 secretion. Finally,
B-cell proliferation/differentiation is also suppressed both directly and through activated CD4+ T-cell
suppression [1] (Figure 1).
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Figure 1. Multiple functions of mesenchymal stem cells in aplastic anemia and myelodysplastic
syndromes. Mesenchymal stem/stromal cells (MSCs) are multipotent cells that are able to differentiate
and transdifferentiate in different tissues (e.g., bone, cartilages, adipose tissue). They exert a supportive
and modulating effect on the bone marrow (BM) niche and on innate and adaptive immunity
via the secretion of soluble mediators (secretome). Various MSC alterations are described in AA
and MDSs, including increased immunosuppression, decreased angiogenesis (prevalent in the
former) and deregulated proliferation/apoptosis (prevalent in the latter). These phenomena may
be mirrored by a phenotypic shift from type 1 (proinflammatory/immunosuppressive) to type 2
(anti-inflammatory/tumor-educated) MSCs along the clinical spectrum of BM failure syndromes. IL-1,
interleukin-1; IL-6, interleukin-6; IL-10, interleukin-10; TGF−β, transforming growth factor-β; PGE2,
prostaglandin E2; IDO, indoleamine 2,3-dioxygenase; MSC 1/2, type 1/2 MSC; HSC, hematopoietic stem
cell; NK, natural killer; RBC, red blood cell.
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Several alterations of MSCs have been described in bone marrow failures, namely, aplastic anemia
(AA) and myelodysplastic syndromes (MDSs), and it is not clear whether they are the cause or
consequence of disease development and progression. Furthermore, niche disruption might sustain
pancytopenia and promote the accumulation of clonal molecular alterations that lead to leukemic
evolution. In addition, microenvironment alterations might, in turn, be potential targets for novel
biologic drugs [1,27]. In this review, we will analyze the role of the microenvironment in AA and
MDS pathogenesis and therapy, focusing on MSCs and their alterations. All studies dealing with
mesenchymal cells will be discussed, including those papers where their stem cell features were not
evidenced (mesenchymal stromal cells).

2. The Role of Mesenchymal Stem Cells and Microenvironment in Aplastic Anemia

AA is a rare hematologic disease caused by an immune attack to HSCs, either triggered by infectious
agents (i.e., hepatitis viruses, HIV) or idiopathic T-cell-mediated marrow destruction as the leading
pathogenic mechanism. BM lymphocytes from AA patients are able to inhibit HSCs, and oligoclonal
expansion of dysregulated CD8+ T-cells has been demonstrated. Moreover, Th17 overexpression and
concomitant Treg suppression [28–32], along with increased levels of proinflammatory cytokines such
as IFN-γ and TNF-α at the molecular level, have been reported to play a key pathogenic role [33,34].

The reported incidence is 0.6–6.1 cases per million. These cases are diagnosed with a bone
marrow biopsy showing various degrees of hypocellularity, with no signs of myelodysplasia, leukemia,
and myelofibrosis, and the diagnosis requires the exclusion of secondary causes. Clinically, it is
marked by peripheral cytopenias, with consequent fatigue, bleeding, and infections [35]. Disease
severity is assessed by Camitta criteria that identify severe AA based on marrow cellularity <25% and
the degree of cytopenias (PLT < 20 × 109/L, ANCs < 0.5 × 109/L, reticulocytes < 1%) or very severe
AA if neutrophils are less than 0.2 × 109/L. During workup, paroxysmal nocturnal hemoglobinuria
(PNH) may be detected by flow cytometry, and reduced telomere length has been recently reported,
particularly in cases aged ≥ 45 years [35]. Prompt intervention is usually required, and, along with close
and careful transfusion support, a hematopoietic stem cell transplant (HSCT) from an HLA-matched
sibling donor is the first choice for young (<40 years) patients. If a donor is unavailable or the
patient is aged >40 years, the combination of rabbit/horse-derived antilymphocyte globulin (ATG)
and ciclosporin (CyA) is the gold standard first-line immunosuppressive therapy [35]. About 1/3 of
cases will require a second-line, including HSCT, a second course of immunosuppressive therapy,
oral androgens, or the thrombopoietin analog eltrombopag. Survival is mainly age-related and also
depends on the response to therapy [28,35].

