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Abstract

Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by gonadotropes in the 

anterior pituitary that plays a central role in controlling ovarian folliculogenesis and 

steroidogenesis in females. Moreover, recent studies strongly suggest that FSH exerts extragonadal 

actions, particularly regulating bone mass and adiposity. Despite its crucial role, the mechanisms 

regulating FSH secretion are not completely understood. It is evident that hypothalamic, ovarian, 

and pituitary factors are involved in the neuroendocrine, paracrine, and autocrine regulation of 

FSH production. Large animal models, such as the female sheep, represent valuable research 

models to investigate specific aspects of FSH secretory processes. This review: (i) summarizes the 

role of FSH controlling reproduction and other biological processes; (ii) discusses the 

hypothalamic, gonadal, and pituitary regulation of FSH secretion; (iii) considers the biological 

relevance of the different FSH isoforms; and (iv) summarizes the distinct patterns of FSH 

secretion under different physiological conditions.

I. INTRODUCTION

Follicle-stimulating hormone (FSH) is a heterodimeric glycoprotein hormone secreted by 

gonadotropes in the anterior pituitary that plays a central role in reproduction. In female 

mammals, FSH stimulates antrum formation in secondary ovarian follicles, growth and 

maturation of antral follicles, and proliferation of granulosa cells and estradiol production 

(Hunzicker-Dunn and Maizels 2006; Richards 1994). The requirement for FSH in female 

reproduction is evidenced by clinical and animal studies. Women with loss-of-function 

mutations in the genes encoding the FSH beta subunit (FSHB) or the FSH receptor (FSHR) 

manifest arrest in follicle development at the preantral stage and associated amenorrhea 

(Huhtaniemi and Themmen 2005). Transgenic mouse models with deficiency (knockout) in 

those genes exhibit similar ovarian perturbations (Danilovich, et al. 2000; Kumar, et al. 

1997).

In males, FSH mediates induction of aromatase and acts upon Sertoli cells to support 

spermatogenesis (Pomerantz, 1979; Ramaswamy and Weinbauer 2014). Despite these 

important roles, the absolute requirement for FSH on male reproduction has been a topic of 
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debate. Men with loss-of-function mutation in the FSHR gene present clinically with 

different levels of oligozoospermia and may manifest normal fertility, subfertility, or 

complete infertility (Tapanainen, et al. 1997). In male mice, deficiency in the FSHβ gene 

does not impair fertility despite reduced testes size and sperm counts (Kumar et al. 1997). 

Therefore, these observations suggest that FSH contributes to spermatogenesis, however, it 

may not be critically required for fertility in males.

In addition to the classical regulation of reproductive organs, recent evidence indicates that 

FSH also exerts important extragonadal effects (Sun et al. 2006; Kumar 2017). The FSHR is 

expressed on different extragonadal tissues, including bone (Sun, et al. 2006) and adipose 

tissue (Liu, et al. 2017). Epidemiological and clinical observations suggest that FSH directly 

regulates bone mass. During perimenopausal transition, women experience a drastic increase 

in bone turnover, which is highly correlated to elevated circulating concentrations of FSH 

independent of estrogen levels (Sowers, et al. 2003). Similarly, there is a strong correlation 

between elevated concentrations of FSH and low bone mass in women with amenorrhea 

(Devleta, et al. 2004). Moreover, women with polymorphisms in FSHR that result in 

constitutively active FSHR exhibit rapid reduction in bone density and higher prevalence of 

osteoporosis (Rendina, et al. 2010). In female mice, deletion of the FSHR prevents the 

negative effects of ovariectomy on bone density (Sun et al. 2006), further indicating that the 

rise in FSH levels after ovariectomy (or menopause in women) drives bone loss. This 

premise was corroborated recently by observations that immunoneutralization of FSH 

prevents the ovariectomy-induced bone loss in mice (Zhu, et al. 2012). Interestingly, FSH 

immunoneutralization also results in a reduction in total, visceral, and subcutaneous fat 

volume in wild-type mice (Liu et al. 2017). Administration of the FSH antibody also 

prevents the increase in adiposity seen after ovariectomy in female mice (Liu et al. 2017). 

Therefore, FSH immunoneutralization could act as a dual-purpose intervention with 

promising future clinical applications for treating both obesity and osteoporosis in women 

during the perimenopausal transition (Liu et al. 2017).

While the studies mentioned above provide evidence that FSH may contribute directly to the 

regulation of bone resorption and, thereby, bone mass, it is important to note that several 

studies present contradicting results. More recently, Allan et al. (2010) reported no 

detectable FSHR mRNA in mouse bone or cultured osteoblasts or osteoclasts, suggesting 

that FSH regulates bone mass indirectly, likely via ovary-dependent mechanisms. Moreover, 

Danilovich et al. (2000) reported that FSHR knockout mice have elevated androgen levels, 

raising the possibility that changes in bone mass reported by Sun et al. (2006) could result 

from local aromatization of these androgens. Therefore, future studies are required to 

confirm the putative direct effect of FSH on bone mass and other extragonadal targets. For 

additional information regarding the extragonadal actions of FSH, readers are referred to 

Kumar (2017) and Zhu, et al. (2018).

