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ABSTRACT

Background: Diploid genome assembly is typically impeded by heterozygosity because it introduces errors when
haplotypes are collapsed into a consensus sequence. Trio binning offers an innovative solution that exploits heterozygosity
for assembly. Short, parental reads are used to assign parental origin to long reads from their F1 offspring before assembly,
enabling complete haplotype resolution. Trio binning could therefore provide an effective strategy for assembling highly
heterozygous genomes, which are traditionally problematic, such as insect genomes. This includes the wood tiger moth
(Arctia plantaginis), which is an evolutionary study system for warning colour polymorphism. Findings: We produced a
high-quality, haplotype-resolved assembly for Arctia plantaginis through trio binning. We sequenced a same-species family
(F1 heterozygosity ∼1.9%) and used parental Illumina reads to bin 99.98% of offspring Pacific Biosciences reads by parental
origin, before assembling each haplotype separately and scaffolding with 10X linked reads. Both assemblies are contiguous
(mean scaffold N50: 8.2 Mb) and complete (mean BUSCO completeness: 97.3%), with annotations and 31 chromosomes
identified through karyotyping. We used the assembly to analyse genome-wide population structure and relationships
between 40 wild resequenced individuals from 5 populations across Europe, revealing the Georgian population as the most
genetically differentiated with the lowest genetic diversity. Conclusions: We present the first invertebrate genome to be
assembled via trio binning. This assembly is one of the highest quality genomes available for Lepidoptera, supporting trio
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binning as a potent strategy for assembling heterozygous genomes. Using our assembly, we provide genomic insights into
the geographic population structure of A. plantaginis.
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Data Description
Background

The ongoing explosion in de novo reference genome assembly for
non-model organisms has been facilitated by the combination of
advancing technologies and decreasing costs of next-generation
sequencing [1]. Long-read sequencing technologies further rev-
olutionized the quality of assembly achievable, with incorpo-
ration of long reads that can span common repetitive regions
leading to radical improvements in contiguity [2]. However, het-
erozygosity still presents a major challenge to de novo assembly
of diploid genomes. Most current technologies attempt to col-
lapse parental haplotypes into a composite, haploid sequence,
introducing erroneous duplications through mis-assembly of
heterozygous sites as separate genomic regions. This problem is
exacerbated in highly heterozygous genomes, resulting in frag-
mented and inflated assemblies that impede downstream anal-
yses [3, 4]. Furthermore, a consensus sequence does not repre-
sent either true, parental haplotype, leading to loss of haplotype-
specific information such as allelic and structural variants [5].
Whilst reducing heterozygosity by inbreeding has been a fre-
quent approach, rearing inbred lines is unfeasible and highly
time consuming for many non-model systems, and resulting
genomes may no longer be representative of wild populations.

Trio binning is an innovative, new approach that takes ad-
vantage of heterozygosity instead of trying to remove it [6]. In
this method, a family trio is sequenced with short reads for both
parents and long reads for an F1 offspring. Parent-specific k-mer
markers are then identified from the parental reads and used to
assign offspring reads into maternal and paternal bins, before
assembling each parental haploid genome separately [6]. The
ability of trio binning to accurately distinguish parental haplo-
types increases at greater heterozygosity, with high-quality, de
novo assemblies achieved for bovid genomes by crossing differ-
ent breeds [6] and species [7] to maximize heterozygosity. There-
fore, trio binning has the potential to overcome current difficul-
ties faced by highly heterozygous genomes, which have typically
evaded high-quality assembly through conventional methods.

We utilized trio binning to assemble a high-quality,
haplotype-resolved reference genome for the wood tiger
moth (Arctia plantaginis, NCBI:txid874455; formerly Parasemia
plantaginis [8]). At the time of writing, this represents the first
trio-binned assembly available for an invertebrate animal
species, diversifying the organisms for which published trio-
binned assemblies exist beyond bovids [6, 7], zebra finches
[9], humans [6, 9, 10], Arabidopsis thaliana [6], and additional
trio-binned assemblies available for 8 other vertebrate species
on the Vertebrate Genomes Project GenomeArk database [11].
Using a family trio with same-species A. plantaginis parents,
99.98% of offspring reads were successfully binned into parental
haplotypes. This was facilitated by the high heterozygosity of
the A. plantaginis genome; heterozygosity of the F1 offspring
was estimated to be ∼1.9%, exceeding levels obtained in all
other published trio-binned assemblies through same-species
crosses [6, 9, 10] and a yak-cow hybrid cross [7]. Both result-
ing haploid assemblies are highly contiguous and complete,
strongly supporting trio binning as an effective strategy for de
novo assembly of heterozygous genomes.