2.1. Pathogenic Mechanisms of Mesenchymal Stem Cells in AA

The immunopathological mechanisms of aplastic anemia have shown to be modulated by MSCs
and their secretome. Consistently, defects in the BM niche, including adipocytes, vascular cells,
and MSCs have been demonstrated in AA. As shown in Table 1, the functioning, immunomodulating
abilities and genetic features of AA–MSCs differ from healthy controls [27]. Regarding the contribution
of MSCs to angiogenesis, Lu et al. showed a defective expression of vascular cell adhesion molecule-1
(CD106) in AA versus healthy donor MSCs. This resulted in a reduced and delayed capability of
endothelial differentiation and BM vascularisation. Specifically, the marrow content of CD105 + CD106
+ MSCs was significantly decreased, and the capability of CD31 + cell differentiation and tubular
structure formation was delayed [36]. A more recent study on BM-derived MSCs demonstrated a
significantly inhibited vascular endothelial growth factor (VEGF)–Notch signaling, with reduced
proliferation and increased apoptosis. The latter could be reverted by VEGF–Notch axis stimulation
in vitro [37]. The osteogenic potential of AA–MSCs was found to be reduced, whilst the adipogenic
potential was increased. Recently, Li et al. identified novel microRNAs (miRNAs) that regulate
AA–MSC differentiation [38]. Particularly, miR-144-3p was upregulated in BM-derived MSCs from
AA patients, and its deletion enhanced osteogenic differentiation, whilst its overexpression halted
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the process. Interestingly, miR-144-3p is a negative regulator of ten-eleven translocation 2 (TET2),
whose silencing was experimentally able to inhibit osteogenic differentiation. This may be a potential
therapeutic target, by both enhancing TET2 signaling or inhibiting miR-144-3p.

Table 1. Characteristics of mesenchymal stem cells (MSCs) in aplastic anemia (AA).

Reference N. of Patients Main Findings

Lu S.H., et al. 2018 - Deficient or decreased expression of CD106 + MSCs accelerates bone
marrow vascularization failure in AA patients

Deng S., et al. 2019 - The activation of VEGF–Notch pathway can restore the proliferation
function of MSCs in AA patients

Li N., et al. 2020 3 The microRNA miR-144-3p is involved in AA pathogenesis. Its
targeting may be a therapeutic strategy

Li H., et al. 2017 15
Bone marrow-derived MSCs modulate the levels of T-helper (Th)1,

Th2, Th17, and T-regulatory cells, as well as their related cytokines in
AA patients

Zhao J., et al. 2019 - Gingival-derived MSCs markedly improved survival and attenuated
histological bone marrow damage in AA murine models

Li J., et al. 2012 - MSCs from AA patients show differential gene expression profiles
associated with bone marrow failure

Huo J., et al. 2020 49 MSCs from AA patients exhibited multifaceted defects in biological
characteristics and alterative molecular genetics in the whole genome

Bueno C., et al. 2014 -
MSC cultures from the bone marrow of AA patients display the same

phenotype and differentiation potential as their counterparts from
normal controls

MSCs’ immunomodulating properties are also implied in AA pathogenesis. BM-derived MSCs,
intravenously injected into 15 patients, were shown to regulate Treg/Th17 balance [39], as well as
their related cytokines. This happened through the remodulation of the Notch/RBP-J/FOXP3/RORγt
pathway. Moreover, in a murine model, Zhao et al. demonstrated that human gingiva tissue-derived
MSCs (GMSCs), may reinduce a balance between Th1/Th17 and Tregs by decreasing the former and
increasing the latter, improving survival and attenuating AA phenotypes [40].

Regarding genetic studies, transcriptome analyses have demonstrated altered expressions of genes
involved in cell proliferation, division, cycling, chemotaxis, interactions with HSCs, adipogenesis,
and immune response in AA patients versus healthy controls [41]. In particular, Huo et al. systematically
evaluated BM-derived MSCs from 39 healthy donors (HD) and 64 AA patients (including 15 BM).
They found that AA–MSC morphology was different from HD–MSCs (large and swollen compared with
a spindle shape), whilst immunophenotype was comparable. Quantitative RT–PCR analysis showed
increased adipogenic potential (higher levels of ADIPOQ and PPAR-γ) and decreased osteogenic
potential (decreased RUNX2 and BGLAP). Furthermore, genomewide RNA sequencing showed a total
number of 19,138 differentially expressed genes, and those upregulated in AA were involved in immune
response (i.e., TNF, toll-like receptor, IL-17), cell division, cell adhesion (i.e., cell adhesion molecules
(CAM), cell cycle, and differentiation. Finally, spliceosome analysis showed different spliceosomes
with regard to histone deacetylase activity, cell growth, and various pathways (i.e., Wnt, mTOR, Hippo,
Notch, and VEGF) in AA–MSCs versus HD–MSCs. Contrarily, single nucleotide polymorphisms and
insertion–deletion were comparable between the two groups [42]. Although not conclusive, this very
comprehensive study provides a basis for further investigations.

