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Abstract: Background: Predictive biomarkers in biofluids are the most commonly used diagnostic
method, but established markers in trauma diagnostics lack accuracy. This study investigates
promising microRNAs (miRNA) released from affected tissue after severe trauma that have predictive
values for the effects of the injury. Methods: A retrospective analysis of prospectively collected data
and blood samples of n = 33 trauma patients (ISS ≥ 16) is provided. Levels of miR-9-5p, -124-3p,
-142-3p, -219a-5p, -338-3p and -423-3p in severely injured patients (PT) without traumatic brain injury
(TBI) or with severe TBI (PT + TBI) and patients with isolated TBI (isTBI) were measured within
6 h after trauma. Results: The highest miR-423-3p expression was detected in patients with severe
isTBI, followed by patients with PT + TBI, and lowest levels were found in PT patients without TBI
(2−∆∆Ct, p = 0.009). A positive correlation between miR-423-3p level and increasing AIShead (p = 0.001)
and risk of mortality (RISC II, p = 0.062) in trauma patients (n = 33) was found. ROC analysis of
miR-423-3p levels revealed them as statistically significant to predict the severity of brain injury in
trauma patients (p = 0.006). miR-124-3p was only found in patients with severe TBI, miR-338-3p was
shown in all trauma groups. miR-9-5p, miR-142-3p and miR-219a-5p could not be detected in any of
the four groups. Conclusion: miR-423-3p expression is significantly elevated after isolated traumatic
brain injury and predictable for severe TBI in the first hours after trauma. miR-423-3p could represent
a promising new biomarker to identify severe isolated TBI.

Keywords: miR-142-3p; miRNA; serum; plasma; SNORD95; traumatic brain injury (TBI); polytrauma;
Injury Severity Score (ISS)

1. Introduction

Polytrauma (PT) and severe traumatic brain injury (TBI) caused by road traffic accidents and
falls are the main causes of death and disability in young patients under 45 years with immense
socioeconomic impact through loss of productivity and medical and rehabilitation costs [1,2].
The treatment of patients with multiple organ injuries is challenging due to different injury patterns and
severity, but also due to the complex immune response, reperfusion syndrome or endothelial barrier
dysfunction. Post-traumatic overshooting immunomodulation often leads to postinjury complications,
multiple organ failure (MOF) or death and is a predictor of mortality in trauma [3–6]. The brain is
vulnerable to damage and failure due to its high metabolic rate and limited intrinsic energy reserve.
The (neuro-)inflammatory environment subsequently leads to cell death and neurodegeneration in
secondary brain damage but also to neuroreparative mechanisms at later stages. Secondary brain
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injury due to inflammatory processes is one of the main reasons for the worsening of the outcome
after trauma [7–9]. Biomarkers are of highest clinical interest to detect the severity of injuries at an
early stage, identifying their pathogenesis and preventing consecutive damage [10]. Their detection in
serum after brain injury indicates a disturbed integrity of the blood–brain barrier (BBB), cerebrospinal
fluid (CSF) recirculation into the blood via venous drainage and circulation through the lymphatic
system [11,12]. The currently available biomarkers in trauma diagnostics are mostly protein-based
and often lack the desired accuracy. A promising alternative could be specific microRNAs (miRNAs)
released by the affected tissues. miRNAs are small non-coding RNAs with an average of 22 nucleotides.
miRNA genes are transcribed by RNA polymerase II in the cell nucleus as primary miRNAs and are
processed into precursor miRNAs and mature miRNAs [13,14]. The interaction of miRNAs with their
target genes is dynamic and depends on many factors, such as their subcellular localization and the
frequency and affinity of miRNAs and target mRNAs and their interaction. Often, miRNAs are located
in specific tissues [15], depending on their function and target sequences, and therefore their potential
as biomarkers for pathomechanisms is worth investigating. Injured cells can release miRNAs into the
extracellular space, where they overcome endothelial barriers due to their small size and exist in stable
form in the blood, facilitating peripheral sampling [16–18]. The identification and analysis of released
miRNA patterns could provide a powerful tool to assess the outcome of patients after traumatic injury.

The main objective of the present study was to investigate the expression of specific miRNAs and
their predictive value in the blood of patients (n = 33) within 6 h after severe trauma. In a pilot study we
obtained serum and corresponding plasma samples from n = 20 donors, including healthy volunteers
and trauma patients, to investigate the possible effects of different types of blood sample preparation
on miRNA measurement. Furthermore, the total study cohort (n = 38) was analyzed to identify the
most appropriate reference genes for the relative quantification of miRNA in trauma patients.

