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Abstract

Cognitive diagnostic computerized adaptive testing (CD-CAT) aims to obtain more useful diag-
nostic information by taking advantages of computerized adaptive testing (CAT). Cognitive diag-
nosis models (CDMs) have been developed to classify examinees into the correct proficiency
classes so as to get more efficient remediation, whereas CAT tailors optimal items to the exami-
nee’s mastery profile. The item selection method is the key factor of the CD-CAT procedure. In
recent years, a large number of parametric/nonparametric item selection methods have been
proposed. In this article, the authors proposed a series of stratified item selection methods in
CD-CAT, which are combined with posterior-weighted Kullback–Leibler (PWKL), nonpara-
metric item selection (NPS), and weighted nonparametric item selection (WNPS) methods, and
named S-PWKL, S-NPS, and S-WNPS, respectively. Two different types of stratification indices
were used: original versus novel. The performances of the proposed item selection methods
were evaluated via simulation studies and compared with the PWKL, NPS, and WNPS methods
without stratification. Manipulated conditions included calibration sample size, item quality, num-
ber of attributes, number of strata, and data generation models. Results indicated that the S-
WNPS and S-NPS methods performed similarly, and both outperformed the S-PWKL method.
And item selection methods with novel stratification indices performed slightly better than the
ones with original stratification indices, and those without stratification performed the worst.

Keywords

cognitive diagnostic assessment, computerized adaptive testing, nonparametric item selection
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Introduction

Cognitive diagnosis has recently received great attentions, as the U.S. government’s No Child

Left Behind Act (2001) mandated that diagnostic feedback should be provided to students,
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teachers, and parents. Cognitive diagnostic tests provide a profile for each examinee, specifying

which concepts and skills (a.k.a. attributes) students have mastered, so as to provide specific

instructions for the subsequent teaching work. Therefore, the cognitive diagnostic test not only

has an evaluation purpose, but also provides valuable information about each student’s learning

demands. In the past three decades, a multitude of models have been proposed for cognitive

diagnosis, such as the conjunctive ‘‘Deterministic Input, Noisy ‘And’ Gate’’ (DINA) model

(Haertel, 1989; Junker & Sijtsma, 2001), the ‘‘Noisy Input, Deterministic ‘And’ Gate’’ (NIDA)

model (Haertel, 1989; Junker & Sijtsma, 2001; Maris, 1999), the Fusion model (Hartz, 2002;

Hartz et al., 2002), the higher-order DINA (HO-DINA) model (de la Torre & Douglas, 2004),

the multiple-choice DINA (MC-DINA) model (de la Torre, 2009), the rule space model

(Tatsuoka, 1983), the compensatory ‘‘Deterministic Input, Noisy ‘Or’ Gate’’ (DINO) model

(Templin & Henson, 2006), the General Diagnostic model (GDM; von Davier, 2005, 2008), the

log-linear cognitive diagnosis model (LCDM; Henson et al., 2009), and the generalized DINA

(G-DINA; de la Torre, 2011) model, just to name a few.

With the rapid development of computer technology and measurement theory, computerized

adaptive testing (CAT) has been introduced into the field of testing since the early 1970s and

has become a very popular test mode. In CAT, items are selected sequentially depending on the

examinee’s responses to previous items and can be tailored to ‘‘best fit’’ the examinee’s latent

traits (Cheng, 2008). Therefore, CAT may provide more effective and accurate estimates of

latent traits using fewer items than conventional paper and pencil tests with a prefixed set of

items (Weiss, 1982). So it is an interesting research question how CAT can be used to help

improve cognitive diagnosis. There are some attempts to combine these two research areas and

develop cognitive diagnostic computerized adaptive testing (CD-CAT; e.g., McGlohen &

Chang, 2008; X. Xu et al., 2003). A version of CD-CAT has already been applied in determin-

ing whether or not students possess specific skills in the class (Jang, 2008). The purpose of CD-

CAT is to classify examinees according to their latent states, thus using the latent class model

as the measurement model. Therefore, it provides researchers and practitioners with challenges

of using computer adaptive platforms for cognitive diagnostic testing. A diagram of the CD-

CAT test process is shown in Figure 1.

Item selection methods play an important role in the CD-CAT procedure. In the past decade,

many item selection strategies have been adopted for CD-CAT, including the Kullback–Leibler

information index (KL; X. Xu et al., 2003), the Shannon entropy method (SHE; X. Xu et al.,

2003), the posterior-weighted Kullback–Leibler index (PWKL; Cheng, 2009), hybrid Kullback–

Leibler index (HKL; Cheng, 2009), the restrictive progressive method (RP; Wang et al., 2011),

the mutual information algorithm (MI; Wang, 2013), the G-DINA model discrimination index

(GDI; Kaplan et al., 2015), the posterior-weighted cognitive diagnostic model discrimination

index (PWCDI; Zheng & Chang, 2016), and others. Specifically, the MI and PWCDI methods

were proposed for short-length tests and were also suitable for the small-scale test. And Zheng

and Chang (2016) indicated that the PWCDI method performed better than the MI method.