Finally, Bueno et al. found no differences between AA–BM–MSCs and those from healthy
controls with regard to their support of hematopoiesis, immunosuppressive and anti-inflammatory
properties [43], in contrast to the abovementioned studies. These discrepancies might be attributed to
the heterogeneity of patients, particularly in old studies that may have also included misrecognized
congenital syndromes such as Fanconi anemia and the Shwachman–Diamond syndrome. In the
latter, MSCs and HSCs carry the same genetic lesion and may be hypothesized to both contribute to
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bone marrow failure. Two recent studies on MSCs demonstrated chromosomal fragility and early
senescence in Fanconi anemia [44,45] and decreased angiogenic ability in the Shwachman–Diamond
syndrome [46]. MSCs’ alterations further induce oxidative stress and DNA damage responses,
promoting leukemogenesis in these diseases [47]. These are interesting models to speculate on
the different contributions of MSC and HSC alterations in niche malfunctioning, leading to bone
marrow failure. It has been speculated that MSC impairment in acquired AA may be predominantly
“quantitative” (i.e., reduced number and function) as compared to the “qualitative” (i.e., genetic
lesions/clonality) impairment observed in Fanconi anemia or SDS, suggesting that the latter may
contribute to the higher leukemic tendency observed in these congenital syndromes [27].

2.2. Therapeutic Employment of MSCs in AA

MSCs may exhibit a therapeutic effect in hematologic diseases through transdifferentiation,
immunomodulatory activity, and autocrine and paracrine effects on HSCs [48,49].

The strongest evidence is in regard to their use in the context of HSCT to facilitate engraftment,
treat graft-versus-host disease (GVHD), and stimulate tissue repair [50]. Recently, De Lima et al. studied
the effect of cotransplantation of allogeneic MSCs and unmanipulated cord blood units containing
cells with hematopoietic activity in 31 adults with hematologic cancers and compared the results with
80 controls receiving cord blood HSCs only. They demonstrated that both neutrophil and platelet
engraftments were more rapid and more likable (88% vs. 53% for neutrophils and 71% vs. 31% for
platelets) in patients receiving MSCs [51]. This is in line with the demonstration of persistent aberrant
MSCs in recipients after HSCT in AA, which are unable to repopulate the niche [52]. Specifically,
to treat AA, both the elimination of auto-reactive T-cells and the regeneration of the progenitors are
required. These goals may be supported by normal MSC infusions, given their immunosuppressive
and regenerative properties. In the next paragraphs, the available studies on the therapeutic role of
healthy MSCs in AA will be discussed (Table 2).

Table 2. Studies on the therapeutic use of mesenchymal stem cells (MSCs) in aplastic anemia (AA),
including clinical trials.

Reference N. of Patients Main Findings

Infusion of MSCs in AA patients

Xiao Y., et al. 2012 18 Sequential infusions of MSCs may improve hematopoiesis in AA. Six
patients responded, 2 reached complete response at 3 months.

Clé D.V., et al. 2015 9
Infusion of allogeneic MSCs in AA is safe but does not improve clinical
hematologic response or engraft in recipient bone marrow. Two patients

responded at 6 months.

Pang Y., et al. 2017 74
In phase II prospective trial, MSC infusions evoked a response in 28.4%

of cases (6.8% complete) in less than one month, with 88% OS at 17
months

Cotransplantation of MSCs and allogeneic hematopoietic stem cells

Xu L-X., et al. 2011 and
2014 5

Haploidentical HSC transplant combined with umbilical cord MSC
infusion allows engraftment with 12.5% incidence of severe GVHD and

25% mortality

Li X-H., et al. 2014 17

Combined transplantation of haploidentical HSCs and MSCs on AA
without an HLA-identical sibling was safe, reduced the incidence of

severe GVHD (23.5%), and lead to good survival (88.2% and 76.5% at 3
and 6 months)

Liu Z., et al. 2017 44

Cotransplantation of MSCs could reduce the risk of graft failure and
severe GvHD in haploidentical setting. Acute GVHD occurred in 1/3 of

cases and chronic one in 14.6%. The 12-month overall survival was
77.3%

Xu L., et al. 2018 24

MSC and haploidentical HSC cotransplantation is effective and safe,
with 50% acute GVHD, not related to gender, age, donor–recipient

relations, and patient/donor pair. Patient/donor pair was significantly
correlated with chronic GVHD. One year mortality was 20.8%
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Table 2. Cont.

