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Abstract: Long non-coding RNAs (lncRNAs) play crucial roles in diverse biological processes and
human complex diseases. Distinguishing lncRNAs from protein-coding transcripts is a fundamental
step for analyzing the lncRNA functional mechanism. However, the experimental identification
of lncRNAs is expensive and time-consuming. In this study, we presented an alignment-free
multimodal deep learning framework (namely lncRNA_Mdeep) to distinguish lncRNAs from
protein-coding transcripts. LncRNA_Mdeep incorporated three different input modalities, then a
multimodal deep learning framework was built for learning the high-level abstract representations
and predicting the probability whether a transcript was lncRNA or not. LncRNA_Mdeep achieved
98.73% prediction accuracy in a 10-fold cross-validation test on humans. Compared with other
eight state-of-the-art methods, lncRNA_Mdeep showed 93.12% prediction accuracy independent
test on humans, which was 0.94%~15.41% higher than that of other eight methods. In addition,
the results on 11 cross-species datasets showed that lncRNA_Mdeep was a powerful predictor for
predicting lncRNAs.
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1. Introduction

Long non-coding RNA (lncRNAs) are defined as non-protein-coding transcripts with a length
of more than 200 nucleotides. Several studies reveal that more than 70% of the human genome is
capable of being transcribed, whereas less than 2% of the genome can be translated into proteins [1].
LncRNAs make up the largest portion of the non-protein-coding transcripts [2–4] and show critical
roles in cellular function, development, and diseases [5–7].

LncRNA identification is the fundamental step of lncRNA-related researches, which has drawn
a lot of attention in recent years. Several computational methods are developed for distinguishing
lncRNAs from protein-coding transcripts. Existing computation methods can be mainly categorized
into alignment-based methods [8–13] and alignment-free methods [14–21]. The alignment-based
methods generally align the transcripts against a comprehensive reference protein database for
predicting lncRNAs; for example, CPC (Coding Potential Calculator) [8] aligns transcripts against
UniRef90 dataset [22] using BLSATX [23] tool; lncRNA-ID [11] and lncADeep [13] align the transcripts
against Pfam dataset [24] using HMMER [25] tool. This kind of method heavily relies on the
quality of alignments, which will be influenced by the performance of multiple-sequence alignment
tools and the quality of reference databases. Furthermore, the alignment process is extremely
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time-consuming [15,21]. To avoid the drawback caused by alignment, the alignment-free methods are
developed to distinguish lncRNAs from protein-coding transcripts. Without considering conservation
features, CNCI (Coding-Non-Coding Index) [14] extracts five features (i.e., the length and S-score of
most-like coding domain sequence, length-percentage, score-distance, and codon-bias) by profiling
adjoining nucleotide triplets to represent the transcript sequences. CPAT (Coding-potential Assessment
Tool) [15] calculates open reading frame size, open reading frame coverage, Fickett TESTCODE score,
and hexamer score. PLEK (Predictor of LncRNA and mEssenger RNAs based on an improved k-mer
scheme) [16] proposes an improved k-mer feature. These methods adopt different machine learning
algorithms to build the classifiers for predicting lncRNAs. For example, CNCI and PLEK use a support
vector machine (SVM), and CPAT uses logistic regression. Except for these conventional machine
learning algorithms, deep learning, a branch of machine learning, has been applied for lncRNA
identification. For example, lncRNA-MFDL (identification of lncRNA by fusing Multiple Features and
using Deep Learning) [17] predicts lncRNAs by fusing multiple features and a deep stacking network,
and Tripathi et al. [18] proposed the DeepLNC method to predict lncRNAs by k-mer features and a deep
neural network classifier. Although these two methods based on deep learning algorithms achieve
a better performance than previous conventional machine learning algorithms to predict lncRNAs,
they still depend on manually crafted features and fail to learn intrinsic features automatically from
raw transcript sequences. Recently, a deep learning-based method, lncRNAnet [20], has been proposed
to predict lncRNAs. LncRNAnet builds a convolutional neural network (CNN) for detecting the open
reading frame (ORF) indicator and a recurrent neural network (RNN) for modeling RNA sequence to
predict lncRNAs, not taking into consideration at all the manually crafted features.

In this study, we proposed an alignment-free method, lncRNA_Mdeep, to distinguish lncRNAs
from protein-coding transcripts by using multimodal deep learning. The novelties of lncRNA_Mdeep
mainly included: (1) LncRNA_Mdeep successfully integrated manually crafted features and raw
transcript sequences; (2) LncRNA_Mdeep effectively extracted high-level abstract representations
from multiple deep learning models based on different raw input features; (3) LncRNA_Mdeep
successfully distinguished lncRNAs from protein-coding transcripts in not only human dataset but
also multiple cross-species datasets. To validate our lncRNA_Mdeep, we tested it on a human dataset
containing 46,000 transcripts in 10-fold cross-validation (10CV) test and compared it with the other
seven model architectures. Furthermore, we compared lncRNA_Mdeep with other eight state-of-the-art
methods on the human and 11 cross-species datasets in an independent test. The results showed that
lncRNA_Mdeep could effectively distinguish lncRNAs from protein-coding transcripts.