The presented A. plantaginis assembly will also provide an
important contribution to the growing collection of lepidopteran
reference genomes [12]. Comparative phylogenomic studies will
benefit from the addition of A. plantaginis to the phylogenomic
dataset [13, 14], being the first species to be sequenced within
the Erebidae family [8, 15] and the first fully haplotype-resolved
genome available for Lepidoptera. A. plantaginis itself is an im-
portant evolutionary study system, being a moth species that
uses aposematic hindwing colouration to warn avian predators
of its unpalatability [16]. Whilst female hindwing colouration
varies continuously from orange to red, male hindwings exhibit
a discrete colour polymorphism maintained within populations
(Fig. 1), varying in frequency from yellow-white in Europe and
Siberia and yellow-red in the Caucasus to black-white in North
America and Northern Asia [17, 18]. Hence, A. plantaginis pro-
vides a natural system to study the evolutionary forces that pro-
mote phenotypic diversification on local and global scales, for
which availability of a high-quality, haplotype-resolved and an-
notated reference genome will now transform genetic research.

Materials and Methods
Cross preparation and sequencing

To obtain an A. plantaginis family trio, selection lines for yellow
and white male morphs were created from Finnish populations
at the University of Jyväskylä over 3 consecutive generations.
Larvae were fed with wild dandelion (Taraxacum spp.) and reared
under natural light conditions, with an average temperature of
25◦C during the day and 15–20◦C at night until pupations. A fa-
ther from the white selection line and mother from the yellow
selection line were crossed, then collected and dry-frozen along
with their F1 pupae at −20◦C in 1.5 mL-sterile Eppendorf tubes.

For short-read sequencing of the father (sample ID:
CAM015099; ENA accession No.: ERS4285278) and mother
(sample ID: CAM015100; ENA accession No.: ERS4285279), DNA
was extracted from adult thoraces using a Qiagen DNeasy Blood
& Tissue Kit (Qiagen, Hilden, Germany) following the manufac-
turer’s protocol, then library preparation and sequencing was
performed by Novogene (Hong Kong, China). Illumina NEBNext
(New England Biolabs, Ipswich, Massachusetts, USA) libraries
were constructed with an insert size of 350 bp, following the
manufacturer’s protocol, and sequenced with 150-bp paired-
end reads on an Illumina NovaSeq 6000 platform (Illumina
NovaSeq 6000 Sequencing System, RRID:SCR 016387) (Illumina,
San Diego, California, USA).

For long-read sequencing of a single F1 pupal offspring
(Sample ID: CAM015101; ENA accession No.: ERS4285595), high–
molecular weight DNA was extracted from the entire body of
an F1 pupa using a Qiagen Blood & Culture DNA Midi Kit (Qi-
agen, Hilden, Germany) following the manufacturer’s protocol,
then library preparation and sequencing was performed by the
Wellcome Sanger Institute (Cambridge, UK). A SMRTbell CLR
(continuous long reads) sequencing library was constructed fol-
lowing the manufacturer’s protocol and sequenced on 5 SMRT
(single-molecule real-time) cells within a PacBio Sequel System
(PacBio Sequel System, RRID:SCR 017989) (Pacific Biosciences,
Menlo Park, California, USA) using version 3.0 chemistry and 10-
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Figure 1: Discrete colour morphs of Arctia plantaginis males. Whilst forewings remain white, hindwings are polymorphic with variable black patterns, existing as

discrete (A) yellow, (B) white, and (C) red morphs, which can only be found in the Caucasus region. (A–C) Pinned dead morphs. (D,E) Examples of morphs in the wild.
Photos: Johanna Mappes and Ossi Nokelainen.

hour runs. This generated 3,474,690 subreads, with a subread
N50 of 18.8 kb and total of 39,471,717,610 bp. From the same sam-
ple, a 10X Genomics Chromium linked-read sequencing library
(10X Genomics, Pleasanton, California, USA) was also prepared
following the manufacturer’s protocol, and sequenced with 150-
bp paired-end reads on an Illumina HiSeq X Ten platform (Illu-
mina HiSeq X Ten, RRID:SCR 016385) (Illumina, San Diego, Cal-
ifornia, USA). This generated 625,914,906 reads, and after map-
ping to the assembly described below, we estimate a barcoded
molecule length of ∼43 kb.