Reference N. of Patients Main Findings

Zhao M., et al. 2019 25

Peripheral blood HSCs from unrelated and related donor transplants
and MSC infusions are effective and safe in AA. No severe acute GVHD
and 21.7% chronic GVHD were registered. Overall survival was 84% at
22.9 months (median follow up). The 5-year overall survival rate after

transplantation was 83.6% ± 7.5%

Wang H., et al. 2012 6
Cotransplant of haploidentical HSCs and MSCs in children was

effective and safe with no severe acute GVHD nor chronic GvHD, and
100% survival at 15 months

Wei W., et al. 2017 25

Cotransplant of haploidentical HSCs and bone marrow-derived MSCs
led to engraftment in 100% of cases (median time 12 days, range 11–22
days). Acute GvHD occurred in 64% cases (5 cases grades II–IV), and

one patient died of grade IV skin, gut, and liver GvHD. Five cases
developed chronic GVHD.

Wang Z., et al. 2019 35

Cotransplant of haploidentical HSCs and MSCs led to hematopoietic
reconstitution in 100% of cases (median time 14 days, range 10–22 days).

Grade II/IV acute GvHD occurred in 26% cases and 23% developed
chronic GVHD. The overall survival rate was 85.71%, with a median of

22 months (range 3.5–37 months).

Yue C., et al. 2018 6

HLA-related donor HSCT and MSC infusion led to sustained, full donor
chimerism, with a median time of myeloid/platelet engraftment of

13–15.5 days. One patient died of acute GVHD, and 5 patients were
alive after a median follow-up of 21 months (range 17–40.5).

Hinden L., et al. 2019 26

T-cell and NK-cell increased levels may predict a good response to
HSCT and MSC cotransplantation. A better response was observed

among patients who expressed low levels of IL-6 and IL-22,
Th17-related cytokines, prior to therapy.

Other therapeutic mechanisms for MSCs

Liu L.L., et al. 2018 -
Levamisole displayed a significant suppressive effect on the in-vitro
adipogenic differentiation of bone marrow-derived MSCs from AA

patients

Qu Y., et al. 2018 - Cyclosporin A suppressed adipogenic differentiation of MSCs by
inhibiting interleukin-6 expression in AA

2.2.1. MSC Infusions in AA Patients

Three studies have reported the efficacy and safety of BM-derived MSC infusions in relapsed/

refractory AA patients. Two of the studies included a small number of patients, and concomitant
immunosuppression was allowed; response rates were 20–30%, mainly partial, although with a
favorable safety profile [53,54]. The third study evaluated 74 patients and documented a response
in about 1/3 of them, with excellent overall survival at 17 months. Interestingly, previous use of
ATG and the absence of infections emerged as predictors for response [55]. Altogether, these data
suggest that MSCs could create a more favorable marrow microenvironment, permitting the recovery
of hematopoietic progenitors in AA.

2.2.2. MSC and HSC Cotransplantation in AA Patients

On the whole, we found 11 studies on MSC and HSC cotransplantation in relapsed/refractory
AA, performed in the last 10 years. Five studies evaluated the cotransplantation of haploidentical
BM HSCs and umbilical cord blood/BM-derived MSCs. All studies showed the reconstitution of
platelets and granulocytes within 15 days, an incidence of grade III/IV acute GVHD of 12% to 29%, and
severe chronic GVHD in less than 15% of the cases. Overall survival (OS) ranged from 75% to 84%,
with some studies reaching a 5-year follow up [56–60]. In 2019, Zhao et al. [61] studied the combination
of peripheral blood HSCs from unrelated (15) and related donors (10) and MSC infusion: most patients
were engrafted and OS at 5 years was >80%. Fairly better results were reported in children receiving
haploidentical or matched unrelated donor HSCs (both blood- and marrow-derived) together with
MSCs. Very few grade III–IV GVHDs occurred, and excellent OS was documented [62–64]. Finally,
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Yue C. and colleagues [65] explored cotransplantation as the first-line in 6 patients: all achieved
sustained, full donor chimerism, and only one patient died after a median follow-up of 21 months.