2. Results

We developed an alignment-free multimodal deep learning framework (namely lncRNA_Mdeep)
to distinguish lncRNAs from protein-coding transcripts (Figure 1, Materials and Methods).
LncRNA_Mdeep first extracted the OFH (the length and coverage of ORF, Fickett score, and Hexamer
score) feature and k-mer feature from transcript sequences and used a one-hot encoding strategy to
encode the transcript sequences, then two deep neural network (DNN) models and a CNN model were
built to mine the high-level representations. Finally, the learned representations were fused, and a
multimodal deep learning framework was built to distinguish lncRNAs from protein-coding transcripts.

To evaluate the performance of lncRNA_Mdeep, we first investigated the performance of
lncRNA_Mdeep with different model architectures on a human dataset in 10CV test and showed
the effect of different hyper-parameters in DNNs and CNN, then compared lncRNA_Mdeep with
eight existing state-of-the-art methods (i.e., CNCI [14], CPAT [15], PLEK [16], lncRNA-MEDL [17],
CPC2 [19], lncRNAnet [20], LncFinder1, and LncFinder2 [21]) on human and 11 cross-species
datasets in an independent test. LncFinder1 means the LncFinder without the secondary structure,
and LncFinder2 means LncFinder with the secondary structure. The overall performance was measured
by accuracy (ACC), sensitivity (Sn), specificity (Sp), and Matthew’s correlation coefficient (MCC).
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LncRNA_Mdeep was implemented in Python 3 using Keras 2.2.4 [26] with the backend of
Tensorflow-gpu (1.9.0) [27]. All the experiments were implemented on an Ubuntu system with an
NVIDIA TITAN V GV100.
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2.1. Performance of lncRNA_Mdeep

2.1.1. Performance of Different Model Architectures

We separately implemented the DNN model with the OFH feature as input (namely OFH_DNN),
DNN model with the k-mer feature as input (namely k-mer_DNN), CNN model with one-hot
encoding as input (namely One-hot_CNN), the combinations of these models (i.e., OFH_DNN +

k-mer_DNN, k-mer_DNN + One-hot_CNN, and OFH_DNN + One-hot_CNN), and the decision fusion
of three models in 10CV test. The results are shown in Table 1, from which we could see that the
accuracy, Sn, Sp, and MCC of lncRNA_Mdeep were 98.73%, 98.95%, 98.52%, and 0.9748, respectively.
By comparing the performance of OFH_DNN, k-mer_DNN, One-hot_CNN, and lncRNA_Mdeep,
we found that the accuracy of lncRNA_Mdeep was over 2.20% higher than that of OFH_DNN,
k-mer_DNN, and One-hot_CNN. The MCC of lncRNA_Mdeep was over 0.0441 higher than that of
OFH_DNN, k-mer_DNN, and One-hot_CNN. The Sn of lncRNA_Mdeep was over 1.94% higher than
that of OFH_DNN, k-mer_DNN, and One-hot_CNN. The Sp of lncRNA_Mdeep was over 1.48% higher
than that of OFH_DNN, k-mer_DNN, and One-hot_CNN. These results showed that lncRNA_Mdeep
through incorporating three different input modalities achieved better performance than individual
models. In addition, k-mer_DNN showed the best performance among three individual models
(i.e., OFH_DNN, k-mer_DNN, and One-hot_CNN).

By comparing the performance of the different combinations of three individual models and
lncRNA_Mdeep, we found that the accuracy of lncRNA_Mdeep was 2.76%, 0.37%, and 1.13%
higher than that of OFH_DNN + k-mer_DNN, k-mer_DNN + One-hot_CNN, and OFH_DNN +

One-hot_CNN, respectively. The MCC of lncRNA_Mdeep was 0.0537, 0.0074, and 0.0222 higher than
that of OFH_DNN + k-mer_DNN, k-mer_DNN + One-hot_CNN, and OFH_DNN + One-hot_CNN,
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respectively. These results showed that lncRNA_Mdeep through fusing three models achieved better
performance than that of fusing any two models.

Furthermore, we also compared lncRNA_Mdeep with a decision fusion strategy of voting.
As shown in Table 1, the performance of lncRNA_Mdeep was 0.31% and 0.0059 higher than that of
the voting fusion strategy in terms of accuracy and MCC. To evaluate whether the improvements of
lncRNA_Mdeep and other model architectures were significant or not, we calculated the p-values
between the predicted results of lncRNA_Mdeep and other model architectures using the McNemar’s
test [28]. The p-values are shown in Supplementary Table S1. All those results showed that
lncRNA_Mdeep was a superior deep learning framework, and it could effectively distinguish lncRNAs
from protein-coding transcripts.