2. Results

2.1. Pilot Study 1: Analyzing miRNA Concentrations in Serum and Plasma Samples of Trauma Patients

Figure 1 displays the quantitative analysis and ranking distribution of miRNA and cDNA
concentrations in a comparison of human serum and plasma samples.
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In this pilot study, we focused on the effects of different sample types on the spectrum of circulating
miRNA in the blood. The photometric determination of the miRNA concentrations was performed
immediately after their isolation. Using n = 20 serum and n = 20 corresponding plasma samples
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from the same individuals, no significant difference in containing miRNA concentrations (serum
14.0 ± 8.4 ng/µL vs. plasma 18.0 ± 8.6 ng/µL; p = 0.139) was observed. Sufficient RNA isolation was
verified by exogenous spike-in control cel-miR-39 via rtPCR. In addition, no significant difference in
plasma and serum miRNA concentration was observed, neither by sex (p = 0.072) nor by age (<50 vs.
≥50 years, p = 0.186) of the donor.

2.2. Pilot Study 2: Identification of a Suitable Housekeeping miRNA in Trauma Patients

For the relative quantification of the target miRNA, we first investigated the concentration of
three potential endogenous housekeeping small nucleolar RNAs (snoRNAs), SNORD61, SNORD68
and SNORD95 (Figure 2), in n = 38 trauma patients and healthy volunteers. The exogenous spike-in
control cel-miR-39 was measured to account for differences in the efficiency of RNA extraction and
Reverse Transcription (RT). The SNORD concentration was set in relation to the exogenous control
cel-miR-39, which was assumed to be a constant basis by external addition during RNA isolation.
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Figure 2. (a) Identification of a suitable housekeeping RNA by stability and levels of housekeeping
snoRNA (Ct values of SNORD61, SNORD68, SNORD95) and (b) correlation of SNORD68 (left) and
SNORD95 (right) with exogenous spike-in control (Ct values of cel-miR-39).

It was found that SNORD95 was stably present in all n = 38 serum samples. Both SNORD61 and
SNORD68 were detected in n = 36 samples. The Ct value and normalized ∆Ct value (∆Ct = Ctcel-miR-39 −

CtSNORD) were significantly lowest for SNORD95 (∆Ct 4.3± 2.1) compared to SNORD61 (∆Ct 10.0 ± 5.1,
p < 0.001) and SNORD68 (∆Ct 8.7 ± 2.4, p < 0.001). For SNORD61 (Pearson correlation analysis,
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r = 0.632, p < 0.001) and SNORD95 (r = 0.745, p < 0.001), significant positive correlations with cel-miR-39
were found. Linear regression analysis showed a higher positive correlation between cel-miR-39 and
SNORD95 (r2 = 0.56, p < 0.001) than SNORD61 (r2 = 0.40, p < 0.001). Consequently, SNORD95 was
selected to normalize the miRNA of the target gene for relative quantification analysis.

2.3. Demographic and Injury Characteristics

Table 1 displays the demographic and clinical characteristics of the trauma patients stratified by
injury pattern. Of these, 8 patients were severely injured without TBI (PT), 13 patients with PT + TBI
and 12 patients suffered from isTBI. 94% of these trauma patients were men. Patients with isTBI
were significantly older (71 (55–77) years, p = 0.021) than the patients in other groups. Median (IQR)
Injury Severity Score (ISS) of patients with isTBI was significantly lower (25 (21–25), p = 0.005), but no
significant difference was found in New Injury Severity Score (NISS; p = 0.747). The Revised Injury
Severity Classification Score (RISC II) was significantly lower in the PT cohort (p = 0.003). The value of
Glasgow Coma Scale (GCS) of patients with PT + TBI and isTBI was significantly lower (p = 0.002) than
after PT. The mortality in the PT cohort was 38%, 69% in the PT + TBI group and 68% died after isTBI.

Table 1. Demographic and injury characteristics.

PT (n = 8) PT + TBI (n = 13) isTBI (n = 12)

Median (IQR) Median (IQR) Median (IQR)

Age (y) 52 (42–66) 48 (32–61) 71 (55–77)
ISS (pts) 37 (24–43) 34 (32–42) 25 (21–25)

NISS (pts) 47 (31–50) 48 (39–57) 45 (37–62)
RISC II (%) 4 (2–11) 39 (14–60) 33 (17–83)

AIShead (pts) 0 5 (4–5) 5 (4–5)
AISthorax (pts) 4 (3–4) 3 (3–4) 0

AISabdominal (pts) 3 (2–4) 0 (0–1) 0
AISextremities (pts) 4 (2–5) 0 (0–3) 0

GCS (pts) 15 (11–15) 3 (3–8) 3 (3–12)

Abbreviations: PT = polytrauma, isTBI = isolated traumatic brain injury, IQR = Interquartile range, y = years,
ISS = Injury Severity Score, pts = points, NISS = New Injury Severity Score, RISC II = Revised Injury Severity
Classification, Version 2, AIS = Abbreviated Injury Scale, GCS = Glasgow Coma Scale.