In addition, Chang et al. (2018) proposed the nonparametric item selection (NPS) method

and the weighted nonparametric item selection (WNPS) method to select ‘‘best-fitting’’ items

for each examinee, which only required specification of Q-matrix and did not depend on any

statistical model, for educational settings with small samples. And Chang et al. (2018) illu-

strated that the NPS and WNPS methods outperformed the PWCDI and PWKL methods across

all simulated conditions. It was worth noting that the nonparametric classification (NPC)

method, developed by Chiu and Douglas (2013), was required in the NPS and WNPS methods

to obtain the estimates of examinees’ attribute patterns in the CD-CAT process. The NPC

method matched the observed item response patterns to the nearest ideal response pattern and

only required specification of the Q-matrix to classify by proximity to the ideal response
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pattern. The NPC method requires no statistical parameter estimation and can be used on a

sample size as small as 1 (Chiu & Douglas, 2013).

Recently, teachers and administrators have become increasingly interested in the tests for

assessing several fine-grained chunks of knowledge (DiBello & Stout, 2007). Therefore, to

achieve formative diagnostics and remedial instruction, one must provide more efficient and

accurate attribute profile estimation for teachers and each examinee. Cheng et al. (2009) found

that, in the CAT environment, stratification could improve measurement precision. To improve

the classification accuracy, the authors propose a series of stratified item selection methods in

CD-CAT, which are combined with the PWKL, NPS, and WNPS methods, and are named S-

PWKL, S-NPS, and S-WNPS, respectively. Meanwhile, two different types of stratification

Figure 1. A flowchart of the CD-CAT test process.
Note. CD-CAT = cognitive diagnostic computerized adaptive testing.
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indices were used: original versus novel. The item discrimination indicator for the DINA model,

defined by Li et al. (2016), is extended to the ones for the DINO model and the reduced repara-

meterized unified model (RRUM), which were treated as the novel stratification indices.

Therefore, the first goal of this study is to apply the NPC method as the attribute profile esti-

mation method in CD-CAT, whereas the PWKL method is used as the item selection method,

and explore its performance against the common profile estimation method maximum a poster-

iori (MAP) across all manipulated conditions. The second and most primary goal is to illustrate

the performance of the proposed item selection methods with different stratification indices and

compare them to the PWKL, NPS, and WNPS methods without stratification. This study pro-

vides important evidence and insight to build a stratified CD-CAT framework in the future.

The rest of the article is organized as follows. First, a brief review of cognitive diagnosis

models (CDMs) most widely used in CD-CAT is given. Next, two types of stratification indices

and a series of stratified item selection methods in CD-CAT are introduced in detail. Third, the

performances of the proposed item selection methods are evaluated via simulation studies. Last

but not least, some conclusions and directions for the future work are provided.

CDMs

The latent class models of cognitive diagnosis are usually restricted based on assumptions about

the basic process of the examinee’s responses to items. The authors only focus on three of them

(i.e., DINA, DINO, and RRUM models). For a full review of different CDMs, please refer to

Henson et al. (2009) and Rupp et al. (2010).

Some basic concepts and terms used in CDMs are introduced first. Let Yi = (Yi1, Yi2, . . .,

YiJ) denote the ith examinee’s dichotomous item responses to J items, where i = 1, 2, . . ., N,

with N indicating the number of examinees. Let ai = (ai1, ai2, . . ., aiK)# denote the attribute

profile of examinee i, where K is the number of attributes measured by the test, aik = 1 indi-

cates that the ith examinee has mastered the kth attribute, and aik = 0 otherwise. The Q-matrix,

Q = {qjk}(J3K), specifies the associations between items and attributes (Tatsuoka, 1985). It is a

binary matrix with the entry qjk = 1 indicating that a correct response to item j requires mastery

of the kth attribute when there is no guessing, and qjk = 0 otherwise. The Q-matrix is usually

identified by content experts and psychometricians.

Conjunctive latent class models for cognitive diagnosis represent that answering an item cor-

rectly requires the mastery of all attributes specified in the Q-matrix for the item. These models

also allow for slips and guesses in ways that distinguish the models from one another.