Table 1. Performance of lncRNA_Mdeep and other model architectures in the 10CV test.

ACC (%) Sn (%) Sp (%) MCC

OFH_DNN 95.74 ± 1.70 94.44 ± 4.89 97.04 ± 2.15 0.9171 ± 0.0307
k-mer_DNN 96.53 ± 0.41 96.40 ± 1.11 96.66 ± 0.78 0.9307 ± 0.0082

One-hot_CNN 95.82 ± 0.33 97.01 ± 0.96 94.63 ± 1.19 0.9169 ± 0.0064
OFH_DNN + k-mer_DNN 95.97 ± 2.49 96.87 ± 1.05 95.06 ± 5.71 0.9211 ± 0.0449

k-mer_DNN + One-hot_CNN 98.36 ± 0.16 98.70 ± 0.42 98.03 ± 0.50 0.9674 ± 0.0033
OFH_DNN + One-hot_CNN 97.60 ± 1.26 97.78 ± 1.58 97.43 ± 2.33 0.9526 ± 0.0248

Decision fusion 98.42 ± 1.12 99.24 ± 0.45 97.60 ± 2.59 0.9689 ± 0.0212
lncRNA_Mdeep 98.73 ± 0.41 98.95 ± 0.54 98.52 ± 0.92 0.9748 ± 0.0080

OFH_DNN, the DNN model with the OFH feature as input. k-mer_DNN: the DNN model with the k-mer feature as
input. One-hot_CNN: the CNN model with one-hot encoding as input. ACC, accuracy. Sn, sensitivity. Sp, specificity.
MCC, Matthew’s correlation coefficient.

2.1.2. Effects of Different Hyper-Parameters

We evaluated the effects of two parameters of k in k-mer feature and maxlen for padding one-hot
encoding. The accuracies of k-mer_DNN and One-hot_CNN in the 10CV test at different k and maxlen
are shown in Figure 2. As shown in Figure 2A, we found that k-mer_DNN achieved the highest
accuracy when k = 6. Results in Figure 2B shows that One-hot_CNN achieved the highest accuracy
when maxlen = 3000. Therefore, we set k = 6, when we extracted the k-mer feature, and fixed the
one-hot encoding of a transcript as a 4 × 3000 matrix. The results (Supplementary Table S2) of the
McNemar’s test for the comparison of different k and maxlen values showed that the performances of
k-mer_DNN and One-hot_CNN with selected best k and maxlen were significantly different from other
candidate parameter values. All other hyper-parameters in lncRNA_Mdeep were selected by using a
hyperopt [29] strategy, and all parameters were optimized in a searching range, and the best value
was selected. All the searching range and best value of hyperparameters are shown in Supplementary
Table S3 and Supplementary Figure S1.
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2.2. Comparison with Other Existing Methods

We compared lncRNA_Mdeep with the other eight existing alignment-free methods (i.e., CNCI,
CPAT, PLEK, lncRNA-MEDL, CPC2, lncRNAnet, LncFinder1, and LncFinder2) on human datasets and
cross-species datasets in an independent test. LncRNA_Mdeep was trained on the human dataset,
and since most existing methods do not provide the retraining option, we used their pre-trained models.

2.2.1. Comparison Performance on Human Dataset

We first compared the performance of lncRNA_Mdeep and the other eight existing methods on the
human testing dataset. The results are shown in Table 2, from which we could see that lncRNA_Mdeep
achieved an accuracy of 93.12%, which was 6.72%, 5.14%, 15.41%, 7.65%, 15.14%, 0.94%, 6.90%,
and 6.24% higher than that of CNCI, CPAT, PLEK, lncRNA-MEDL, CPC2, lncRNAnet, LncFinder1,
and LncFinder2, respectively. MCC and Sp of lncRNA_Mdeep were 0.8653 and 88.97%, which were at
least 0.0183 and 1.24% higher than that of eight methods. Although CNCI achieved 97.42% sensitivity,
which was 0.15% higher than that of lncRNA_Mdeep, it showed lower performance in terms of accuracy,
Sp, and MCC. All the improvements of lncRNA_Mdeep were tested by McNemar’s test, and the results
showed they were significant. The p-values of McNemar’s test are listed in Supplementary Table S4.

Table 2. Performance of lncRNA_Mdeep and other eight methods on humans in an independent test.

Methods ACC (%) Sn (%) Sp (%) MCC

CNCI 86.40 97.42 75.38 0.7463
CPAT 87.98 95.22 80.73 0.7676
PLEK 77.71 97.22 58.20 0.6019

lncRNA-MFDL 85.47 93.43 77.50 0.7185
CPC2 77.98 94.07 61.90 0.5911

lncRNAnet 92.18 96.63 87.73 0.8470
lncFinder1 86.22 95.20 77.23 0.7363
lncFinder2 86.88 95.98 77.77 0.7501

lncRNA_Mdeep 93.12 97.27 88.97 0.8653

CNCI, coding-non-coding index [14]. CPAT, coding-potential assessment tool [15]. PLEK, predictor of lncRNA and
messenger RNAs based on an improved k-mer scheme [16]. lncRNA-MFDL, identification of lncRNA by fusing
multiple features and using deep learning [17]. CPC2, coding potential calculator 2 [19]. lncRNAnet, lncRNA
identification using deep learning [20]. LncFinder1: the LncFinder without the secondary structure; LncFinder2:
the LncFinder with the secondary structure [21]. lncRNA_Mdeep, our method.