2.4. Detection Profile of miRNAs in Trauma Patients Stratified by Injury Pattern

The heat map (Figure 3) shows the detection profile of the exogenous (cel-miR-39) and endogenous
control (SNORD95), and of the target genes hs-miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3p and -423-3p.

Isolation was proved by the spike-in control (cel-miR-39). SNORD95 was detectable in all samples
(n = 38). miR-423-3p expression was found in all cohorts. miR-338-3p was only detectable in trauma
patients, not in healthy volunteers. miR-124-3p was only found in patients with traumatic brain injury
(PT + TBI and isTBI). miR-9-5p, mirR-142-3p and miR-219a-5p could not be detected in any of the
four groups.
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Figure 3. Detection profile of exogenous control cel-miR-39, housekeeping gene SNORD95 and target
genes hs-miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3p and -423-3p stratified by injury pattern.

2.5. Quantitative Analysis of miR-124-3p, miR-338-3p and miR-423-3p Expression in Trauma Patients

The target miRNA values were quantified relative to SNORD95 using the delta-delta Ct method
(2−∆∆Ct) as described in Materials and Methods. Only serum miRNA levels that showed a ≥ 2.0-fold
change in expression were considered positive compared to the highest level from the healthy control
group. Table 2 displays ∆Ct, ∆∆Ct and 2−∆∆Ct values calculated for the detected miRNA-124-3p,
miR-338-3p and miR-423-3p in trauma patients stratified by injury pattern. The highest miRNA-423-3p
expression was detected in patients with isTBI, followed by patients with PT + TBI; lowest miR-423-3p
levels were found in the PT cohort (2−∆∆Ct isTBI 1.5 ± 2.3 > PT + TBI 0.4 ± 0.2 > PT 0.2 ± 0.2).

Table 2. Quantitative analysis of miR expression in trauma patients stratified by injury pattern.

miR-124-3p miR-338-3p miR-423-3p

n mean ± SD n mean ± SD n mean ± SD

PT Ct 1 39.8 ± 0 8 32.4 ± 2.9
∆Ct 13.6 ± 0 4.7 ± 1.2

∆∆Ct 13.6 ± 0 2.6 ± 1.2
2−∆∆Ct 0.0 0.2 ± 0.2

PT + TBI Ct 7 37.0 ± 3.0 3 38.2 ± 1.3 13 31.3 ± 3.5
∆Ct 11.8 ± 3.8 13.5 ± 1.9 3.9 ± 1.3

∆∆Ct 11.8 ± 3.8 13.5 ± 1.9 1.8 ± 1.3
2−∆∆Ct 0.0 0.0 0.4 ± 0.2

isTBI Ct 4 34.7 ± 2.7 5 38.3 ± 1.6 12 30.7 ± 1.4
∆Ct 7.5 ± 1.3 10.4 ± 2.0 2.4 ± 1.5

∆∆Ct 7.5 ± 1.3 10.4 ± 2.0 0.3 ± 1.5
2−∆∆Ct 0.0 0.0 1.5 ± 2.3

Abbreviations: PT = polytrauma, isTBI = isolated traumatic brain injury, SD = standard deviation, Ct = cycle
threshold. Quantitative analysis of target miRNA delta-delta Ct method (2−∆∆Ct): after normalization of Ct values
of the target genes (all samples, n = 38) against the housekeeping gene (∆CtTarget = CtSNORD95 − CtTarget), the ∆∆Ct
value was calculated using healthy volunteers as the control cohort (∆∆CtTarget = ∆Ct[V] − ∆CtTarget).

miR-124-3p was only detected in patients with severe brain injury (PT + TBI, n = 7 and isTBI,
n = 4). The 2−∆∆Ct values were 0, i.e., no relevant double-fold change could be measured. The same
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result was found for miR-338-3p which could be detected in all trauma groups (PT n = 1, PT + TBI
n = 3 isTBI n = 5) but not in all samples of each group.

2.6. Relation and Predictive Power of miR-423-3p in Severity of Injury

Figure 4 shows the miR-423-3p expression difference stratified by injury pattern and its predictive
power according to TBI. A statistically significantly higher miR-423-3p expression in patients with
isTBI (p = 0.009) when stratified by injury pattern was found.
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Figure 4. (a) Quantitative analysis of miR-423-3p stratified by injury pattern (p-value < 0.01 = **) and
(b) predictive power of miR-423-3p for severity of brain injury (AIShead) in trauma patients (AUC: 0.79,
p = 0.006, 95% CI: 0.62–0.96).

Positive correlation was shown between miR-423-3p level and increasing AIShead score (Spearman’s
rank correlation, r = 0.5, p = 0.001), and risk of mortality (RISC II r = 0.3, p = 0.062) in all trauma
patients (n = 33). GCS and increasing miR-423-3p concentration showed a negative correlation without
statistical significance (r = −0.3, p = 0.176). In addition, a positive correlation between RISC II and
severity of head injury (r = 0.6, p < 0.001) could be assessed.