II. FSH STRUCTURE, ISOFORMS, AND BIOLOGICAL ACTIVITY

FSH is a heterodimeric glycoprotein comprised of a common α subunit noncovalently 

linked with a hormone-specific β subunit (FSH-β) (Baenziger and Green, 1988; Ryan et al. 

1988). The α subunit (chorionic gonadotropin alpha [CGA]) is common to 3 pituitary 
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glycoprotein hormones, FSH, luteinizing hormone (LH) and thyroid stimulating hormone 

(TSH), whereas the β chain is unique to each hormone and confers specific biological 

function (Baenziger and Green 1988). Separately, the two FSH chains are not able to bind 

and activate receptors and need to be associated in a dimeric structure to exhibit biological 

activity (Andersen 2002). After the dimeric structure is formed and before release into the 

circulation, oligosaccharide structures are added to two N-linked glycosylation sites present 

on each subunit resulting in the glycosylation of FSH (Andersen 2002). The structure of 

oligosaccharides attached to the FSH peptide backbone is highly variable resulting in a 

variety of different hormone isoforms (Creus, et al. 2001). Additionally, each carbohydrate 

branch may or may not terminate in a negatively charged sialic acid residue, which results in 

a wide array of isoforms with different isoelectric points (Andersen 2002). Consequently, 

more acidic isoforms have higher numbers of sialic acid residues, reflecting a more complex 

branching pattern, whereas less acidic isoforms have fewer sialic acid residues (Ulloa-

Aguirre and Timossi 2000). As discussed below in the section “IV. Pattern of FSH secretion 

during different physiological states”, different regulators and physiological states control 

the pattern of FSH glycosylation, thus modulating the availability of the different FSH 

isoforms.

The metabolism and biological activity of different FSH isoforms are influenced by the 

glycosylation pattern and content of sialic acid residues. FSH molecules with higher number 

of sialic acid residues (acidic isoforms) have lower metabolic clearance rates compared to 

isoforms with lower sialic acid content (less acidic isoforms) (Blum et al. 1985; 

Padmanabhan, et al. 1999; Ulloa-Aguirre and Timossi 2000). Consequently, the plasma half-

life of less acidic isoforms is markedly shorter than that of more acidic isoforms (Blum et al. 

1985; Andersen 2002). However, despite the shorter half-life, the less acidic isoforms of 

FSH have been shown to have higher binding affinity for the FSHR and greater efficiency to 

stimulate proliferation of granulosa cells and rapid preantral follicular growth (Barrios-De-

Tomasi et al. 2002). Additionally, less acidic FSH isoforms are significantly more effective 

than more acidic isoforms in stimulating ovarian synthesis and secretion of estrogens in vivo 
and in vitro (Barrios-De-Tomasi, et al. 2002). In contrast, more acidic FSH isoforms induce 

higher ovarian synthesis of inhibin-A when compared to less acidic isoforms (Ulloa-Aguirre, 

et al. 2003). Collectively, most in vitro an in vivo studies indicate that less acidic FSH 

isoforms exhibit higher potency compared to more acidic isoforms, although there are a few 

exceptions in which the reverse occurs. This may occur because in addition to sialic acid 

composition, the complexity of oligosaccharide branching also plays a role in determining 

the biological activity of the different FSH isoforms (Creus et al. 2001). For additional 

information regarding FSH structure, glycobiology, and the biological activity of the 

different FSH isoforms, readers are referred to previously published reviews (Bousfield and 

Harvey 2019; Padmanabhan et al. 1999; Smitz, et al. 2016).

III. REGULATION OF FSH SECRETION

Regulation of FSH production and release is an intricate process that involves hypothalamic 

(neuroendocrine), gonadal (endocrine), and pituitary (autocrine and paracrine) factors 

(Figure 1). Importantly, the different levels of FSH regulation not only control synthesis and 

secretion, but also posttranslational modifications of FSH, such and glycosylation and a 
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sialylation (Sairam et al. 1985; Ulloa-Aguirre, et al. 1995). Several factors pose challenges 

for investigators to better understand the mechanisms underlying the regulation of FSH 

secretion. First, as discussed previously, FSH is secreted as a mixture of numerous isoforms 

with different half-life (Padmanabhan et al. 1999; Padmanabhan and Sharma 2001). Second, 

while different stimulus promotes FSH secretion, most FSH present in the peripheral 

circulation is secreted soon after synthesis in a constitutive manner (Padmanabhan et al. 