Regarding the risks of using MSCs, all studies showed that they are well-tolerated and safe for
patients. No immediate infusional or late MSC-associated toxicities were observed in clinical trials on
children and adults. The risk of infectious episodes related to MSC-induced immunosuppression is
difficult to dissect in the context of HSCT. Furthermore, the follow-up of the various studies might be
inadequate to evaluate the risk for MSC neoplastic transformation. However, most reports included a
control group, and major infectious events, secondary neoplasms, or malignancy relapses did not seem
to increase after MSC infusions, as also shown in a recent meta-analysis [66]. On the whole, treatment
with MSCs seems promising, but results from clinical studies are still equivocal: about 1

4 of cases
will still suffer from severe acute or chronic GVHD, and more than 1/5 will die before the follow-up.
To predict response, Hinden et al. evaluated sequential blood samples of 26 transplanted patients
treated with MSCs. They found that a higher level of lymphocytes, particularly T- and NK-cells,
may predict a good response to cotransplantation. The response also correlated with low levels of IL-6
and IL-22, Th17-related cytokines, prior to therapy [67].

2.2.3. Other Studies on Therapeutic Use of MSCs in AA

As stated above, AA–MSCs have higher adipogenic potential. Liu et al. showed that levamisole is
able to increase the expression of ZFP36L1, which functions as a negative regulator of MSC adipogenic
differentiation [68]. Similar effects were obtained by using cyclosporin A, whose role on MSCs is so far
unknown. Cyclosporin was able to suppress adipogenic differentiation of murine MSCs, inhibit IL-6
expression, and to promote programmed death-ligand 2 expression [69].

3. The Role of Mesenchymal Stem Cells in Myelodysplastic Syndromes

Myelodysplastic syndromes are a heterogeneous group of clonal disorders affecting HSCs,
characterized by ineffective hematopoiesis with bone marrow dysplasia and various degrees of
peripheral cytopenias [70]. A role for the immune system is reckoned, particularly in patients
with hypocellular bone marrow. In these cases, autoimmune phenomena have been described,
which may worsen the degree of cytopenia (particularly, anemia and thrombocytopenia) and respond
to immunosuppressive therapy (i.e., steroids, cyclosporin) [71,72]. MDSs bear an intrinsic risk of
evolution to acute leukemia, which on the whole, is estimated to be about 30% but differs according to
the International Prognostic Scoring System (IPSS) and the presence of specific somatic mutations [73,74].
MDSs are typically a disease of an aged population, having an approximate incidence of 3–4/100,000/year,
which rises to around 30/100,000/year among patients older than 70 [75]. The diagnosis is based on
the presence of persistent cytopenia (hemoglobin < 100 g/L, absolute neutrophil count < 1.8 ×109/L,
platelet count < 100 × 109/L), > 10% dysplasia in any hematopoietic lineage, and blast excess or
MDS-defining cytogenetic abnormalities (reported in about 50% of patients). The outcome is extremely
variable, with median survival ranging from over 5 years to less than 6 months, according to the
prognostic scores [76]. Current treatment options are different for low- and high-risk MDSs, including
erythropoiesis-stimulating agents, danazol and lenalidomide, for the former [77] and hypomethylating
agents or HSCT for the latter [78]. New drugs aiming at targeting the aberrant HSCs are in development,
mainly for high-risk forms, while in low-risk MDSs, newer approaches target both the regenerative
potential of HSCs (i.e., telomerase inhibitors and TPO agonists) or the microenvironment (i.e., TGF-beta
signaling inhibitors) [79].

3.1. Preclinical Evidence of MSCs’ Role in MDSs

MSCs from MDS patients are functionally altered compared with those from healthy controls
(Table 3). In particular, they show reduced expression of cytokines that physiologically express
immunomodulatory effects and support hematopoiesis [80]. Ineffective hematopoiesis has been related
to MDS–MSC impairment in the production of osteopontin, angiopoietin, Jagged1, and stromal-derived
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factor 1-CXCL-12, all contributing to HSC support in physiological conditions [81–83]. In addition, MSCs
from MDSs display genetic abnormalities that are different from those present in the myelodysplastic
HSCs [84]. Chromosomal analysis of MSCs revealed karyotype abnormalities in a fraction of MDS/AML
patients, but not in healthy controls [85]. These cytogenetic lesions of MSCs are associated with the 5q-
syndrome [86] or with the high-risk karyotype of HSCs. However, their pathogenic relevance is still to
be addressed and related to MDS-specific altered signaling pathways (e.g., methylation, spliceosoma,
proliferation).

Table 3. Pathogenic role of mesenchymal stem cells (MSCs) in myelodysplastic syndromes (MDSs).
MDS–MSCs, MSCs from patients with MDS; BM, bone marrow; AML, acute myeloid leukemia.

Reference N. of Patients Main Findings

MSC alterations in MDSs

Zhao Z.G., et al. 2012 14
BM-derived MDS–MSCs showed reduced hematopoiesis support function

compared to their normal counterparts and impaired capacity to inhibit
T-lymphocyte activation and proliferation in vitro.