Trio binning genome assembly

Canu version 1.8 (Canu, RRID:SCR 015880) [19] was used to bin
A. plantaginis F1 offspring Pacific Biosciences (PacBio) subreads
into those matching the paternal and maternal haplotypes de-
fined by k-mers specific to the maternal and paternal Illumina
data (Supplementary Fig. S1). This resulted in 1,662,000 subreads
assigned to the paternal haplotype, 1,529,779 subreads assigned
to the maternal haplotype, and 2,445 (0.07%) subreads unas-
signed. Using only the assigned reads, the haplotype-binned
reads were assembled separately using wtdbg2 version 2.3 (wt-
dbg2, RRID:SCR 017225) [20], with the “-xsq” pre-set option for
PacBio Sequel data and an estimated genome size of 550 Mb.
The assemblies were polished using Arrow version 2.3.3 [21] and
the haplotype-binned PacBio reads. The 10X linked-reads were
then used to scaffold each assembly using scaff10x [22], followed
by another round of Arrow polishing on the scaffolds. To pol-
ish further with the 10X linked-read Illumina data, we first con-
catenated the 2 scaffolded assemblies, mapped the 10X Illumina
data with Long Ranger version 2.2.0 [23] longranger align, called
variants with freebayes version 1.3.1 [24], then applied homozy-
gous non-reference edits to the assembly using bcftools consen-
sus [25]. The assembly was then split back into paternal and
maternal components, giving separate paternal haplotype (iAr-
cPla.TrioW) and maternal haplotype (iArcPla.TrioY) assemblies.

Assembly contaminants were identified and removed by
checking the assemblies against vector/adapter sequences [26],
common contaminants in eukaryotes [27] and mitochondrial
sequences [28]. The assemblies were also checked against all
chromosome-level genome sequences for other organisms from

the RefSeq database version 85 [29]. This identified 2 scaffolds
with mouse contamination, which were subsequently removed.
The assemblies were further manually assessed and corrected
using gEVAL [30] with the available PacBio and 10X data. This
process involved locating regions of zero or extreme PacBio read
coverage and missed or mis-joins indicated by the 10X data, then
evaluating the flagged discordances and correcting them where
possible, which were typically missed joins, mis-joins, and false
duplications.

KAT version 2.4.2 [31] was used to compare k-mers from the
10X Illumina data to k-mers in each of the haplotype-resolved
assemblies, and in the combined diploid assembly represent-
ing both haplotypes. For this analysis we used parameter K =
21, which clearly identified error, haploid, and diploid peaks
for our dataset. Phasing of the assembled contigs and scaf-
folds was visualized using the parental k-mer databases pro-
duced by Canu [32]. To provide an estimate of assembly con-
sensus accuracy, a quality value (QV) was computed for each
assembly using Merqury version 1.0 [33]. Haploid genome size,
heterozygosity, and repeat fraction of the F1 offspring were
estimated using GenomeScope (GenomeScope, RRID:SCR 01701
4) [34] and k-mers derived from the 10X Illumina data. As-
semblytics [35] was used to detect structural variants (SVs)
between the parental haplotypes. For this, a whole-genome
alignment was performed between the haplotype assemblies
using the Nucmer module of MUMmer version 3.23 (MUM-
mer, RRID:SCR 018171) [36] with Assemblytics recommended
options.

Comparative quality assessment

To assess the quality of each parental haplotype of the A. plan-
taginis trio-binned assembly, standard contiguity metrics were
computed, and assembly completeness was evaluated by cal-
culating BUSCO scores using BUSCO version 3.0.2 (BUSCO, RR
ID:SCR 015008), comparing against the “insecta odb9” database
of 1,658 Insecta BUSCO genes with default Augustus (Augus-
tus, RRID:SCR 008417) parameters [37]. A quality comparison
was conducted by comparing unscaffolded, Arrow-polished ver-
sions of the trio-binned assemblies against an unscaffolded,
Arrow-polished assembly of unbinned data from the same F1
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Figure 2: k-mer spectra plots for the Arctia plantaginis trio-binned genome assembly. Plots produced using KAT, showing the frequency of k-mers in an assembly vs

the frequency of k-mers (i.e., sequencing coverage) in the raw 10X Illumina reads, for the (A) combined diploid assembly (paternal plus maternal), (B) paternal-only
assembly (iArcPla.TrioW), and (C) maternal-only assembly (iArcPla.TrioY). Colours represent k-mer copy number in the assembly: black k-mers are not represented (0
copies), red k-mers are represented once (1 copy), purple k-mers are represented twice (2 copies), and green k-mers are represented thrice (3 copies). The first peak

corresponds to k-mers present in the raw reads but missing from the assembly due to sequencing errors, the second peak corresponds to k-mers from heterozygous
regions, and the third peak corresponds to k-mers from homozygous regions. These plots show a complete and well-separated assembly of both haplotypes in the F1
offspring diploid genome.

offspring (iArcPla.wtdbg2). Quality comparisons were also per-
formed for the final, scaffolded trio-binned assemblies against
a representative selection of published lepidopteran reference
genomes, for which the latest versions of 7 Lepidoptera species
were downloaded: Bicyclus anynana version 1.2 [38], Danaus plex-
ippus version 3 [39], Heliconius melpomene version Hmel.2.5 [40],
Manduca sexta version Msex 1.0 [41], and Melitaea cinxia ver-
sion MelCinx1.0 [42] were downloaded from Lepbase version
4.0 [12], whilst Bombyx mori version Bomo genome assembly [43]
was downloaded from SilkBase version 2.1 [44] and Trichoplu-
sia ni version PPHH01.1 [45] was downloaded from RefSeq ver-
sion 94 [46]. Cumulative scaffold plots were visualized in R ver-
sion 3.5.1 [47] using the ggplot2 package version 3.1.1 (ggplot2,
RRID:SCR 014601) [48].