1997; McNeilly, et al. 2003; Nicol et al., 2004; Wang et al. 2014). This differential secretion 

of gonadotropins is possible, at least in part, because FSH and LH are stored into different 

secretory granules within gonadotropes (Nicol et al. 2004; McNeilly et al. 2003). The 

relatively long half-life coupled with the constitutive mode of FSH secretion result in 

sustained levels of FSH in the peripheral circulation that hinder the detection of FSH 

secretory pulses, which are predominantly comprised of short-lived less acidic FSH isoforms 

(Padmanabhan, et al. 2002). Third, existing assays to measure FSH are unable to 

discriminate between the different FSH isoforms (Padmanabhan et al. 2002; Stanton, et al. 

1996). Therefore, unlike LH, pulsatile patterns of FSH secretion from the anterior pituitary 

cannot be characterized effectively based on peripheral FSH measurements. In this regard, 

large animal models, such as the female sheep, represent valuable biological models to 

investigate the neuroendocrine control of FSH secretion. This is primarily because these 

animals are suitable for surgical procedures that allow parallel monitoring of hypothalamic 

and pituitary hormone levels near the site of their release (e.g., portal vasculature 

cannulation) and allow collection of repetitive blood samples due to their large blood volume 

(Padmanabhan et al. 2002).

The following sections will discuss: (i) the hypothalamic regulation of FSH; (ii) the ovarian 

factors controlling FSH; (iii) the autocrine and paracrine regulation of FSH at the pituitary 

level; and (iv) the differential regulation of LH and FSH, the two gonadotropins co-

synthesized within the gonadotropes, by these hypothalamic-pituitary-gonadal factors. 

While relevant findings from different species will be presented, these sections will highlight 

important contributions that the sheep model has made to advance our understanding of the 

regulation of FSH secretion and the potential benefits that the use of large animal models 

can provide to this research field. Additionally, this review will focus primarily on FSH 

secretory aspects; detailed information regarding FSH synthesis can be found elsewhere 

(Bernard, et al. 2010; Bousfield & Dias 2011; Das and Kumar 2018; Thompson & Kaiser, 

2014).

a. Hypothalamic Regulation of FSH Secretion

Gonadotropin-releasing hormone (GnRH).—Since its discovery, GnRH, a 

hypothalamic decapeptide secreted into the pituitary portal vasculature, is arguably the most 

important regulator of FSH secretion (Schally, et al. 1971). With the exception of the 

preovulatory GnRH/gonadotropin surge, GnRH is secreted in a pulsatile fashion to stimulate 

LH and FSH secretion by gonadotrope cells. The pattern of GnRH pulsatile secretion, 

including pulse frequency and amplitude, changes throughout the reproductive cycle and is 

largely modulated by ovarian steroids (Karsch, et al. 1987). Perifusion studies have clearly 

shown that administration of GnRH pulses induces the pulsatile secretion of both LH and 

FSH from cultured pituitary cells from rodents (Ishizaka, et al. 1992; Weiss, et al. 1990) and 
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sheep (Padmanabhan et al. 2002). However, a clear association between GnRH and FSH 

pulsatile secretion was not evident in whole-animal studies in which blood samples were 

collected from the peripheral circulation. The primary reasons for this lack of clear 

association are discussed above and include the relative long half-life of FSH and the 

predominantly constitutive pattern of FSH release.

The development of surgical procedures to collect blood samples directly from the 

hypothalamic-hypophyseal portal system of conscious and physiologically uncompromised 

sheep (Caraty, et al. 1982; Clarke, et al. 1983) has proved invaluable in elucidating the 

associations between GnRH and FSH secretion. With this approach, portal blood vessels in 

the anterior limit of the pituitary gland are cut and blood containing undiluted, freshly 

secreted hypothalamic and pituitary hormones can be sampled. Using this surgical approach, 

studies in in the female sheep have shown that FSH is indeed secreted in a pulsatile manner 

and that a clear temporal association exists between GnRH and FSH pulses (Padmanabhan, 

et al. 1997). While studies monitoring peripheral concentrations of gonadotropins in GnRH-

immunoneutralized rats had shown similar findings (Culler and Negro-Vilar 1987), 

characterization of GnRH and FSH secretory patterns in the sheep pituitary portal 

vasculature confirmed the interrelationship between GnRH and FSH pulses.

FSH-releasing factor.—Despite the well-characterized association between GnRH and 

FSH pulsatile secretion, anatomical, physiological, and biochemical data suggest that a 

second hypothalamic factor may regulate the secretion of FSH. Evidence for the existence of 

an FSH-releasing factor (FSH-RF) is briefly discussed below. For detailed information on 

this topic, readers are referred to earlier reviews (McCann, et al. 2001; Padmanabhan and 

McNeilly 2001).

Evidence supporting the existence of FSH-RF derives from neuroanatomical studies that 

demonstrated that hypothalamic regions that do not contain GnRH neurons are involved in 

the control of FSH secretion. Ablation (Lumpkin and McCann 1984) or deafferentation 

(Lamperti and Hill 1987) of the dorsal anterior hypothalamic area (DAHA) selectively 

suppressed FSH secretion. A subsequent study confirmed that radiofrequency lesions of the 

DAHA suppressed FSH secretion in female rats (Lumpkin, et al. 1989). Collectively, these 

data suggest that separate mechanisms regulate LH and FSH secretion and that the DAHA is 

an important brain region controlling the latter.