Ferrer R.A., et al. 2013 -
Cocultures of MDS–MSCs with CD34+ cells from healthy donors resulted in

reduced numbers of colony-forming units. Lenalidomide exposure of low-risk
MDS–MSCs was able to rescue erythroid and myeloid colony formation.

Geyh S., et al. 2013 106 MDS–MSCs exhibit reduced proliferative capacities and altered expression of key
molecules involved in HSC proliferation.

Abbas S., et al. 2019 6

Compared with healthy controls’ MSCs, MDS–MSCs displayed a shift towards
increased apoptosis, lower expression of VEGF, SCF, and ANGPT, aberrant

expression pattern in the Notch signaling pathway, and increase in Wnt signaling
inhibitors.

Azuma K., et al. 2017 5 MDS–MSCs showed some genetic variants with very low allelic frequency
(7–8%), such as NF1–G2114D and NF1–G140, not shared by dysplastic HSCs.

Blau O., et al. 2011 43
Cytogenetic aberrations in MSCs were detected in 16% of MDS/AML patients

and were different from those observed in the neoplastic HSCs. No chromosomal
abnormalities were identified in MSCs of healthy subjects.

Lopez-Villar O., et al.
2009 36 MDS–MSCs display genomic alterations, some of them associated with the 5q-

syndrome.

MSCs induce clonal hematopoiesis in MDSs

Raaijmakers M., et al.
2010 -

Deletion of Dicer1, specifically in mouse osteoprogenitors, disrupts
hematopoiesis, resulting in MDSs and AML, with neoplastic cells having Dicer1

intact.

Ozdogan H., et al. 2017 10 DICER1 gene expression was lower in MDS–MSCs than healthy controls’ MSCs,
and resulted in suppression of the physiologic osteogenic differentiation.

Kode A., et al. 2014 45
An activating mutation of β-catenin in mouse osteoblasts alters the

differentiation potential of HSCs via the activation of Notch signaling, leading to
the development of AML.

Stoddart A., et al. 2017 -
Loss of 1 copy of Ctnnb1 is sufficient to prevent the development of MDSs in

Apcdel/+ mice; the alteration of WNT signaling in the BM niche is responsible for
the disease.

MSCs facilitate clonal hematopoiesis in MDSs and immune escape

Ping Z., et al. 2019 45 Activation of NF-κB in MDS–MSCs leads to transcriptional overexpression of
inflammatory factors, including negative regulators of hematopoiesis.

Chen S., et al. 2016 12 MSCs from low-risk MDS patients display global activation of inflammatory
patterns, with increased NF-kB, EGF, TGF-β, and TNF signaling.

Medyouf H., et al. 2014 31
Healthy MSCs acquire MDS–MSC molecular features when exposed to

MDS–HSCs and contribute to the propagation of dysplastic HSCs in orthotopic
xenografts through the overproduction of N-cadherin, IGFBP2, VEGFA, and LIF.

Zheng Q., et al. 2018 81

Iron overload damages MDS–MSCs via the enhancement of the
AMPK/MFF/Drp1 pathway, resulting in increased apoptosis, higher ROS levels,

and increased mitochondrial fragmentation compared with MSCs from
noniron-overloaded patients.
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3.1.1. MSCs’ Role in Inducing Clonal Hematopoiesis in MDSs

A first indirect observation of the contribution of MSCs to neoplastic evolution comes from
the intriguing phenomenon of “donor cell-derived hematopoietic neoplasm”, that is the leukemic
transformation of healthy donor HSCs when transplanted in the “sick” BM microenvironment of
the leukemic recipient [87]. Raaijmakers et al. demonstrated that mice with deletion of Dicer1 in
osteoprogenitors, but not in hematopoietic cells, developed MDS or AML, whose neoplastic clone
did not harbor Dicer1 deletion [88]. Moreover, Dicer1 expression has been found to be lower in
MSCs from MDS/AML patients compared to healthy controls, impairing the physiologic osteogenic
differentiation [89]. In more recent years, the WNT/APC/beta-catenin pathway has been found to be
hyperactivated in osteoblasts from MDS/AML patients, and in mouse models, this leads to the leukemic
evolution of HSCs via NOTCH pathway activation [90]. As formal genetic proof, transplantation of
normal HSCs into irradiated Apc-haploinsufficient mice resulted in the development of an MDS-like
phenotype [91]. In addition, exposure to pyrvinium, an antihelmintic drug that is also able to block
WNT signaling, can inhibit MDS development in Apc-deleted mice and patients with 5q- syndrome [92].
Altogether, these experimental models suggest a fundamental role of MDS–MSCs to the emergence of
the neoplastic clone (Table 3).