Genome annotation

Genome annotations were produced for each parental haplotype
of the A. plantaginis trio-binned assembly using the BRAKER2
version 2.1.3 pipeline [49]. A de novo library of repetitive se-
quences was identified with both genomes using RepeatScout
version 1.0.5 (RepeatScout, RRID:SCR 014653) [50]. Repetitive re-
gions of the genomes were soft-masked using RepeatMasker
version 4.0.9 (RepeatMasker, RRID:SCR 012954) [51], Tandem Re-
peats Finder version 4.00 [52], and the RMBlast version 2.6.0 se-
quence search engine [53] combined with the Dfam Consensus-
20170127 database [54]. Raw RNA-seq reads were obtained from
Galarza et al. [55] under study accession No. PRJEB14172, which
came from whole-body tissue of A. plantaginis larvae from 2
families reared under 2 heat treatments. Using cutadapt ver-
sion 1.8.1 (cutadapt, RRID:SCR 011841) [56], RNA-seq reads were
trimmed for adapter contamination and quality trimmed at both
ends of each read using a quality value of 3 (-q 3,3). Quality con-
trol was performed before and after trimming with fastqc ver-
sion 0.11.8 [57]. RNA-seq reads were mapped to each respec-
tive genome using STAR version 2.7.1 [58]. Arthropod proteins
were obtained from OrthoDB [59] and aligned to the genomes us-
ing GenomeThreader version 1.7.0 [60]. BRAKER2’s ab initio gene
predictions were carried out using homologous protein and de
novo RNA-seq evidence using Augustus version 3.3.2 [49] and
GeneMark-ET version 4.38 [49]. Annotation completeness was

assessed using BUSCO version 3.0.2 against the “insecta odb9”
database of 1,658 Insecta BUSCO genes with default Augustus
parameters [37].

Cytogenetic analysis

Spread chromosome preparations for cytogenetic analysis were
produced from wing imaginal discs and gonads of third to
fifth instar larvae, according to Šı́chová et al. [61]. Female and
male genomic DNA were extracted using the CTAB (hexade-
cyltrimethylammonium bromide) method, adapted from Win-
nepenninckx et al. [62]. These were used to generate probe and
competitor DNA, respectively, for genomic in situ hybridization
(GISH). Female genomic probe was labelled with Cy3-dUTP (cya-
nine 3-deoxyuridine triphosphate; Jena Bioscience, Jena, Ger-
many) by nick translation, following Kato et al. [63] with a
3.5-hour incubation at 15◦C. Male competitor DNA was frag-
mented with a 20-minute boil. GISH was performed follow-
ing the protocol of Yoshido et al. [64]. For each slide, the hy-
bridization cocktail contained 250 ng of female labelled probe,
2–3 μg of male competitor DNA, and 25 μg of salmon sperm
DNA. Preparations were counterstained with 0.5 mg/mL DAPI
(4′,6-diamidino-2-phenylindole; Sigma-Aldrich, St. Louis, Mis-
souri, USA) in DABCO antifade (1,4-diazabicyclo[2.2.2]octane;
Sigma-Aldrich, St. Louis, Missouri, USA). Results were observed
in the Zeiss Axioplan 2 Microscope (Carl Zeiss, Oberkochen,
Germany) and documented with an Olympus CCDMonochrome
Camera XM10, with the cellSens 1.9 digital imaging soft-
ware (Olympus Europa Holding, Hamburg, Germany). Images
were pseudo-colored and superimposed in Adobe Photoshop
CS3.

Population genomic analysis

We implemented the novel A. plantaginis reference assembly
to analyse patterns of population genomic variation between
40 wild, adult males sampled from the European portion of A.
plantaginis’ Holarctic species range [18]. Samples were collected
by netting and pheromone traps from central Finnish (n = 10)
and southern Finnish populations (n = 10) where yellow and
white morphs exist in equal proportions, an Estonian popu-
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Table 1: Genome annotation statistics for the Arctia plantaginis trio-binned assembly

Statistic iArcPla.TrioW (paternal) iArcPla.TrioY (maternal)

Total genome size (bp) 584,621,344 577,993,050
Repetitive sequences (bp) 239,949,688 247,356,128
Masked repeats (%) 41.04 42.80
Mapped RNA-seq reads (n) 599,065,138 590,780,528
Mapped RNA-seq reads (%) 366,732 94.13
Protein-coding genes (n) 19,899 18,894
Mean gene length (bp) 5,966 5,951
BUSCO Completeness (%; n: 1,658) 98.00 95.90
Repeat elements (n)