The ROC analysis of miR-423-3p levels revealed a statistically significant area under the curve
(AUC) to predict the severity of brain injury (AIShead) in trauma patients (AUC: 0.79, p = 0.006, 95% CI:
0.62–0.96).

2.7. miR-423-3p Pathway Analysis

The identification of putative target genes of miR-423-3p was performed using miRDB, an online
database for miRNA target prediction and functional annotations. It was possible to identify 29 genes
that could interact with miR-423-3p (Table 3). The genes code for proteins that cover a wide range of
functions including surface receptors (FGFR2, ITGA11), cell morphogenesis (FRY) and cell fate (CBX7),
but an accumulation of proteins involved in transcriptional regulation (PAPBC1, −3, CREM, BCORL1,
ESRA) and intracellular signaling (RAP2C, RAB14, RAC1, CRK, PLCH1, DKK3) is evident.
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Table 3. Pathway analysis was performed using miRDB database and revealed 29 potential target genes for miR-423-3p.

Target Rank Target Score Gene Symbol Gene Description Protein Function

1 96 PABPC1 poly(A) binding protein cytoplasmic 1 Binds to RNA, translation initiation

2 85 PABPC3 poly(A) binding protein cytoplasmic 3 Binds to RNA, translation initiation

3 83 RAP2C RAP2C, member of RAS oncogene family small GTPases that act as molecular switches to regulate
cellular proliferation, differentiation, and apoptosis

4 78 FRY FRY microtubule binding protein Cell morphogenesis

5 77 CBX7 chromobox 7 Controls the lifespan of several normal human cells

6 77 CREM cAMP responsive element modulator Transcription factor that binds to the cAMP responsive element

7 76 RAB14 RAB14, member RAS oncogene family Low-molecular mass GTPase, involved in intracellular
membrane trafficking

8 74 FGFR2 fibroblast growth factor receptor 2
The extracellular portion of the protein interacts with fibroblast

growth factors, ultimately influencing mitogenesis
and differentiation.

9 73 BCORL1 BCL6 corepressor like 1 Can interact with several different class II histone deacetylases
to repress transcription.

10 70 RAC1 Rac family small GTPase 1

GTPase which belongs to the RAS superfamily, appears to
regulate a diverse array of cellular events, including the control
of cell growth, cytoskeletal reorganization and the activation of

protein kinases.

11 70 ESRRA estrogen related receptor alpha Nuclear receptor that is most closely related to the estrogen
receptor, acts as a site-specific transcription factor

12 70 ITGA11 integrin subunit alpha 11 Encodes an alpha integrin.

13 69 LGALSL galectin like unknown

14 68 GYPC glycophorin C (Gerbich blood group) Plays an important role in regulating the mechanical stability of
red cells.

15 66 PROZ protein Z, vitamin K dependent plasma glycoprotein The encoded protein plays a role in regulating
blood coagulation

16 65 HS6ST2 heparan sulfate 6-O-sulfotransferase 2 Interacts with various ligands to influence cell growth,
differentiation, adhesion and migration
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Table 3. Cont.

Target Rank Target Score Gene Symbol Gene Description Protein Function

17 65 ZNF135 zinc finger protein 135 unknown

18 64 DLL1 delta like canonical Notch ligand 1 Plays a role in mediating cell fate decisions
during hematopoiesis

19 62 ZBTB46 zinc finger and BTB domain containing 46 unknown

20 60 CRK CRK proto-oncogene, adaptor protein Is involved in several signaling pathways, recruiting
cytoplasmic proteins in the vicinity of tyrosine kinase

21 59 ACOX3 acyl-CoA oxidase 3, pristanoyl Is involved in the desaturation of 2-methyl branched fatty acids
in peroxisomes.

22 59 TRDN triadin Integral membrane protein that contains a single
transmembrane domain

23 59 DKK3 dickkopf WNT signaling pathway inhibitor 3
Involved in embryonic development through its interactions
with the Wnt signaling pathway. It may function as a tumor

suppressor gene.

24 58 KLHL29 kelch like family member 29 Binding interactions with other proteins, e.g., actins

25 54 SLC11A2 solute carrier family 11 member 2 Transports divalent metals and is involved in iron absorption.

26 54 ZNF16 zinc finger protein 16 Is involved in the differentiation of erythroid and
megakaryocytic cells.