3.1.2. MSCs’ Role in Facilitating Clonal Hematopoiesis in MDSs

MSCs promote MDS development through the creation of an inflammatory milieu. Hyperactivation of
inflammatory pathways in MSCs, including NF-κB, EGF, TGF-β, and TNF-α, inhibits hematopoiesis in
low-risk MDSs, accounting for the increased apoptotic rate at this stage of the disease [93,94]. Moreover,
an inflamed BM niche may favor the expansion of mutated small clones (e.g., TET2-mutated ones),
such as those accounting for the so-called clonal hematopoiesis of indeterminate potential (CHIP)
that would unlikely autonomously evolve to overt myeloid disease [95]. Additionally, MSCs can
contribute to the immunity imbalance largely described in MDSs [96]. The latter include the impaired
function of NK cells, CD4+ and CD8+ T-cells, and increased activity of Th17. The Treg compartment
is expanded in later stages of MDSs [97], possibly accounting for reduced antileukemic immunity,
and correlates with higher BM blast infiltration, higher IPSS scores, and disease progression [98].
MSCs may further favor immune escape through the secretion of the immunosuppressive enzyme
indoleamine 2,3-dioxygenase (IDO) [99] and via the downregulation of costimulatory molecules
CD40, CD80, and CD86 [100]. In MDSs and AML secondary to Fanconi anemia, MSCs exert an
immunosuppressive action via increased production of prostaglandins, which are able to reduce T-cell
immunity against leukemic cells [101]. More recently, MDS–MSCs were shown to inhibit NK cells,
which are pivotal for cancer immune surveillance [102]. Finally, neoplastic MSCs are able to switch
from MSC Type-1 (proinflammatory) to “tumor-educated” MSC Type-2 cells (anti-inflammatory)
that exhibit stronger immunosuppressive and migratory properties and promote proliferation and
drug resistance [103]. On the other hand, neoplastic HSCs may reprogram the microenvironment to
favor immune escape. As a matter of fact, healthy MSCs adopt MDS–MSC molecular features when
exposed to MDS–HSCs [104]. In addition, some oncogenic mutations commonly seen in the neoplastic
HSCs are able to induce a proinflammatory microenvironment, as demonstrated for TET2-mutant
HSCs [105]. Finally, also aging and toxic insults have been shown to damage MSCs and promote MDS
development. When transplanted in an aged microenvironment, HSCs show monoclonality more
frequently than those exposed to a young niche [106]. During aging, MSCs display less regenerative
ability and a global “senescent” behavior characterized by the secretion of inflammatory cytokines [107].
More recently, the toxicity of iron overload, known to negatively impact on normal hematopoiesis,
has been demonstrated to favor mitochondrial fragmentation in MSCs from MDS patients, impairing
their functionality [108]. Taken together, these studies highlight that the BM niche has a facilitating
rather than initiating effect on neoplastic HSCs (Table 3).
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3.2. Therapeutic Strategies in MDSs Involving MSCs

There is growing interest in targeting the BM niche, besides the dysplastic HSCs (Table 4).
In myeloid malignancies, many attempts are ongoing to inhibit the adhesion of leukemic cells to
the stroma by targeting the CXCR4–CXCL12 axis, VLA-4, E-selectin, CD44, and focal adhesion
kinase [109–113]. In particular, CXCL12, pivotal in enhancing the homing of CXCR4-expressing HSCs
into BM, is produced at higher levels in MDS–MSCs [114], possibly accounting for BM hypercellularity.
CXCL12/CXCR4 axis inhibition may be, therefore, of therapeutic relevance in this disease. Another
important molecule is CD47, a transmembrane protein belonging to the immunoglobulin superfamily
that is involved in a range of processes (apoptosis, proliferation, adhesion, migration, immune
response, and angiogenesis). CD47 is ubiquitously expressed in human cells and has been found
to be overexpressed in different tumors, where it acts as a “do not eat me” signal, preventing
neoplastic cell phagocytosis by macrophages [115]. CD47 is also overexpressed in high-risk MDSs [116],
and may thus be a future therapeutic target. On the other hand, preclinical studies demonstrate
that most drugs used in MDSs exert an effect on MSCs and on the inflammatory niche. Besides
its immunomodulatory effects [96], lenalidomide can regulate chemokines’ and surface molecules’
expression in MSCs, inhibiting HSC migration [117]. Sotatercept, an activin receptor type II ligand
trap, modulates the secretion of stromal factors, which inhibit hematopoiesis [118]. Hypometilating
agents have shown to regulate adaptive immunity and cytokine secretome in MDSs, both in vivo
and in vitro. Azacytidine (AZA) reduces IL-6 production in MDS–MSCs, thus contributing to the
recovery of normal hematopoiesis [119] and also through the regulation of extracellular matrix [120].
In addition, the demethylating activity of AZA is also extended to MSCs: AZA treatment induces
demethylation and thus increases the expression of SPINT2/HAI-2, which is methylated and silenced
in MDSss and AML [121]. Decitabine influences MSC phenotypes, which become able to induce Treg
differentiation [122]. On the other hand, other MDS-directed therapies exert a detrimental effect on
the BM niche, possibly explaining their adverse effects. For example, the kinase inhibitor rigosertib,
investigated in MDSs and in solid tumors, inhibits MSCs and other stromal components of BM,
explaining the lack of hematological improvement beyond its antileukemic action [123].