2.2.2. Comparison Performance on Cross-Species Datasets

We also compared the performance of lncRNA_Mdeep and other eight existing methods by
using 11 cross-species datasets as the independent testing datasets. The results are shown in Table 3.
On mouse testing dataset, lncRNA_Mdeep achieved 92.52% accuracy, which was 5.43%, 2.05%, 20.63%,
3.99%, 12.09%, 0.71%, 4.05%, and 3.53% higher than that of CNCI, CPAT, PLEK, lncRNA-MEDL, CPC2,
lncRNAnet, LncFinder1, and LncFinder2, respectively. On other 10 cross-species testing datasets,
the accuracies of lncRNA_Mdeep for Arabidopsis, Bos taurus, Caenorhabditis elegans, chicken, chimpanzee,
frog, fruit fly, gorilla, pig, and zebrafish were 95.73%, 97.33%, 98.87%, 96.06%, 96.76%, 96.80%, 96.10%,
96.65%, 96.87%, and 96.76%, respectively. LncRNA_Mdeep showed the best performance on 5 out of
11 cross-species testing datasets, lncRNA-MDFL showed the best performance on three cross-species
testing datasets, lncFinder2 showed the best performance on two cross-species testing datasets,
and CPAT showed the best performance on one cross-species testing datasets. The results on the
11 testing datasets showed that lncRNA_Mdeep had the superior performance for distinguishing
lncRNAs from protein-coding transcripts.
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Table 3. Accuracy (%) of lncRNA_Mdeep and other eight methods on 11 cross-species datasets.

Species CNCI CPAT PLEK lncRNA-MFDL CPC2 lncRNAnet lncFinder1 lncFinder2 lncRNA_Mdeep

Mouse 87.09 90.47 71.89 88.53 80.43 91.81 88.47 88.99 92.52
Arabidopsis 79.86 91.39 66.93 97.30 93.36 94.60 92.45 93.77 95.73
Bos taurus 92.88 97.13 89.32 95.51 96.10 96.30 97.00 97.03 97.33
C. elegans 77.72 91.48 45.37 97.97 94.75 97.95 87.46 88.55 98.87
Chicken 91.52 97.04 83.95 96.87 95.22 95.56 96.82 96.64 96.06

Chimpanzee 89.84 96.18 88.99 94.26 95.48 94.78 96.05 96.21 96.76
Frog 90.60 96.40 80.90 96.14 96.34 95.53 96.92 97.26 96.80

Fruit fly 92.90 96.02 74.43 96.49 94.28 95.21 95.33 95.50 96.10
Gorilla 89.37 94.99 86.75 95.12 94.12 94.31 94.72 94.87 95.65

Pig 91.73 96.91 87.34 96.98 95.86 95.56 96.88 96.82 96.87
Zebrafish 93.59 97.50 85.07 92.17 96.83 95.77 97.54 97.78 96.76

3. Discussion

LncRNA identification is essential for understanding the function and regulatory mechanism
of lncRNA. In recent years, several computational methods are developed for distinguishing lncRNAs
from protein-coding transcripts. Most of the existing methods have focused on manually extracting
features and directly feeding into a classifier (e.g., support vector machine, logistic regression,
and random forest) to predict lncRNAs. These predictors depend on the effectiveness of manually
crafted features and fail to automatically learn intrinsic representations from raw transcript sequences.
To address this issue, lncRNA_Mdeep is proposed to identify lncRNAs by multimodal deep learning.
LncRNA_Mdeep can successfully integrate the manually crafted features and the raw transcript
sequences. It also successfully learns high-level abstract representations based on different raw input
features and integrates learned high-level abstract representations by a multimodal deep learning
model to predict lncRNAs.

Our experience results showed that lncRNA_Mdeep was a superior predictor for distinguishing
lncRNAs from protein-coding transcripts. We compared lncRNA_Mdeep with other different model
architectures on the human dataset in the 10CV test and compared lncRNA_Mdeep with existing eight
state-of-the-art methods on humans and 11 cross-species datasets in an independent test. The results in
Tables 1–3 showed that lncRNA_Mdeep was a superior multimodal framework, and it achieved a better
performance than other methods on human and 11 cross-species datasets. Furthermore, considering
the possible false annotation for manually annotated GENCODE lncRNA transcripts without 5′ cap
and 3′ polyA signals, we re-filtered the lncRNA transcripts downloaded from GENOCDE and collected
a more high-quality dataset. Our lncRNA_Mdeep still showed a good performance on the high-quality
dataset, and that was better than other model architectures on the high-quality dataset (Supplementary
Table S5).