Total 1,220,592 1,232,654
DNA Transposons 366,732 372,834
LTRs 127,169 139,770
LINEs 425,833 433,388
SINEs 43,022 71,790
Unclassified 257,836 214,872

Statistics generated using the BRAKER2 pipeline, for the paternal (iArcPla.TrioW) and maternal (iArcPla.TrioY) haplotype assemblies. LINE: long interspersed terminal
repeat; LTR: long terminal repeat; SINE: short interspersed nuclear element.

lation (n = 5) where white morphs are frequent compared to
rare yellow morphs, a Scottish population (n = 10) where only
yellow morphs exist, and a Georgian population (n = 5) where
red morphs exist alongside yellow morphs (Fig. 5A). Exact sam-
pling localities are available in Supplementary Table S1. Whole
genomic DNA extraction and short-read sequencing was per-
formed following the same method as described for short-read
sequencing of parental genomes during trio binning assembly.
ENA accession numbers for all resequenced samples are avail-
able in Supplementary Table S2.

Reads were mapped against the paternal iArcPla.TrioW as-
sembly (chosen owing to higher assembly completeness; Ta-
ble 2) using BWA-MEM version 7.17 [65] with default parameters,
resulting in a mean sequencing coverage of 13× (Supplemen-
tary Table S2). Alignments were sorted with SAMtools version
1.9 (SAMtools, RRID:SCR 002105) [66] and PCR-duplicates were
removed with Picard version 2.18.15 (Picard, RRID:SCR 006525)
[67]. Variants were called for each sample using GATK Hap-
lotypeCaller version 3.7 [68, 69], followed by joint genotyping
across all samples using GATK version 4.1 GenotypeGVCFs [68,
69], with expected heterozygosity set to 0.01. The raw single-
nucleotide polymorphism (SNP) call set was quality filtered by
applying thresholds: quality by depth (QD > 2.0), root mean
square mapping quality (MQ > 50.0), mapping quality rank sum
test (MQRankSum > −12.5), read position rank sum test (Read-
PosRankSum > −8.0), Fisher strand bias (FS < 60.0), and strand
odds ratio (SOR < 3.0). Filters by depth (DP) of greater than half
the mean (DP > 409x) and less than double the mean (DP <

1,636x were also applied. Linkage disequilibrium (LD) pruning
was applied using the ldPruning.sh script [70] with an LD thresh-
old of r2 < 0.01, in 50-kb windows shifting by 10 kb. This call set
was further filtered for probability of heterozygosity excess P-
value > 1 × 10−5 using VCFtools version 0.1.15 (VCFtools, RRID:
SCR 001235) [71] to exclude potential paralogous regions, giving
our analysis-ready call set.

An unrooted, maximum likelihood (ML) phylogenetic tree
was constructed to evaluate phylogenomic relationships, using
our analysis-ready call set, which was further reduced in size
by subsampling every other SNP. The best-scoring ML tree was
built in RAxML version 8.2.12 [72] with 100 rapid bootstrap repli-
cates, using the GTRGAMMA model (generalized time-reversible
substitution model and gamma model of rate heterogeneity)

and Lewis ascertainment bias correction to account for the lack
of monomorphic sites, then visualized in FigTree version 1.4.4
(FigTree, RRID:SCR 008515) [73]. A principal component analysis
(PCA) was also conducted to evaluate genome-wide population
structure. A minor-allele frequency filter of 0.05 was applied to
our analysis-ready call set using VCFtools version 0.1.15 [71] to
remove PCA-uninformative SNPs, then PCA was performed in R
version 3.5.1 [47] using the SNPRelate package version 3.3 [74].

Results and Discussion
Trio binning genome assembly

The k-mer spectra plots (Fig. 2) indicate a highly complete
assembly of both parental haplotypes in the A. plantaginis
diploid offspring genome. There is good separation between the
parental haplotypes because each haploid assembly consists
mostly of single-copy k-mers with low frequency of 2-copy k-
mers, indicating a correctly haplotype-resolved assembly with
low levels of artefactual duplication (Fig. 2B and C; Supplemen-
tary Fig. S2). This is also confirmed by the spectra plot for the
combined diploid assembly (Fig. 2A), where homozygous regions
consist mostly of 2-copy k-mers and heterozygous regions con-
sist mostly of 1-copy k-mers, as expected from the presence of
both complete, parental haplotypes and low artefactual dupli-
cation. Using Merqury [33], we estimated QV scores of Q34.7 for
the paternal (iArcPla.TrioW) assembly and Q34.2 for the mater-
nal (iArcPla.TrioY) assembly, indicating high (>99.9%) assembly
accuracy.