Physiological evidence that supports the existence of FSH-RF derives from animal studies 

that report the secretion of FSH pulses that are not associated with GnRH pulses. Studies 

demonstrating episodic pattern of FSH in the peripheral circulation after blockage of GnRH 

action with GnRH antagonists in rats or immunization against GnRH in ovariectomized 

rabbits provide strong evidence for the existence of GnRH-independent FSH pulses (Culler 

and Negro-Vilar 1987; Pau, et al. 1991). While the persistence of FSH pulses in peripheral 

blood might result from different clearance rates of the various FSH isoforms, our studies in 

the female sheep demonstrate the existence of GnRH-independent FSH pulses also in the 

pituitary portal blood, providing evidence to the contrary (Padmanabhan et al. 1997). These 

studies in portal-vasculature cannulated sheep demonstrate: 1) a clear one-to-one 

relationship between GnRH and LH pulses; 2) that all GnRH pulses are associated with FSH 
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pulses; and 3) the existence of additional FSH pulses that are not associated with GnRH 

pulses (GnRH-independent pulses of FSH). The existence of a GnRH-independent 

component of episodic FSH secretion was further confirmed by the observation that 

administration of Nal-Glu, a GnRH antagonist, eliminated LH but not FSH pulsatility in the 

sheep pituitary portal vasculature (Padmanabhan, et al. 2003).

Finally, biochemical evidence also supports the notion that a hypothalamic factor other than 

GnRH controls FSH secretion by the anterior pituitary. Using pig and sheep hypothalamic 

tissues, McCann, et al. (1983) were able to partially separate different hypothalamic extracts 

that had more FSH-releasing activity than could be accounted for by the content of GnRH. A 

preparation with strong FSH-releasing biological activity free of GnRH was obtained 

subsequently after ion exchange chromatography of ovine hypothalamic extracts (Lumpkin, 

et al. 1987). Identification of different GnRH isoforms in lower vertebrates (Lin, et al. 1998) 

raised the possibility that one of the GnRH variants could be the long sought after FSH-RF. 

This possibility was supported by the findings that receptors for a second isoform of GnRH 

(GnRH-II) were present in gonadotropes and that GnRH-II does not potently stimulate LH 

release (Millar, et al. 2001; Padmanabhan et al. 2003). In sheep, GnRH-II administration 

produced a higher ratio of FSH to LH secretion than that achieved with GnRH treatment, 

although GnRH was markedly more effective than GnRH-II in stimulating secretion of 

either of the gonadotropins (Millar et al. 2001). However, more recent studies contradict 

these earlier findings. Studies in sheep and rhesus monkeys reported no selective FSH-

releasing activity for GnRH-II (Densmore and Urbanski 2003; Gault, et al. 2003). Similar 

observations were reported in vitro using cultured primate pituitaries (Okada, et al. 2003). 

Collectively, these observations suggest that GnRH-II has only weak selective actions 

inducing FSH secretion and, unlike GnRH, the primary role of GnRH-II in the brain is not to 

stimulate gonadotropin secretion (Kauffman and Rissman 2006). While other studies 

implicated a third GnRH isoform (lamprey GnRH-III) as a FSH-RF candidate (Wen, et al. 

1997; Yu, et al. 2002), several studies have reported no selective FSH-releasing action of 

lamprey GnRH-III (Amstalden, et al. 2004; Kovacs, et al. 2002), thus leaving this issue 

currently unresolved.

b. Ovarian Regulation of FSH Secretion

Gonadal Steroids.—Gonadotropins stimulate sex steroid production by the gonads, 

which in turn feedback to the hypothalamus and pituitary to regulate gonadotropin secretion. 

In general, androgens, progestogens, and estrogens have the potential to exert negative 

feedback effects and suppress FSH release, either via direct effects in the pituitary 

(estrogens) or indirectly by suppressing GnRH secretion by the hypothalamus (Gharib, et al. 

1990; Nett et al., 2002). Estrogens also have positive feedback actions on GnRH secretion 

prior to ovulation. In the female sheep, a large body of work demonstrated that sex steroids 

exert negative feedback effects on the GnRH neurosecretory system resulting in diminished 

GnRH release and subsequent reduced gonadotropin secretion (Clarke, et al. 1989; Karsch, 

et al. 1997). In addition to hypothalamic actions, gonadal steroids act directly at the anterior 

pituitary level in both males and females (Gharib et al. 1990; Martin, et al. 1988). The 

importance of direct steroid actions in the pituitary are clearly demonstrated by the infertile 

phenotype observed in female mice lacking the estrogen receptor α specifically in 
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gonadotropes (Gieske, et al. 2007). The effects of gonadal steroids on the pituitary are 

mediated via several processes, including modifications in the expression of the GnRH 

receptor (Gregg and Nett 1989), transcription of FSHβ mRNA and FSH secretion (Bernard, 

et al. 2010), and FSH posttranslational modifications (Bousfield and Harvey 2019; Ulloa-

Aguirre et al. 1992). For detailed information regarding the steroid regulation of FSH 

biosynthesis, readers are referred to Gharib et al. (1990) and Bernard et al. (2010).