Although lncRNA_Mdeep showed a superior performance to identify lncRNAs, there were still
several issues that need to be addressed in the future. First, lncRNA_Mdeep used a one-hot encoding
strategy to encode the raw transcript sequence and set up a parameter of maxlen to meet the input
requirement of the CNN model, but we expected a more effective encoding strategy to encode the
transcript sequences with variable-length. Second, the deep learning model was like a black box,
which could interpret the meaning of learned high-level abstract representations, but we expected
a good way to analyze the learned high-level abstract representations. Third, we expected a more
reliable annotation pipeline for lncRNA transcripts without a 5′ cap and 3′ polyA signals to train a
computational model to distinguish lncRNA transcripts from protein-coding transcripts.

4. Material and Methods

4.1. Dataset

Human lncRNA and protein-coding transcripts were downloaded from GENCODE release 30 [30].
After removing the transcripts whose length was less than 200 nt, we obtained 29,698 lncRNAs and
75,153 protein-coding transcripts, from which we randomly selected 23,000 lncRNAs and 23,000
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protein-coding transcripts to construct the training dataset. In the remaining transcripts, we randomly
selected 6000 lncRNAs and 6000 protein-coding transcripts to construct the testing dataset.

We also built other 11 cross-species testing datasets, in which mouse lncRNAs and protein-coding
transcripts were downloaded from GENCODE release M20 [30], and other 10 cross-species
(e.g., Arabidopsis, chicken, Bos taurus, C. elegans, chimpanzee, frog, fruit fly, gorilla, pig, and zebrafish)
testing datasets were downloaded from RefSeq v. 94 [31]. The statistics of all datasets are listed in
Supplementary Table S6.

4.2. LncRNA_Mdeep

LncRNA_Mdeep mainly consisted of the following phases: (1) Extracted the OFH feature and k-mer
feature from transcript sequences and used one-hot encoding strategy to encode the transcript sequences;
(2) Built two DNN models and a CNN model to mine the high-level representations from OFH feature,
k-mer feature, and one-hot encoding of transcript sequences, respectively; (3) Fused the learned
representations (namely, OFH_DNN descriptor, k-mer_DNN descriptor, and One-hot_CNN descriptor)
to represent the transcript sequences; (4) Fed three descriptors into a DNN to distinguish lncRNAs
from protein-coding transcripts. The overview of lncRNA_Mdeep is illustrated in Figure 1.

4.2.1. Feature Extraction and One-Hot Encoding

Given a transcript sequence T = N1N2N3N4 · · ·NL with L nucleotides, where N1 denotes the
first nucleotide, N2 denotes the second nucleotide, and so on, we extracted two kinds of features from
the transcript sequences to convert them into vectors.

The first one was the OFH feature, which consisted of the length and coverage of the open reading
frame (ORF), a Fickett score, and a Hexamer score. We first calculated the length and the coverage
of ORF, which was identified as the longest reading frame in three forward frames starting with a
start codon and ending with a stop codon, then obtained the Fickett score SF from the literature [32].
Fickett score SF could be attained by calculating the percentage compositions of A, C, G, T and their

position values (i.e., Apos, Cpos, Gpos, and Tpos) with the formula Bpos =
MAX(B1,B2,B3)

MIN(B1,B2,B3)+1 , where B1, B2, B3

denote the occurrence number of nucleotide B (i.e., A, C, G, and T) in first, second, and third position
of the codon, respectively, and transforming these eight values to a TESTCODE score. The Hexamer

score SH was calculated by using the formula SH = 1
m

m∑
i=1

log
(

Fc(hi)
Fnc(hi)

)
, m = L− 6 + 1, where Fc(hi) and

Fnc(hi) (i = 1, 2, . . . , 4096) represent in-frame coding and non-coding hexamer frequency, respectively.
Finally, the OFH feature could be represented as XOFH =

[
lORF, lORF

L , SF, SH
]
, where lORF denotes the

length of ORF, SF denotes the Fickett score, and SH denotes the Hexamer score.
The second feature was the k-mer frequency feature denoted as Xkmer =

[
f1, f2, · · · , fi, · · · , f4k

]
,

where fi is the occurrence frequency of k neighboring bases in the transcript sequence.
One-hot encoding translated the A, T, C, G characters into a binary vector of (1,0,0,0), (0,1,0,0),

(0,0,1,0) and (0,0,0,1), respectively. Therefore, the transcript with length L was denoted as a 4 × L matrix,
i.e., XOnehot = [x1, · · · , xi, · · · , xL], where xi is the corresponding binary vector of ith nucleotide in
the transcript.