27 51 PLCH1 phospholipase C eta 1 cleaves PtdIns (4,5) P2 to generate second messengers IP3
and DAG

28 50 CALML3 calmodulin like 3 unknown

29 50 GIPC3 GIPC PDZ domain containing family member 3 required for postnatal maturation of the hair bundle and
long-term survival of hair cells and spiral ganglion in the ear.
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3. Discussion

miRNAs are non-coding RNAs that affect post-transcriptional gene expression in multicellular
organisms. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated
primary transcripts. This is cleaved by the Drosha ribonuclease III enzyme to produce a stem loop
precursor miRNA, which is further cleaved by the cytoplasmic Dicer ribonuclease to produce mature
miRNA and antisense miRNA (miRNA*). The mature miRNA is incorporated into an RNA-induced
silencing complex (RISC), which in most cases leads to translation inhibition or destabilization of
the target miRNA. miRNAs are involved in numerous biological processes, including differentiation
and proliferation, metabolism, hemostasis, apoptosis or inflammation, and the pathophysiology of
many diseases. Numerous studies have suggested circulating miRNAs as promising diagnostic and
prognostic biomarkers for various diseases [18].

Serum and plasma prepared from peripheral blood is easily accessible. Although the choice
between serum or plasma samples is rarely explained in publications. Previous reports on the export
of miRNAs from cells have raised the question that plasma and serum may have certain differences
in their miRNA content and concentrates [19,20]. Fibrinogen in plasma samples can be a source of
contamination that affects extraction quality. On the other hand, the process of clotting in serum
samples can alter the actual result of circulating miRNAs and increases variability [21]. Differences
in peripheral blood processing could lead to significant discrepancies between studies and make it
difficult to identify reliable and relevant miRNA markers [19,22,23]. In our pilot study, which compared
the miRNA concentration of corresponding serum and plasma samples, no significant difference
between the two biofluids was found.

The reliable assessment of the miRNA expression profile by PCR also depends on the correct
data normalization by suitable reference RNA. Despite the increasing number of studies evaluating
miRNAs, no consensus could be reached on the best reference, especially for miRNAs from trauma
patients [24–26]. It is therefore of utmost importance to identify the best biofluid fraction to facilitate the
discovery of miRNA-based biomarkers and to increase consistency between studies by using common
reference RNA. small nuclear RNAs are widely used as an endogenous reference [19]. In our pilot study,
SNORD95 (C/D Box 95) proved to be the most stable and reliable reference RNA among the snoRNAs
investigated. It was found consistently in all samples and showed the highest concentration compared
to SNORD61 and SNORD65 as well as a significant correlation with the exogenous isolation control
cel-miR-39. To our knowledge, there are only a few studies that have investigated the expression of
SNORD95, and it may be a sufficient reference RNA for miRNA analysis in trauma patients [27,28].

Of 33 trauma patients included, 94% were male and the cohort with isTBI was significantly older
than the PT and PT + TBI group. In Western countries, polytrauma is the leading cause of death for
people up to 45 years of age, in a male-to-female ratio of 2.6:1. Older patients cause most TBI-related
hospital admissions and deaths [1,29]. In the pilot study, comparing the miRNA concentration by age
and sex of donors did not result in a difference in gene expression.