Activins, Inhibins, and Follistatins.—In addition to gonadal steroids, regulatory 

proteins secreted by the gonads, specifically activin, inhibin, and follistatin are also 

important contributors to the amount of FSH secreted (Carroll, et al. 1989; Ling et al. 1986; 

Ueno, et al. 1987; Vale, et al. 1986; Vale, et al. 1988). Activin and inhibin are members of 

the transforming growth factor β superfamily and are structurally related (Ling et al. 1986; 

Ying 1988). Inhibin α, βA, and βB subunits are encoded by different genes and these 

subunits dimerize to form inhibin A (α-βA), inhibin B (α-βB), activin A (βA-βA), activin B 

(βB-βB), and activin AB (βA-βB) (Ying 1988). Follistatin is a monomeric protein that binds 

to the β subunit of both activin and inhibin (Phillips and de Kretser 1998). Activin stimulates 

intracellular signaling in gonadotropes that results in enhanced expression of FSHB mRNA 

and subsequent FSH release primarily due to its constitutive pattern of secretion (Ling, et al. 

1986; Pangas and Woodruff 2000). Inhibin and follistatin appear to regulate FSH secretion 

primarily by antagonizing activin’s action rather than by directly initiating signaling events 

(DePaolo, et al. 1991; Padmanabhan and West 2001). Inhibins, which are secreted by 

granulosa and luteal cells in the ovary, act in an endocrine manner to suppress synthesis and 

consequently the amount of FSH secreted (Padmanabhan and West 2001; Woodruff, et al. 

1996). Inhibins bind to activin receptors on gonadotropes and, via competitive antagonism, 

prevent activins from triggering intracellular signaling pathways (Cook, et al. 2004). 

Follistatins are structurally different from activins and inhibins, but bind to activins with 

high affinity preventing their receptor binding (Thompson, et al. 2005). Follistatins also 

inhibit FSH secretion by promoting internalization and degradation of activins, thus 

reducing their bioavailability (Cash, et al. 2009).

The endocrine role of these regulatory proteins has been demonstrated in different studies. A 

negative relationship between inhibin and FSH concentrations in the peripheral circulation 

supports this premise (Padmanabhan and West 2001). Moreover, at the time of menopause, a 

decrease in inhibin B is associated with the hallmark increase in circulating concentrations 

of FSH, consistent with a negative feedback relationship between inhibin and FSH (Klein 

and Soules 1998). In support for an endocrine role for follistatin are the observations that 

administration of recombinant human follistatin to sheep result in a marked suppression in 

FSH but not in LH concentrations (Padmanabhan and Sharma 2001). Additionally, these 

studies in the female sheep reported that after administration of follistatin the clearance of 

total follistatin was slower than that of free follistatin, providing evidence for activin-bound 

follistatin and thus indirect evidence for the presence of free activin in the circulation 

(Padmanabhan and Sharma 2001). Additional information on the ovarian regulatory proteins 

that control FSH synthesis can be found elsewhere (Bernard et al. 2010; Bilezikjian, et al. 

2006; Das and Kumar 2018; DePaolo et al. 1991).
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c. Pituitary Regulation of FSH Secretion

Studies in the last two decades have confirmed that inhibin, activin, and follistatin are 

produced in many tissues including the anterior pituitary gland (Bilezikjian, et al. 2004; 

Padmanabhan et al. 2002). Therefore, these proteins have been postulated to act in an 

autocrine and paracrine fashion to locally control FSH production and secretion (Besecke, et 

al. 1996; DePaolo, et al. 1991; Padmanabhan and West 2001). Moreover, changes in the 

gonadal steroid profile have been shown to result in modifications in the expression patterns 

of activin, inhibin, and follistatin in the anterior pituitary (Bilezikjian, et al. 2001).

One of the first evidences supporting local pituitary modulation of FSH secretion came from 

studies that showed that exposure of cultured pituitary cells from rats to an antiserum that 

neutralized the effects of activin B resulted in marked suppression of FSH secretion 

(Corrigan, et al. 1991). Additional support for a paracrine control of FSH came from studies 

that showed a negative relationship between the expression pattern of follistatin and FSHβ 
mRNA expression, and a positive relationship between activin and FSHβ expression 

(Besecke et al. 1996; Dalkin, et al. 1999). Using follistatin to neutralize locally produced 

activin, our studies in perifused ovine pituitary cells provide direct evidence that FSH 

secretion can be considerably modulated by changes in activin tone in the pituitary 

(Padmanabhan et al. 2002). In agreement, other studies have found that activin stimulates 

FSHβ mRNA expression and FSH secretion in fetal human pituitary cultures as well as in 

some pituitary adenomas (Blumenfeld and Ritter 2001; Takano, et al. 1992).