Using GenomeScope [34], we estimated the F1 offspring hap-
loid genome size to be 590 Mb with a repeat fraction of 27% and
whole-genome heterozygosity of ∼1.9% (Supplementary Fig. S3).
This value was similar to our mean heterozygosity estimate of
∼1.8% in a wild, Finnish population (Supplementary Table S4;
method described in Supplementary Text S2), demonstrating
that our reference assembly is representative of natural vari-
ation in a wild population. The slight discrepancy may be ex-
plained by the parents used for trio binning assembly being de-
rived from different selection lines, leading to greater heterozy-
gosity between the trio-binned parental haplotypes. Assemblyt-
ics [35] detected 32,203 SVs between the haplotype assemblies,
affecting 51.6 Mb of the genome (Supplementary Table S5; Sup-
plementary Fig. S4). Successful haplotype separation was facili-
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Table 2: Comparison of assembly contiguity and completeness between Arctia plantaginis and 7 publicly available lepidopteran assemblies

Assembly contiguity Assembly completeness (%)

Assembly size
(Mb)

Total scaf-
folds/contigs

Longest scaf-
fold/contig

(Mb) N50 (kb) N50 count

Total
complete
BUSCOs

Single copy
BUSCOs

Duplicated
BUSCOs

Arctia plantaginis
(binned: iArcPla.TrioW,
scaffolded assembly)

585 1,069 21.5 6,730 24 98.1 96.9 1.2

Arctia plantaginis
(binned: iArcPla.TrioY,
scaffolded assembly)

578 1,050 24.4 9,770 18 96.4 95.3 1.1

Arctia plantaginis
(binned: iArcPla.TrioW,
unscaffolded
assembly)

585 1,441 11.4 2,000 75 97.4 96.4 1.0

Arctia plantaginis
(binned: iArcPla.TrioY,
unscaffolded
assembly)

578 1,290 23.8 4,016 37 95.1 94.1 1.0

Arctia plantaginis
(unbinned:
iArcPla.wtdbg2,
unscaffolded
assembly)

615 2,948 11.3 1,840 85 96.9 94.8 2.1

Bicyclus anynana 475 10,800 5.04 638.3 194 97.6 96.8 0.8
Bombyx mori 482 696 21.5 16,796 13 98.4 97.2 1.2
Danaus plexippus 249 5,397 6.24 715.6 101 98.0 96.0 2.0
Heliconius melpomene 275 332 18.1 14,308 9 97.7 96.7 1.0
Manduca sexta 419 20,871 3.25 664.0 169 96.7 93.9 2.8
Melitaea cinxia 390 8,261 0.668 119.3 970 83.0 82.9 0.1
Trichoplusia ni 333 1,916 8.93 4,648 27 97.4 96.6 0.8

Standard contiguity and BUSCO completeness metrics generated for each genome assembly, highlighting the high-quality A. plantaginis assembly achieved by trio
binning. See Fig. 3 for assembly contiguity visualization via cumulative scaffold plots, and Supplementary Table S3 for the full BUSCO analysis summary.

tated by the high estimated heterozygosity (∼1.9%) of the F1 off-
spring genome, as it has previously been discussed that higher
heterozygosity makes trio binning easier [6]. Indeed, greater het-
erozygosity levels were obtained through our same-species A.
plantaginis cross than obtained previously through same-species
crosses for zebra finch (∼1.6%) [9], Arabidopsis (∼1.4%) [6], bovid
(∼0.9%) [6], and human (∼0.1%) [6] trio-binned assemblies, as
well as an inter-species yak (Bos grunniens) × cattle (Bos taurus)
cross (∼1.2%) [7].

Genome annotation

We identified and masked 222,866,714 bp (41.04%) and
227,797,418 bp (42.80%) of repetitive regions in the iArc-
Pla.TrioW and iArcPla.TrioY assemblies, respectively (Ta-
ble 1). The BRAKER2 pipeline annotated a total of 19,899
protein-coding genes in the soft-masked iArcPla.TrioW
genome with 98.00% BUSCO completeness, whilst 18,894
protein-coding genes were annotated in the soft-masked
iArcPla.TrioY genome with 95.90% BUSCO completeness
(Table 1).

Comparative quality assessment

The paternal (iArcPla.TrioW) assembly contains 1,069 scaffolds
with N50 = 6.73 Mb and 98.1% complete BUSCOs, and the mater-
nal (iArcPla.TrioY) assembly contains 1,050 scaffolds with N50 =
9.77 Mb and 96.4% complete BUSCOs (Table 2). Prior to scaffold-

ing work with 10X data, both unscaffolded trio-binned assem-
blies are already more contiguous and complete than a compos-
ite haploid iArcPla.wtdbg2 assembly produced using unbinned
data from the same individual (Table 2; Fig. 3A). This illustrates
the quality improvement achieved by separating haplotypes be-
fore assembly, and further improvement of the trio-binned as-
semblies after scaffolding with 10X linked-reads (Table 2). The
trio-binned assemblies are also less inflated than the unbinned
assembly with halved duplicated BUSCOs (Table 2; Fig. 3A), sug-
gesting a reduction in artefactual assembly duplication at het-
erozygous sites through read binning.