4.2.2. High-Level Abstract Representations

Two DNN models and a CNN model were built to learn the hidden high-level abstract
representations from different input modalities. DNN model consisted of an input layer, multiple
hidden layers, and an output layer, which is used to model high-level abstractions in input data with a
deep architecture composed of multiple non-linear transformations [33,34]. We built two DNN models
for inputs of the OFH feature and k-mer feature, respectively. Then, the OFH_DNN descriptor and
k-mer_DNN descriptor were obtained from the last hidden layers of two DNNs, which denoted the
final representations of OFH feature and k-mer feature, respectively.
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Furthermore, a CNN model was built to learn the hidden high-level abstract representations
from the one-hot encoding of transcript sequences. CNN model consisted of the convolution layer,
batch normalization, rectified linear unit, and pooling [35].

R = Pool
(
ReLU

(
BatchΓ,β(convM(X))

))
(1)

where R is the output vector of the convolutional module; X is the input vector; Γ, β and M are
the parameters of batch normalization and convolution layers. Since the input of CNN required
fixed-length input, we set a parameter of maxlen to make the one-hot encoding of transcript sequence
XOnehot to be a 4 × maxlen matrix.

XOnehot =

{
[x1, x2, · · · , xmaxlen], L ≥ maxlen

[x1, · · · , xmaxlen, 0, · · · , 0], L < maxlen
(2)

The output of CNN was defined as the one-hot_CNN descriptor, which denoted the high-level
abstract representations of raw transcript sequences.

4.2.3. Multimodal Framework

To distinguish the lncRNAs from protein-coding transcripts, we concatenated the OFH_DNN
descriptor, k-mer_DNN descriptor, and one-hot_CNN descriptor, then fed them into a DNN to
predict the probability of the input transcript sequence to be a lncRNA. There were two steps to
train our lncRNA_Mdeep. The first step was training a DNN for the OFH feature, a DNN for
k-mer feature, and a CNN for one-hot encoding, respectively. The parameters in two DNNs and CNN
architectures were trained using the labeled data. The second step was learning the parameters of the
DNN for final classification and processing a fine-tuning for renewing all parameters in the whole
multimodal framework.

4.3. Evaluation Metrics

The following metrics of accuracy (ACC), sensitivity (Sn), specificity (Sp), and Matthew’s correlation
coefficient (MCC) were used to measure the performance of lncRNA_Mdeep.

ACC = (TP + TN)/(TP + FP + TN + FN) (3)

Sn = TP/(TP + FN) (4)

Sp = TN/(TN + FP) (5)

MCC = (TP× TN − FP× FN)/
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN) (6)

where TP and TN are the number of correctly predicted lncRNAs and protein-coding transcripts,
respectively; FP and FN are the number of incorrectly predicted lncRNAs and protein-coding
transcripts, respectively.

5. Conclusions

In this study, we proposed a novel multimodal deep learning method (namely lncRNA_Mdeep)
to distinguish lncRNAs from protein-coding transcripts. LncRNA_Mdeep first built three individual
deep model architectures to learn the hidden high-level abstract representations from three input
modalities (i.e., OFH modality, k-mer modality, and sequence modality), and high-level representations
were fused to feed into another deep model architecture for predicting lncRNAs. The experimental
results showed that lncRNA_Mdeep successfully integrated the manually crafted features (i.e.,
OFH and k-mer features) and the raw transcript sequences by using the multimodal framework,
and it achieved higher performance than other state-of-the-art methods on human and other 11
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cross-species datasets. These results indicated that lncRNA_Mdeep could contribute to the identification
of novel lncRNA transcripts.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/15/
5222/s1, Figure S1: The hyper-parameters in lncRNA_Mdeep; Table S1. The p-value of lncRNA_Mdeep and other
model architectures in McNemar’s test; Table S2: The p-values of predicted results on different k and maxlen in
McNemar’s test; Table S3: The searching range and best value for each hyperparameter; Table S4: The p-value of
lncRNA_Mdeep and other tools on human and 5 cross-species datasets in McNemar’s test; Table S5: Performance
of lncRNA_Mdeep and other model architectures on the high-quality dataset * in 10CV test; Table S6: The statistics
of all datasets.

Author Contributions: Conceptualization, X.-N.F. and S.-W.Z.; Data curation, X.-N.F. and S.-Y.Z.; Formal analysis,
X.-N.F., S.-Y.Z. and J.-J.N.; Funding acquisition, S.-W.Z.; Investigation, X.-N.F. and J.-J.N.; Methodology, X.-N.F.
and S.-W.Z.; Project administration, S.-W.Z.; Software, X.-N.F.; Supervision, S.-W.Z.; Validation, X.-N.F., S.-Y.Z.
and J.-J.N.; Visualization, X.-N.F.; Writing—original draft, X.-N.F. and S.-Y.Z.; Writing—review and editing, X.-N.F.
and S.-W.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 61873202,
61473232, and 91430111.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

lncRNA Long non-coding RNA
SVM Support vector machine
CNN Convolutional neural network
RNN Recurrent neural network
DNN Deep neural network
ORF Open reading frame
ACC Accuracy
Sn Sensitivity
Sp Specificity
MCC Matthew’s correlation coefficient