In this study, the use of specific miRNAs as biomarkers was shown to have predictable value in the
assessment of TBI in patients with multiple injuries [30]. Our study provides a description of changes
that occur in miRNA expression during the early post-injury phase after trauma. According to the
“human miRNA tissue atlas” a ubiquitous miR-423-3p expression was detected across human tissue [15].
In this study, miR-423-3p was detected in all samples including healthy volunteers but was significantly
higher expressed after isTBI than after PT or PT + TBI. In addition, a significant correlation was shown
between the severity of injury (ISS) and level of consciousness (GCS) and the relevant predictive
value for severity of brain injury (AIShead). Changes in miR-423-3p expression after CNS injury and
spinal cord injury in the early phase after injury have already been shown in porcine serum [31].
Furthermore, different TBI intensities were shown to induce a differentiated miRNA expression profile
in the brain after injury. Among other markers, miR-423 was identified, which may be involved
in the pathophysiology of mild TBI [32]. miR-423-3p and miR-142-3p were identified as markers
after traumatic brain injury that could be useful for distinguishing severity and improvement over
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time [33]. miR-142-3p could not be detected in our study. The miR-423 gene is located in a frequently
amplified region of chromosome 17q11.2 and can produce two mature sequences: miR-423-3p and
miR-423-5p [34]. It has already been reported that miR-423-3p acts like an oncogene by promoting cell
proliferation, cell cycle progression, clonogenicity, cell migration and invasion. miR-423-3p plays a
predominant role in oncogenic autophagy via Bcl-2 interacting mediators of the cell death (bim) axis
and in the anti-apoptotic p-Akt and p-ERK1/2 signaling axis [35]. In our study, it was possible to identify
29 genes that could interact with mirR-423-3p. The genes code for proteins that cover a wide range of
functions including surface receptors (FGFR2, ITGA11), cell morphogenesis (FRY) and cell fate (CBX7).
But an accumulation of proteins involved in transcriptional regulation (PAPBC1,-3, CREM, BCORL1,
ESRA) and intracellular signaling (RAP2C, RAB14, RAC1, CRK, PLCH1, DKK3) is evident. MiR-423-3p
appears to regulate a variety of cellular processes. Looking at the target genes, most of them are involved
in cellular activation (signal transduction, transcription) and thus in all possible processes after trauma
(regeneration, inflammation, etc.). Interestingly, miR-423-3p was significantly higher concentrated in
serum/plasma after isTBI compared to PT, and especially PT + TBI. In previous studies, we have already
seen that the PT + TBI cohort behaves unexpectedly differently to the isTBI group with respect to
neuromarker expression, e.g., the serum level of neuron-specific enolase 2 (NSE) is lower after PT + TBI
than after isTBI. At the same time, it could be shown that TBI has a relevant influence on the immune
response (e.g., IL-6 and IL-10) after trauma, which can result in altered barrier conditions and local
acute inflammation and subsequent tissue damage. We have shown that IL-10 is secreted significantly
higher after PT + TBI than after isTBI [9,36]. IL-10 is an anti-inflammatory cytokine that regulates
and limits acute inflammation in response to trauma to prevent tissue damage, such as secondary
brain damage following TBI [37,38]. In contrast, the pro-inflammatory cytokine IL-6 modulates the
expression of tight junction proteins in cerebral microvasculature, and the release of adhesion molecules
in plasma of polytrauma patients (ISS ≥18) correlates with organ dysfunction [39]. Our hypothesis for
the lower miR-423-3p level in the PT + TBI group is an immunomodulatory effect of TBI in polytrauma.
Similarly, more dominant trauma damage outside the CNS during polytrauma may alter the serological
composition to mask the increase in miRNA-423-3p. An important pathophysiological factor in the
development of posttraumatic complications is the dysfunction of the external (skin) and internal
paracellular blood and organ barriers, including the brain (BBB) [40]. miRNAs themselves are involved
in maintaining the integrity of the BBB by targeting the 3′-UTR of claudin-1, JAM 3, occlusive and
tight junction-associated protein 1 [41]. Inflammation modulates the expression of tight junction
proteins in the cerebral microvasculature of sheep, and the release of adhesion molecules in plasma of
polytrauma patients (ISS ≥ 18) correlates with disease severity and organ dysfunction [39]. Due to
the increased permeability of the organ barriers, both metabolites and larger molecules such as small
peptides (e.g., S100b) and small polynucleotides can enter the bloodstream and be detected as specific
biomarkers [12]. Identifying the severity of injuries at an early stage and predicting their development
in order to prevent secondary damage are of paramount interest in trauma treatment, with the detection
of biomarkers playing an important role [42]. It can be assumed that brain-specific miRNAs are
released from broken cells, just like the proteins of known neuromarkers.

With regard to altered gene expression after brain injury, miR124-3p is one of the most frequently
investigated miRNAs. miR-124-3p is specifically expressed in the CNS [15]. In our study, miR-124-3p
was only detected in patients with (concomitant) TBI (PT + TBI and isTBI). Increased miR-124-3p in
microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to
neurite outgrowth [43,44]. Other studies found that miR-124-3p is a modulator of molecular networks
relevant for hippocampal pathologies following injury in experimental models and in humans [45].
The concentration of miR-124-3p can be used as a predictor for neurologic outcome and survival
after cardiac arrest [46]. Hamzei et al. found that miR-124 overexpression in mice induced early
focal ischemia which reduced the number of microglia/macrophages, leading to neuroprotective and
anti-inflammatory effects [47]. Although no relevant double-fold change could be measured after
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semiquantitative analysis (2−∆∆Ct), in this study miR-124-3p was not detectable in healthy volunteers
and the PT cohort, so that a specific expression/release after TBI can be assumed.

A slightly increased serum concentration of miR-338-3p after trauma, especially after PT + TBI
and isTBI, was found, not in healthy volunteers. Although miR-338-3p is predominantly expressed in
CNS, it could also be detected in peripheral nerves [31], which might explain an unspecific detection
in one PT patient due to a larger peripheral nerve damage. The data on miR-338-3p, especially after
trauma, are very thin. More studies have been done on brain tumors in which low expression of
miR-338-3p is associated with increased mortality and disease progression by PTEN/Akt pathway
regulation in patients with brain tumors [48,49]. Studies indicate that prevention of traumatic brain
injury-induced ROS production decreases BBB disruption, neuronal death and microglial activation,
which may have high therapeutic potential to reduce traumatic brain injury-induced neuronal death [13].
In addition, a number of studies have demonstrated an antioxidant role for tumor-suppressor proteins,
activating the expression of antioxidant genes in response to oxidative stress. Tumor-suppressor genes
regulate diverse cellular activities, including DNA damage repair, cell cycle arrest, cell proliferation,
cell differentiation, migration and apoptosis. It has been demonstrated that upregulation of PTEN
causes modulation of PI3K/Akt signaling to reduce ROS generation in cells [50]. There is possibly a
post-traumatic activation of the PI3K/AKT pathways, which is regulated by a miR-338-3p expression.