Table 4. Mesenchymal stem cells (MSCs) as a therapeutic target in myelodysplastic syndromes (MDSs).

Reference N. of
Patients Main Findings

Carter B.Z., et al.
2017 133

Inhibition of focal adhesion kinase decreases MSC-mediated
adhesion/migration and viability of MDS/AML cells and prolongs

survival in a xenograft murine model.

Wobus M., et al. 2012 - Lenalidomide modulates expression of cell surface molecules and
chemokine secretion of MSCs in vitro, reducing the migration of HSCs.

Iancu-Rubin C., et al.
2013 -

MSCs treated with sotatercept changed their molecular and secretory
profile, increasing the expression and secretion of

erythropoiesis-stimulating factors in vitro.

Boada M., et al. 2020 35 In vitro treatment with AZA leads to a significant reduction in IL-6
production by the MDS–MSCs.

Wenk C., et al. 2018 -
AZA regulates the expression of extracellular matrix molecules and

interferon pathway components, exerting a direct effect on MDS–MSCs
and favoring healthy over malignant HSC expansion in vitro.

Roversi F.M., et al.
2019 10 AZA upregulates SPINT2/HAI-2 expression, which is downregulated in

MDSs due to methylation in AML/MDS–MSCs in an in-vitro study.

Pang Y., et al. 2019 28
Treatment with decitabine increases the number of MSCs in G2/M phase
and powers the ability of MDS–MSCs to induce the differentiation of

T-cells into regulatory T-cells in vitro.

Balaian E., et al. 2019 -

Rigosertib exerts inhibitory effects on the stromal components of the
osteohematopoietic niche, including MSCs, in a murine model. This
may explain the dissociation between antileukemic activity and the

absence of hematological improvement.
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4. Conclusions

All the data presented show that MSCs are involved in AA and MDS pathogenesis, either
favoring the immune imbalance typical of the diseases, promoting ineffective myelopoiesis, and/or
facilitating clonal evolution and leukemogenesis. These actions take place at different levels during
the various disease phases: MSCs fail to support hematopoiesis and enhance apoptosis in AA
and low-risk/early-stage MDSs, whilst they may boost immune escape of the leukemic clone in
high-risk/late-stage of the disease. The impairment of MSCs and, more broadly, of the entire
microenvironment is reflected by morphologic, functional, and genetic alterations, as well as by the
defects in MSCs’ secretome. In the last decades, omics studies have shown that AA is not only
a disease of the immune system and that the HSCs may accumulate genetic lesions and become
dysplastic. Conversely, MDSs emerged to be more than a stem cell disease, where (epi)genetic hits
lead to disease initiation and progression. The recent insights about MSCs’ role further stress the
importance of considering AA/MDS pathogenesis as a multistep complex process, where the niche
and the stem cell become evil partners, establishing a proinflammatory mutagenic circle (Figure 1).
As a clinical counterpart, the therapies used against the hematopoietic stem cell clones have limited
efficacy in MDSs, slowing leukemic evolution rather than eradicating the disease. A deeper knowledge
of the microenvironment may, therefore, contribute to therapeutic progress. As a matter of fact,
the aplastic/dysplastic niche is highly dynamic, as paradigmatically shown by the shift from type
I (proinflammatory) to type II (tumor-educated) MSCs, providing the rationale for the reeducation
of MSCs through therapeutic targeting. The latter may be, in fact, only partly restored by healthy
donor HSC transplantation, and seems to highly benefit from allogeneic MSC coinfusion. Donor MSCs
may, in fact, participate in BM repopulation and, at the same time, exert a deep and long-lasting
immunomodulatory effect. Whether the disease resides in the immune microenvironment or in the
HSCs, or both, will need further fascinating research and scientific debate.
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