The trio-binned A. plantaginis assemblies are of compara-
ble quality to the best reference genomes available for Lepi-
doptera (Table 2; Fig. 3B). When compared to other published lep-
idopteran reference genomes, the quality of the A. plantaginis as-
semblies surpasses all but the best Heliconius melpomene [40] and
Bombyx mori [43] assemblies (Table 2; Fig. 3B). As contiguity of the
H. melpomene assembly was improved through pedigree linkage
mapping and haplotypic sequence merging [40], whilst bacte-
rial artificial chromosome and fosmid clones were used to close
gaps in the B. mori assembly [43], it is impressive that trio binning
has instantly propelled contiguity of the A. plantaginis genome
to very near that of H. melpomene and B. mori, before incorporat-
ing information from additional technologies. Therefore, these
comparisons strongly support trio binning as an effective strat-
egy for de novo assembly of highly heterozygous genomes. Future
scaffolding work has the potential to lead to a chromosomal-
scale A. plantaginis assembly.
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Figure 3: Cumulative scaffold plots visualize the high assembly contiguity of the trio-binned Arctia plantaginis genome. A highly contiguous assembly is represented by
a near vertical line with a short horizontal tail of trailing tiny scaffolds. (A) Comparison of the unscaffolded A. plantaginis trio-binned assemblies iArcPla.TrioW (paternal
haplotype) and iArcPla.TrioY (maternal haplotype) against the unscaffolded composite assembly using unbinned data from the same individual (iArcPla.wtdbg2). The
much steeper curve and shorter horizontal tail for the trio-binned assemblies compared to the unbinned assembly shows that trio binning greatly improved contiguity.

(B) Comparison of the A. plantaginis trio-binned assemblies against a representative selection of published lepidopteran genomes, shown up to the first 10,000 scaffolds.
This comparison demonstrates that the A. plantaginis trio-binned assemblies are much more contiguous than most other lepidopteran genomes currently available.

Cytogenetic analysis

Mitotic nuclei prepared from wing imaginal discs of A. plantagi-
nis larvae contained 2n = 62 chromosomes in both sexes (Fig. 4),
in agreement with a previously reported modal chromosome
number of arctiid moths [75], which is also the likely ances-
tral lepidopteran karyotype [42]. These insights will be helpful
for future scaffolding work into a chromosomal-scale A. plan-
taginis reference assembly. Chromosomes decreased gradually
in size, as is typical for lepidopteran karyotypes [76]. Owing to
the holokinetic nature of lepidopteran chromosomes, separa-
tion of sister chromatids by parallel disjunction was observed
in mitotic metaphases [77]. Notably, the 2 smallest chromo-
somes separated earlier compared to the other chromosomes
(Fig. 4A), although this could be an artefact of the spreading
technique used for chromosome preparation. The presence of
a W chromosome was confirmed in female nuclei by genomic
in situ hybridization (Supplementary Fig. S5; Supplementary
Text S2).

Population genomic variation across the European
range

As an empirical application of the A. plantaginis reference
genome, we conducted a population resequencing analysis to
describe genomic variation between 40 wild A. plantaginis males
from 5 populations spread across Europe (Fig. 5A). PCA revealed
clear population structuring with individuals clustering geo-
graphically by country of origin (Fig. 5B), in congruence with
strongly supported phylogenomic groupings also by country of
origin (Fig. 6). Central and southern Finnish individuals grouped
into a single population as expected from their geographic prox-
imity (Figs 5B and 6). The Finnish and Estonian populations clus-
tered together away from the Scottish population along prin-
cipal component (PC) 2 (Fig. 5B) and on the phylogenetic tree
(Fig. 6), as would be predicted by effects of isolation by distance
[78]. The Georgian population was highly genetically differen-
tiated from all other sampled European populations, separat-
ing far along PC1 (Fig. 5B) and possessing a much longer inter-



8 A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis)

Figure 4: Cytogenetic analysis reveals 31 chromosomes in the Arctia plantaginis haploid genome. Chromosomes were counterstained with DAPI (blue). (A) Male mitotic

metaphase consisted of 2n = 62 chromosomes. Note separated chromatids of the smallest chromosome pair (arrowheads). (B) Female mitotic complement consisted
of 2n = 62 elements. Scale bar = 5 μm.