In this study, both miR-219a-5p and miR-9-5p could not be detected in serum samples. miR-9
was shown to be regulated in brain tissue after experimental TBI and detected in CSF [51]. It has
been shown that miR-219a-5p induces a change in the expression of cleaved caspase-3 in the post-TBI
model of rat cortical neuronal cells, thereby inducing neuronal apoptosis [52]. It is possible that in
these trauma patients, miR-219a-5p and miR-9 did not enter the venous bloodstream in relevant
amounts and therefore could not be detected in our serum samples. Both miRNAs are considered to be
human brain-specific, but especially for miR-219a-5p, it has already been shown that it is not stably
expressed [15]. Another study showed that miR-9 is highly enriched in developing nervous systems of
vertebrates and its expression is preferably associated with neurogenic precursors [53]. Possibly an
increase in miR-9-5p could be detected with the onset of the resorptive phase and neuroreparative
mechanisms. In patients with rheumatoid arthritis, miR-9-5p is downregulated by IL-6 and TNF-α
and has a preventive effect on the development of peripheral neuropathy [54]. Perhaps the miR-9-5p
expression is more dependent on the inflammatory response that sets in after severe trauma.

Limitations of the Study

The main limitation is the retrospective nature of the data analysis; however, all clinical data were
collected prospectively, and only the miRNA was measured later on.

Furthermore, the patients with isTBI were significantly older than the comparison groups. Finally,
no conclusions can be drawn as to how age may have altered the miRNA expression—although there
is no evidence that this might have an effect. It is in the nature of trauma that the patient cohort with
isTBI is significantly older, which is due to the most common trauma mechanism in older people
(fall from a low height) and possibly pre-medication with oral anticoagulation. Patients with previously
known neurodegenerative diseases (Alzheimer’s, Parkinson’s, etc.) and organic brain syndromes
(epilepsy, schizophrenia, etc.) were excluded. However, due to the retrospective nature of the study
and the relevant age difference between the cohorts, it is problematic to completely exclude most
(neurodegenerative) diseases. A further advantage of future prospective studies could be to optimize
the exclusion of relevant diseases in order to further reduce possible co-founding effects.

Another important point of confounding factors is the presence of alcohol or drugs at the time of
accident. Blood alcohol levels are routinely determined at the time of admission via our emergency
room. Positive results were only found in the isTBI cohort. The comparison of the average value
of miR-423-3p (2−∆∆Ct) of the alcohol-positive group (ethanol+) with the group without a positive
blood alcohol level (ethanol-), showed no significant difference (2−∆∆ Ct ethanol + vs. 2−∆∆ Ct ethanol-:
p = 0.788)—with critical consideration of the small number of cases. Two subjects in the PT + TBI
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group tested positive for benzodiazepines due to preclinical sedation. There were no abnormalities in
the miR423-3p level of these patients. Especially chronic consumption can have a relevant influence on
brain organic structures, cell function and miRNA expression.

The variance in the individual values is large, especially for miRNA, which is due to potential
confounders such as volume administration, blood products and shock, which are difficult to
standardize. For subsequent studies, further measurements and later points in time should be
considered to show the possible kinetics in gene expression.

4. Materials and Methods

This retrospective study was performed at the University Hospital Frankfurt, Goethe University
after approval by the Institutional Review Board (89/19) in accordance with the Declaration of
Helsinki and following STROBE guidelines [55]. Written informed consent was obtained for enrolled
patients and volunteers or their legally authorized representatives. A retrospective analysis of
prospectively collected data in severely injured trauma patients (ISS ≥ 16) is provided. The study
cohort was retrospectively divided into multiple injured patients without TBI ([PT], AIShead ≤ 1) or
with severe TBI ([PT + TBI], AIShead ≥ 4; AIS of other body area ≥ 3) and patients with isolated TBI
([isTBI], AIShead ≥ 4, all other AIS ≤ 1). Exclusion criteria were previously known chronic, systemic
inflammatory or metabolic syndrome, polyneuropathy, critical illness syndrome, neuro-degenerative
diseases (Alzheimer, Parkinson, etc.), organic brain syndromes (epilepsy, schizophrenia, etc.), stroke,
minor age < 18 years and sepsis. Healthy volunteers (V) served as the control group.

Blood samples (n = 38) were collected of patients admitted to the emergency room of our level-1
trauma center located in the University Hospital of the Goethe University; Frankfurt am Main within
6 h after trauma. The blood was collected in 7.5 mL/2.7 mL tubes (S-Monovette©, Sarstedt Inc.,
Nümbrecht, NRW, Germany) containing 1.6 mg EDTA K (plasma samples) or silicate coated granules
and polyacrylester gel (serum samples). Within 60 min, samples were centrifuged for 15 min at
3500 rpm and 4 ◦C. The upper plasma/serum phase was transferred and stored at −80 ◦C until assayed.