d. Differential control of LH and FSH

The numerous endocrine and local regulators of both constitutive and pulsatile secretion of 

FSH act in concert to mediate selective release of FSH. Different endocrine and molecular 

mechanisms have been proposed to explain the differential regulation of FSH and LH in 

different physiological conditions. As mentioned previously, GnRH is secreted in pulses and 

the nature of these pulses (both frequency and amplitude) impacts the relative synthesis and 

secretion of both gonadotropins (Burger, et al. 2004). Rapid GnRH pulses (every 30 to 60 

min) tend to favor LH release, whereas slower GnRH pulses (every 2 to 4 hours) 

preferentially stimulate synthesis and secretion of FSH (Kaiser, et al. 1997). Therefore, 

physiological changes in GnRH pulse frequency may explain situations in which FSH and 

LH are differently regulated. Notably, FSH does not appear to depend on GnRH pulsatile 

stimulation to the extent required for LH secretion, since daily injections of GnRH are 

sufficient to stimulate marked increases in FSH content in the pituitary and plasma 

concentrations, but not LH in GnRH-deficient mice (Charlton, et al. 1983). Studies in the 

rhesus monkey also indicate that higher frequency of GnRH pulses favor LH secretion, 

while lower frequency favors FSH secretion (Wildt, et al. 1981). While changes in GnRH 

pulse characteristics may explain changes in the overall amount of FSH released, they do not 

explain the presence of FSH pulses that are not associated with GnRH, particularly after 

pharmacological blockage of GnRH actions. There are two plausible explanations for the 

persistent episodic pattern of FSH secretion in the absence of GnRH pulses. First, as 

discussed previously, the existence of other hypothalamic factors that selectively regulate 

FSH secretion (e.g., FSH-RF) could explain the presence of FSH pulses in the absence of 

GnRH and LH pulses (Padmanabhan and McNeilly 2001). Second, a time lag in the 
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response of activin, inhibin, and follistatin to GnRH input could result in increased or 

decreased FSH secretion in the absence of changes in LH secretion that would culminate in 

what appears to be GnRH-independent pulses of FSH (Padmanabhan et al. 2002).

Regarding the molecular mechanism that likely contribute to the differential regulation of 

LH and FSH, studies have shown that the GnRH receptor has several regulatory elements 

and binding of GnRH to its receptor can activate multiple intracellular signaling pathways 

that could result in differential transcription of FSHβ and LHβ (Bernard et al. 2010). 

Additionally, while intracellular calcium influx is well known to regulate LH release by 

gonadotropes, it does not appear to be involved in FSH secretion (Kile and Nett 1994). 

While the exact mechanisms involved remain unknown, it is possible that FSH-bound sialic 

acid residues may target translocation of FSH to different secretory granules than those 

containing LH, thereby providing a regulatory mechanisms for the differential secretion of 

both gonadotropins (Baenziger and Green 1988). For additional information regarding the 

molecular regulation of FSH synthesis and secretion, readers are referred to Das and Kumar 

(2018).

IV. PATTERN OF FSH SECRETION DURING DIFFERENT PHYSIOLOGICAL 

STATES

Pubertal Development.

The beginning of puberty is associated with increased GnRH activity and subsequent 

gonadotropin secretion in girls (Sizonenko, et al. 1970). The pattern of gonadotropin 

response to exogenous administration of GnRH also changes during pubertal development. 

Initially, the FSH response is relatively greater, but as puberty advances, the LH response 

increases and the relative FSH decreases, leading up to the adult pattern (Cumming 1990). 

This change in pattern of gonadotropin response to GnRH likely reflects the increased 

ovarian feedback at the pituitary level by sex steroids and protein regulators of FSH. In 

support of this, are the observations that the circulating concentrations of inhibin A and total 

follistatin, two negative regulators of FSH secretion, change in opposite directions during 

pubertal maturation in girls (Foster, et al. 2000). Concentrations of inhibin increase while 

follistatin levels decrease during pubertal development (Foster et al. 2000). Total 

concentrations of activin A, a positive regulator of FSH, remain unchanged during pubertal 

progression in girls. Therefore, the reduction in follistatin, a binding neutralizer of activin, in 

the face of relatively constant concentrations of total activin A suggests that the 

bioavailability of activin (free activin A) increases with pubertal maturation, such that 

activin could override the inhibin increase and contribute to the rise in FSH secretion that 

occurs during puberty (Foster et al. 2000).

In addition to changes in FSH secretory pattern, the proportion of the different FSH isoforms 

also changes during pubertal progression. While no changes are observed for LH isoforms, 

FSH composition shifts to more acidic isoforms during pubertal progression in girls 

(Phillips, et al. 1997). Although the underlying mechanisms regulating the changes in FSH 

isoforms during puberty remain unclear, changes in GnRH secretory pattern, circulating 
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concentrations of gonadal steroids, and endocrine or paracrine effects of protein regulators 

are all suspects (Ulloa-Aguirre et al. 1995).