References

1. Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.;
Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [CrossRef]
[PubMed]

2. Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.;
Hackermuller, J.; Hofacker, I.L.; et al. RNA maps reveal new RNA classes and a possible function for
pervasive transcription. Science 2007, 316, 1484–1488. [CrossRef] [PubMed]

3. Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct Mol. Biol. 2015, 22,
5–7. [CrossRef] [PubMed]

4. Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.;
Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene
structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [CrossRef]

5. Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166.
[CrossRef]

6. Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and Functions of Long Noncoding RNAs. Cell 2009, 136,
629–641. [CrossRef]

7. Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol 2011, 21, 354–361.
[CrossRef]

8. Kong, L.; Zhang, Y.; Ye, Z.Q.; Liu, X.Q.; Zhao, S.Q.; Wei, L.; Gao, G. CPC: Assess the protein-coding potential
of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007, 35, W345–W349.
[CrossRef]

9. Lin, M.F.; Jungreis, I.; Kellis, M. PhyloCSF: A comparative genomics method to distinguish protein coding
and non-coding regions. Bioinformatics 2011, 27, I275–I282. [CrossRef]

http://www.mdpi.com/1422-0067/21/15/5222/s1
http://www.mdpi.com/1422-0067/21/15/5222/s1
http://dx.doi.org/10.1038/nature11233
http://www.ncbi.nlm.nih.gov/pubmed/22955620
http://dx.doi.org/10.1126/science.1138341
http://www.ncbi.nlm.nih.gov/pubmed/17510325
http://dx.doi.org/10.1038/nsmb.2942
http://www.ncbi.nlm.nih.gov/pubmed/25565026
http://dx.doi.org/10.1101/gr.132159.111
http://dx.doi.org/10.1146/annurev-biochem-051410-092902
http://dx.doi.org/10.1016/j.cell.2009.02.006
http://dx.doi.org/10.1016/j.tcb.2011.04.001
http://dx.doi.org/10.1093/nar/gkm391
http://dx.doi.org/10.1093/bioinformatics/btr209


Int. J. Mol. Sci. 2020, 21, 5222 10 of 11

10. Hu, L.; Xu, Z.Y.; Hu, B.Q.; Lu, Z.J. COME: A robust coding potential calculation tool for lncRNA identification
and characterization based on multiple features. Nucleic Acids Res. 2017, 45. [CrossRef]

11. Achawanantakun, R.; Chen, J.; Sun, Y.N.; Zhang, Y. LncRNA-ID: Long non-coding RNA IDentification using
balanced random forests. Bioinformatics 2015, 31, 3897–3905. [CrossRef] [PubMed]

12. Sun, L.; Liu, H.; Zhang, L.; Meng, J. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using
Support Vector Machine. PLoS ONE 2015, 10. [CrossRef] [PubMed]

13. Yang, C.; Yang, L.; Zhou, M.; Xie, H.; Zhang, C.; Wang, M.D.; Zhu, H. LncADeep: An ab initio lncRNA
identification and functional annotation tool based on deep learning. Bioinformatics 2018, 34, 3825–3834.
[CrossRef]

14. Sun, L.; Luo, H.T.; Bu, D.C.; Zhao, G.G.; Yu, K.T.; Zhang, C.H.; Liu, Y.N.; Chen, R.S.; Zhao, Y. Utilizing
sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res.
2013, 41. [CrossRef] [PubMed]

15. Wang, L.; Park, H.J.; Dasari, S.; Wang, S.Q.; Kocher, J.P.; Li, W. CPAT: Coding-Potential Assessment Tool
using an alignment-free logistic regression model. Nucleic Acids Res. 2013, 41. [CrossRef]

16. Li, A.M.; Zhang, J.Y.; Zhou, Z.Y. PLEK: A tool for predicting long non-coding RNAs and messenger RNAs
based on an improved k-mer scheme. BMC Bioinform. 2014, 15. [CrossRef]

17. Fan, X.N.; Zhang, S.W. lncRNA-MFDL: Identification of human long non-coding RNAs by fusing multiple
features and using deep learning. Mol. Biosyst. 2015, 11, 892–897. [CrossRef]

18. Tripathi, R.; Patel, S.; Kumari, V.; Chakraborty, P.; Varadwaj, P.K. DeepLNC, a long non-coding RNA
prediction tool using deep neural network. Netw. Model Anal. Health Inform. Bioinform. 2016, 5, 21. [CrossRef]

19. Kang, Y.J.; Yang, D.C.; Kong, L.; Hou, M.; Meng, Y.Q.; Wei, L.P.; Gao, G. CPC2: A fast and accurate coding
potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017, 45, W12–W16. [CrossRef]

20. Baek, J.; Lee, B.; Kwon, S.; Yoon, S. LncRNAnet: Long non-coding RNA identification using deep learning.
Bioinformatics 2018, 34, 3889–3897. [CrossRef]