Isolation of miRNA was performed with 200 µL of human plasma or serum using the miRNeasy
serum/plasma kit (Qiagen Inc., Hilden, NRW, Germany). For optimized lysis conditions to purify
miRNA, we used a qiazol separation kit (Qiagen Inc., Hilden, NRW, Germany). For quality control of
the RNA isolation and cDNA synthesis steps, spike-in control cel-miR-39 (miRNA spike-In Kit, for RT,
Qiagen Inc., Hilden, NRW, Germany) was added. Concentration of isolated RNA was determined
photometrically using a spectrophotometer (Nanovue©, Harvard Bioscience Inc., Holliston, MA, USA)
at a path length of 500 nm. Reverse transcription (RT) was performed with 20 ng miRNA using miScript
II RT kit (Qiagen Inc., Hilden, NRW, Germany). PCR arrays (400 ng cDNA) were done according to
manufacture instructions using miScript SYBR® Green PCR Kit (Qiagen Inc., Hilden, NRW, Germany).
Real-time PCR (rtPCR) was performed using Stratagene Mx3005P QPCR Systems (Agilent Technologies
Deutschland, Waldbronn, BW, Germany) with thermal profile of 1 cycle with 15 min of 95 ◦C, 40 cycles
with 15 sec of 94 ◦C, 30 sec of 55 ◦C and 30 sec of 70 ◦C followed by dissociation curve. The array
contained assays for miRNAs of interest (hsa-miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3p, -423-3p;
hsa (homo sapiens)), endogenous reference snoRNAs (hsa-SNORD61, -SNORD68 and -SNORD95) and
exogenous control cel-miR-39.

Identification of putative miR-423-3p target genes was performed using the miRDB database
(http://mirdb.org/, accessed on 22/07/2020). miRDB is an online database for miRNA target prediction
and functional annotations [56]. All information on the putative protein functions was taken from the
NCBI gene bank (https://www.ncbi.nlm.nih.gov/gene, accessed on 22/07/2020).

Statistical Analysis

Continuous normally distributed variables were summarized using means ± standard deviation
(SD), while categorical or continuous variables with skewed distributions were summarized using
medians with interquartile ranges (IQR). The selection of the best housekeeping miRNA for the study

http://mirdb.org/
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with trauma patients was based on the expression of the three SNORDs compared to the exogenous
spike-in control added during isolation of miRNA. Using always the same amount of miRNA and
cDNA, a constant miR-39 level was assumed and the SNORD expression pattern was compared
and correlated with that of cel-miR-39. The p-values for categorical variables were derived from the
two-sided Fisher’s exact test, and for continuous variables from the Mann–Whitney U test or the
Kruskal–Wallis test. Significant values were adjusted by the Bonferroni post hoc test. Pearson’s and
Spearman’s rank correlation coefficients were calculated to determine correlations between miRNA
and injury characteristics. A p-value <0.05 was considered to be statistically significant.

For relative quantitative analysis of target miRNA, the delta-delta Ct method (2−∆∆Ct) was used
according to Livak et al. [57]. After normalization of Ct values of the target genes (all samples, n = 38)
against the housekeeping gene (∆CtTarget = CtSNORD95 − CtTarget), the ∆∆Ct value was calculated using
healthy individuals as the control cohort (∆∆CtTarget = ∆Ct[V] − ∆CtTarget):

(1). ∆CtTarget = CtSNORD95 – CtTarget;
(2). ∆∆CtTarget = ∆Ct[V] – ∆CtTarget;
(3). 2−∆∆Ct.

All analyses were performed using the Statistical Package for Social Sciences (SPSS for Mac©),
version 26 (SPSS Inc., Chicago, IL, USA). The graphics were created using GraphPad Prism 7 for Mac©

(GraphPad Software Inc., San Diego, CA, USA).

5. Conclusions

miR-423-3p expression is significantly elevated after isTBI and predictable for severe traumatic
brain injury in the first hours after trauma. In addition, significant correlations were shown between
miR-423-3p levels and injury severity and impairment of consciousness after TBI. miR-423-3p could
represent a promising new biomarker to identify severe isTBI. Another possible application could
be in the area of risk groups, such as sports with a high risk of head injuries, such as football and
boxing, or blast injuries during military service, in order to better assess the individual risk of brain
damage to the injured person. Furthermore, it could be shown that there is no relevant difference in
RNA concentration in serum or plasma samples and SNORD95 is a suitable reference RNA for miRNA
expression studies in trauma patients.
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Abbreviations

AIS Abbreviated Injury Score
ISS Injury Severity Score
NISS New Injury Severity Score
RISC II Revised Injury Severity Classification Score II
PT Polytrauma
(is)TBI (isolated) Traumatic Brain Injury
MOF multiple organ failure
BBB Blood–brain barrier
SNORD small nuclear RNAs
GCS Glasgow Coma scale
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