Menstrual Cycle.

The reduction in circulating levels of estradiol, progesterone and inhibin A in the beginning 

of the menstrual cycle due to the demise of the corpus luteum reduces the inhibitory effects 

on the pituitary and allows FSH to rise in the early follicular phase and stimulate follicular 

growth and selection (Lee, et al. 1988; Mishell, et al. 1971; Yding Andersen 2017). At 

approximately Day 7 of the menstrual cycle, when selection of the dominant follicle occurs, 

FSH concentrations have already peaked and started to decline, with a continued slow 

decline until ovulation occurs (Lee, et al. 1988; Yding Andersen 2017). The general view is 

that this down regulation of FSH in the follicular phase of the menstrual cycle occurs due to 

increased estradiol production by the selected follicle, which in turn exerts a negative 

feedback at the anterior pituitary level. However, there appears to be a spatial-temporal issue 

with this premise since levels of FSH begin to decline several days prior to the rise in 

circulating concentrations of estradiol, suggesting that other ovarian factors, such as inhibin, 

activin, and follistatin may also play a role (Schneyer, et al. 2000; Yding Andersen 2017). 

The observations that inhibin B concentrations increase gradually during the follicular phase 

to reach a mid-cycle peak coincident with the pre-ovulatory gonadotrophin surge are 

supportive of this premise (Muttukrishna, et al. 1994).

During the midcycle, FSH and LH concentrations rise rapidly in response to the increased 

estradiol production by the preovulatory follicle (Reed and Carr 2015; Yding Andersen 

2017). While a GnRH surge is critical to drive the preovulatory gonadotropin surge in 

rodents (Sarkar et al. 1976) and sheep (Moenter et al. 1991),the gonadotropin surge in 

women appears to unfold in the absence of a midcycle GnRH discharge being generated 

instead by the interaction between a pulsatile GnRH input to the pituitary and an action of 

estradiol (Martin et al. 1998; Plant 2012). After falling immediately after the pre-ovulatory 

gonadotropin surge, inhibin A increases in parallel with serum progesterone to reach a peak 

during the mid-luteal phase (Muttukrishna et al. 1994). While concentrations of inhibin B 

rise immediately after the gonadotropin surge, they rapidly decrease during the luteal phase 

(Groome et al. 1996; Welt, 2004). Concentrations of FSH remain relatively low through 

most of the luteal phase primarily due to the inhibitory effects of inhibin A and the 

suppressive effects of progesterone on GnRH secretion (Lee, et al. 1988; Reed and Carr 

2015). Activin A concentrations vary in a biphasic manner during the menstrual cycle, with 

highest levels occurring around the midcycle and the late luteal phase (Muttukrishna, et al. 

1996). While it is possible that activin A plays an endocrine role during the menstrual cycle, 

findings that virtually all detectable activin A in the peripheral circulation is associated with 

binding proteins raise questions about its relative bioavailability for acting at the pituitary 

level (Muttukrishna et al. 1996).

During the luteal phase, progesterone also plays a role modulating FSH heterogeneity. In the 

presence of high progesterone levels, estradiol fails to increase the presence of less acidic 

isoforms of FSH in the circulation (Wide, et al. 1996). Moreover, during the luteal phase of 

the menstrual cycle, the predominant circulating isoform of FSH is acidic (Padmanabhan, et 
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al. 1988). Contrarily, during the follicular phase of the menstrual cycle, when estradiol levels 

are relatively high, the less acidic FSH isoforms predominate (Padmanabhan et al. 1988). 

Findings that estradiol decreases the expression of pituitary α 2,3-sialyltransferase, which 

incorporates sialic acid residues into the FSH molecule, provide a potential mechanism by 

which estradiol can stimulate increased production and secretion of less acidic isoforms of 

FSH (Damian-Matsumura, et al. 1999). As discussed in detail in other review articles 

(Bousfield and Harvey 2019; Padmanabhan et al. 1988; Ulloa-Aguirre et al. 2003), these 

changes in FSH heterogeneity are likely to play important biological roles in controlling 

ovarian processes during the menstrual cycle.

Perimenopause Transition.

A hallmark alteration observed during the perimenopause period is a continuous rise in FSH 

levels in the face of normal basal concentrations of LH, presumably due to declining 

estrogenic effects in the neuroendocrine system (Bäckström, et al. 1982; Reame, et al. 1996). 

It is believed that FSH secretion, due to its elevated sensitivity to the inhibitory effects of 

estradiol and inhibin, increases first in response to the decline in negative feedback from the 

aging ovary as the total number of responsive follicles markedly reduces during the 

perimenopause transition (Ferin, et al. 1993). While a reduced ovarian steroidogenic 

capacity could be involved in this FSH rise, enhanced FSH concentrations are observed in 

perimenopausal women with normal levels of ovarian steroids (Reame et al. 1996), 

suggesting that other ovarian regulators could be involved. In agreement, a substantial 

decrease in circulating levels of inhibin-B with no significant changes in estradiol or inhibin-

A were observed in women during the early perimenopausal phase (Burger, et al. 1998). 