Figure 5: Sampling locations and population structure across Arctia plantaginis’ European geographic range. (A) Sampling locations of 40 wild A. plantaginis males from
the European portion of the Holarctic species range (see Supplementary Table S1 for exact sampling coordinates). Circle size represents sample size (central Finland:
n = 10, Estonia: n = 5, Scotland: n = 10, southern Finland: n = 10, Georgia: n = 5), and circle colour indicates the proportion of each hindwing colour morph collected.
(B) Genome-wide PCA (n = 40; 752,303 SNPs) with principal component 1 plotted against principal component 2, explaining 7.22% and 5.88% of total genetic variance,

respectively.

population branch in the ML tree (Fig. 6). Because the Georgian
population has a distinctive genomic composition from the rest
of the sampled distribution, this could support the hypothesis of
incipient speciation in the Caucasus [18]. However, populations
must be sampled in the large geographic gap between Georgia
and the other populations in this preliminary analysis to deter-
mine whether genetic differentiation still persists when com-
pared to nearby central European populations.

Internal branch lengths were strikingly shorter within the
Georgian population, indicating much higher intra-population
relatedness than in populations outside of Georgia (Fig. 6). This
signal of low genetic variation within Georgia was unlikely
caused by sampling relatives because individuals were collected
from a large population. Whilst further sampling is required to
confirm whether the signal persists across the Caucasus, this

finding casts doubt on the hypothesis that the A. plantaginis
species originated in the Caucasus, which is based on morpho-
logical parsimony [18]. If A. plantaginis spread from the Cauca-
sus with a narrow founder population, as suggested in Hegna
et al. [18], we would expect higher genetic diversity in the Cau-
casus compared to the other geographic regions. Similar pat-
terns of strong genetic differentiation and low genetic diver-
sity in the Caucasus and other European mountain ranges have
been observed in the Holarctic butterfly Boloria eunomia [79],
which likely retreated into refugia provided by warmer micro-
habitats within European mountain ranges during particularly
harsh glaciation periods. Perhaps a similar scenario occurred
in A. plantaginis, with founders of the Caucasus population re-
stricted during severe glacial conditions. The species origin of
A. plantaginis therefore remains unknown and may be clarified
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Figure 6: Maximum likelihood unrooted phylogeny of wild Arctia plantaginis males (n = 40) from the European geographic range. Tree constructed using RAxML with

100 rapid bootstraps, using 558,549 SNPs. Node labels indicate bootstrap support. See Fig. 5A for sampling locations.

by future inclusion of an Arctia outgroup to root the phylogenetic
tree.

Conclusions

By converting heterozygosity into an asset rather than a hin-
drance, trio binning provides an effective solution for de novo as-
sembly of heterozygous regions, with our high-quality A. plan-
taginis reference genome paving the way for the use of trio
binning to successfully assemble other highly heterozygous
genomes. As the first trio-binned genome available for any in-
vertebrate species, our A. plantaginis assembly adds support to
trio binning as the best method for achieving fully haplotype-
resolved, diploid genomes. Our assembly further highlights that
trio binning can work well for a non-model system, provided
a family trio can be obtained, which remains challenging for
many non-model systems where it is difficult to obtain both
parents and rear their offspring. Finally, the high-quality A.
plantaginis reference assembly and annotation itself will con-
tribute to Lepidoptera comparative phylogenomics by broaden-
ing taxonomic sampling into the Erebidae family, whilst facili-
tating genomic research on the A. plantaginis evolutionary study
system.

Availability of Supporting Data and Materials

The trio-binned assemblies, annotations, and all raw sequenc-
ing data for Arctia plantaginis reported in this article are available
under ENA study accession No. PRJEB36595. All supporting data
and materials are available in the GigaScience GigaDB database
[80].

Additional Files

Supplementary Figure S1: PacBio read length distribution for the
Arctia plantaginis F1 offspring genome.
Supplementary Figure S2: k-mer blob plot visualizing
haplotype-specific k-mers for Arctia plantaginis.
Supplementary Figure S3: GenomeScope profile of the Arctia
plantaginis F1 offspring genome.
Supplementary Figure S4: Comparison of structural variant
sizes between the Arctia plantaginis trio-binned haplotype as-
semblies.
Supplementary Figure S5: Cytogenetic analysis of Arctia plan-
taginis sex chromosomes.
Supplementary Text S1: Results for cytogenetic analysis of Arctia
plantaginis sex chromosomes.
Supplementary Text S2: Method for estimating wild Arctia plan-
taginis genome heterozygosity.
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Supplementary Table S1: Exact sampling localities of wild Arctia
plantaginis males used in population genomic analysis.
Supplementary Table S2: Resequenced genome statistics for
wild Arctia plantaginis males used in population genomic anal-
ysis.
Supplementary Table S3: Full BUSCO summary for Arctia plan-
taginis and 7 publicly available lepidopteran genome assemblies.
Supplementary Table S4: Heterozygosity per male in the wild
Finnish Arctia plantaginis population.
Supplementary Table S5: Structural variant sizes present be-
tween the Arctia plantaginis trio-binned haplotype assemblies.
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