21. Han, S.; Liang, Y.; Ma, Q.; Xu, Y.; Zhang, Y.; Du, W.; Wang, C.; Li, Y. LncFinder: An integrated platform for
long non-coding RNA identification utilizing sequence intrinsic composition, structural information and
physicochemical property. Brief. Bioinform. 2018. [CrossRef] [PubMed]

22. Wu, C.H.; Apweiler, R.; Bairoch, A.; Natale, D.A.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.;
Huang, H.Z.; Lopez, R.; et al. The Universal Protein Resource (UniProt): An expanding universe of protein
information. Nucleic Acids Res. 2006, 34, D187–D191. [CrossRef] [PubMed]

23. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.H.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST
and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402.
[CrossRef] [PubMed]

24. Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.;
Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future.
Nucleic Acids Res. 2016, 44, D279–D285. [CrossRef] [PubMed]

25. Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching.
Nucleic Acids Res. 2011, 39, W29–W37. [CrossRef]

26. Chollet, F. Keras: The Python Deep Learning Library. 2018. Available online: https://ui.adsabs.harvard.edu/

abs/2018ascl.soft06022C (accessed on 12 July 2020).
27. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.

Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016;
pp. 265–283.

28. Dietterich, T.G. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms.
Neural Comput. 1998, 10, 1895–1923. [CrossRef]

29. Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D.D. Hyperopt: A python library for model selection
and hyperparameter optimization. Comput. Sci. Discov. 2015, 8, 014008.

30. Frankish, A.; Diekhans, M.; Ferreira, A.M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.M.; Sisu, C.;
Wright, J.; Armstrong, J.; et al. GENCODE reference annotation for the human and mouse genomes.
Nucleic Acids Res. 2019, 47, D766–D773. [CrossRef]

31. Pruitt, K.D.; Tatusova, T.; Brown, G.R.; Maglott, D.R. NCBI Reference Sequences (RefSeq): Current status,
new features and genome annotation policy. Nucleic Acids Res. 2012, 40, D130–D135. [CrossRef]

http://dx.doi.org/10.1093/nar/gkw798
http://dx.doi.org/10.1093/bioinformatics/btv480
http://www.ncbi.nlm.nih.gov/pubmed/26315901
http://dx.doi.org/10.1371/journal.pone.0139654
http://www.ncbi.nlm.nih.gov/pubmed/26437338
http://dx.doi.org/10.1093/bioinformatics/bty428
http://dx.doi.org/10.1093/nar/gkt646
http://www.ncbi.nlm.nih.gov/pubmed/23892401
http://dx.doi.org/10.1093/nar/gkt006
http://dx.doi.org/10.1186/1471-2105-15-311
http://dx.doi.org/10.1039/C4MB00650J
http://dx.doi.org/10.1007/s13721-016-0129-2
http://dx.doi.org/10.1093/nar/gkx428
http://dx.doi.org/10.1093/bioinformatics/bty418
http://dx.doi.org/10.1093/bib/bby065
http://www.ncbi.nlm.nih.gov/pubmed/30084867
http://dx.doi.org/10.1093/nar/gkj161
http://www.ncbi.nlm.nih.gov/pubmed/16381842
http://dx.doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
http://dx.doi.org/10.1093/nar/gkv1344
http://www.ncbi.nlm.nih.gov/pubmed/26673716
http://dx.doi.org/10.1093/nar/gkr367
https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C
https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C
http://dx.doi.org/10.1162/089976698300017197
http://dx.doi.org/10.1093/nar/gky955
http://dx.doi.org/10.1093/nar/gkr1079


Int. J. Mol. Sci. 2020, 21, 5222 11 of 11

32. Fickett, J.W. Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 1982, 10, 5303–5318.
[CrossRef]

33. Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks.
Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [CrossRef]

34. Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [CrossRef]
[PubMed]

35. Hashemifar, S.; Neyshabur, B.; Khan, A.A.; Xu, J. Predicting protein-protein interactions through
sequence-based deep learning. Bioinformatics 2018, 34, i802–i810. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nar/10.17.5303
http://dx.doi.org/10.1016/S0169-7439(97)00061-0
http://dx.doi.org/10.1093/bib/bbw068
http://www.ncbi.nlm.nih.gov/pubmed/27473064
http://dx.doi.org/10.1093/bioinformatics/bty573
http://www.ncbi.nlm.nih.gov/pubmed/30423091
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Performance of lncRNA_Mdeep 
	Performance of Different Model Architectures 
	Effects of Different Hyper-Parameters 

	Comparison with Other Existing Methods 
	Comparison Performance on Human Dataset 
	Comparison Performance on Cross-Species Datasets 


	Discussion 
	Material and Methods 
	Dataset 
	LncRNA_Mdeep 
	Feature Extraction and One-Hot Encoding 
	High-Level Abstract Representations 
	Multimodal Framework 

	Evaluation Metrics 

	Conclusions 
	References