Later during the perimenopausal period, inhibin-A and estradiol also fall markedly, further 

contributing to the FSH rise (Burger et al. 1998). An age-dependent reduction in follistatin 

was also reported in women during the perimenopause transition (Reame, et al. 2007). 

Collectively, these findings suggest that changes in the secretory pattern of these regulatory 

proteins, which occur before significant changes in circulating levels of estradiol, are 

consistent with enhanced activin bioavailability and may contribute to the perimenopausal 

rise in concentrations of FSH (Burger et al. 1998; Reame et al. 2007).

In addition to a rise in FSH concentrations, the perimenopausal transition is also 

characterized by changes in the FSH heterogeneity. The predominant FSH glycoforms 

during the perimenopausal transition are the least complex and more simple, yet very acidic 

isoforms (Anobile, et al. 1998). Because the perimenopausal phase is characterized by 

decreased circulating levels of estradiol, these findings further support the notion that 

estradiol increases the presence of less acidic FSH isoforms in the circulation (Wide et al. 

1996). In conjunction with the observations during the normal menstrual cycle, these 

findings in perimenopausal women suggest that changes in the steroidal milieu and ovarian 

production of protein regulators of FSH (e.g., inhibin and activin) modulate the carbohydrate 

complexity and charge of FSH (Figure 2). Therefore, this FSH heterogeneity may provide a 

secondary level of control by which FSH regulates ovarian function (Padmanabhan and 

Sharma 2001).
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V. CONCLUSIONS

This review provides an overview of the neuroendocrine, endocrine, paracrine, and autocrine 

regulation of FSH secretion and heterogeneity during different physiological states. At the 

hypothalamic level (neuroendocrine), GnRH pulses clearly stimulate FSH pulsatile 

secretion, particularly detectable when FSH is monitored close to the site of secretion (e.g., 
portal vasculature in sheep). Yet, GnRH-independent pulses of FSH suggest that other 

neuroendocrine factors, such as a putative FSH-RF, may also regulate the episodic release of 

FSH. At the ovarian level, sex steroids and inhibin act in an endocrine fashion to provide the 

primary negative feedback control of FSH biosynthesis and consequently to the constitutive 

release of FSH. It remains uncertain whether activin and follistatin produced by the ovary 

play an endocrine role in controlling FSH secretion. At the pituitary level, activin, inhibin 

(Bilezikjian et al. 1996; Peeters et al. 1997; Roberts et al. 1989), and follistatin produced 

locally act to form a paracrine/autocrine loop that contributes to the amount of FSH released. 

Hypothalamic, ovarian, and pituitary factors act in concert to control not only secretion of 

FSH but also heterogeneity, and changes in these regulators during different physiological 

states can ultimately modulate FSH biological activity and its effects in the gonads and 

extragonadal targets.

While it is well established that FSH has great therapeutic potential and it represents an 

indispensable part of fertility treatment in women, there are numerous FSH preparations 

commercially available or in development that have some differences related to the 

glycosylation patterns and biological activity (Smitz et al. 2016). Both urinary-derived 

products and FSH produced through recombinant techniques are currently available. Future 

studies are needed to provide additional information regarding their source, purity, potency, 

and biological activity and to guide clinicians to choose which preparation or combination of 

preparations will be administered to women undergoing assisted reproductive technologies 

and/or fertility treatment. Additionally, a better understanding of the extragonadal actions of 

FSH is warranted, particularly in light of the recent findings that suggest a potential causal 

link between FSH hypersecretion, bone loss, and increased adiposity in perimenopausal 

women (Kumar 2017; Liu et al. 2017; Sun et al. 2006).
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Figure 1. 
Schematic diagram of the hypothalamic, pituitary (local), and ovarian regulation of FSH 

secretion in female mammals. At the hypothalamic level, GnRH pulses are transported to the 

anterior pituitary by the hypothalamic-hypophyseal portal vasculature to stimulate FSH 

synthesis and secretion by gonadotrope cells. There is also evidence suggesting the existence 

of a hypothalamic FSH-releasing factor (FSH-RF). At the anterior pituitary level, a local 

loop involving activin, inhibin, and follistatin regulates FSH secretion in an autocrine/

paracrine fashion. At the ovarian level, estradiol and inhibin are two key negative feedback 
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regulators of FSH secretion. While the ovary also produces activin and follistatin, these 

hormones are not believed to play an endocrine role in controlling FSH secretion.
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Figure 2. 
Schematic summarizing the general changes in circulating levels of FSH regulators, FSH 

secretory patterns, and posttranslational modifications of FSH during pubertal progression, 

menstrual cycle, and perimenopause transition in women (reviewed in Cumming, 1990; 

Padmanabhan et al., 2002; Ulloa-Aguirre et al., 2003; and Yding Andersen, 2017). CL, 

corpus luteum; DF, dominant follicle.
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