As a simple example of a conjunctive model, the DINA model was originally proposed by

Haertel (1989), as an extension of the two-class model of Macready and Dayton (1977), and

later discussed extensively by Junker and Sijtsma (2001). It relates item responses to a set of

latent attributes. Let hij be the ideal response which connects the ith examinee’s attribute pat-

tern and elements of the Q-matrix. hij = 1 indicates that the ith examinee possesses all the

required attributes of item j, and hij = 0 otherwise. It can be calculated as follows:

hij =
QK

k = 1

a
qjk

ik : ð1Þ

At the same time, the DINA model allows for ‘‘slipping’’ and ‘‘guessing.’’ Here, slips and

guesses are modeled at the item level. sj = P(Yij = 0|hij = 1) represents the probability of slip-

ping on the jth item when examinee i has mastered all the attributes it requires. gj = P(Yij =

1|hij = 0) denotes the probability of correctly answering the jth item when an examinee has not
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mastered all of the required attributes. The slipping and guessing parameters should meet the

following constraint: 0 \ gj \ 1 2sj \ 1, j = 1, 2, . . ., J.

The item response function (IRF) of the DINA model is

P Yij = 1
��ai

� �
= 1� sj

� �hij g
1�hij

j : ð2Þ

The DINA model requires only two easily interpretable parameters for each item, that is, sj and

gj. Both item parameters and examinees’ attribute patterns can be obtained using the maximum

likelihood estimation (MLE) method. The DINA model is therefore a popular and computation-

ally efficient model.

The NIDA model, introduced by Maris (1999), and named by Junker and Sijtsma (2001),

differs from the DINA model by defining attribute-level parameters (i.e., sk and gk). Let hijk

indicate whether or not the ith examinee correctly applied the kth attribute in completing the jth

item. Slipping and guessing parameters are indexed by attribute and are defined as follows:

sk = P hijk = 0jaik = 1, qjk = 1
� �

and

gk = P hijk = 1jaik = 0, qjk = 1
� � : ð3Þ

In the NIDA model, an item response is correct (i.e., Yij = 1) if all hijk values are equal to 1, that is,

Yij =
QK

k = 1 hijk . Assuming that hijk’s are independent conditional on ai, the IRF has the form:

P Yij = 1
��ai, s, g

� �
=
YK
k = 1

P hijk = 1
��aik , sk , gk

� �

=
YK
k = 1

1� skð Þaik g
1�aik

k

� �qjk

: ð4Þ

According to Equation 4, it can be seen that slipping and guessing parameters for different

attributes are constant over items. Therefore, the NIDA model is somewhat restrictive and

implies that IRFs remain the same for all items sharing the same attributes. It implies that item

difficulty levels would be exactly the same for many items; however, this is unrealistic to apply

to practical datasets. A straightforward extension of the NIDA model is the generalized NIDA

(G-NIDA) model where the slipping and guessing parameters are allowed to vary across the

items. Its IRF has the following form:

P Yij = 1
��ai, s, g

� �
=
YK
k = 1

1� sjk

� �aik
g

1�aik

jk

h iqjk

=
YK
k = 1

g
qjk

jk

YK
k = 1

1� sjk

gjk

	 
aikqjk

: ð5Þ

The IRF for the RRUM (Hartz et al., 2005) is given by

P Yij = 1jai

� �
= p�j

YK
k = 1

r�jk
qjk 1�aikð Þ

= p�j
YK
k = 1

r
�qjk

jk 3
YK
k = 1

1

r�jk

 !aikqjk
: ð6Þ
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where 0\p�j\1 denotes the probability of answering correctly for someone who possesses all

of the required attributes and 0\r�jk\1 can be thought of as a penalty parameter for those who

do not possess the kth attribute. By setting

p�j
QK

k = 1

r
�qjk

jk =
QK

k = 1

g
qjk

jk , and r�jk =
gjk

1�sjk
, ð7Þ

it appears that RRUM is an alternative way of parametrizing the G-NIDA model (de la Torre,

2011). The ideal response is defined as follows:

hij =
QK

k = 1

a
qjk

ik : ð8Þ

Conjunctive models require the intersection of a set of attributes. However, disjunctive mod-

els, which can be considered as the ‘‘opposite’’ of conjunctive models, require mastery of at

least one of the required attributes in the item. As an example, Templin and Henson (2006)

introduced the DINO model. The IRF of the DINO model is expressed as

P Yij = 1jai

� �
= gj

1�hijð Þ 1� sj

� �hij , ð9Þ

where hij = 1�
QK

k = 1 (1� aik)qjk is the ideal response and indicates whether or not at least one

of the attributes required in item j is mastered, and the definitions of sj and gj are the same as the

ones in the DINA model.

Method

To enhance the classification accuracy of the item selection methods, the authors proposed a

series of stratified item selection methods by stratifying the item bank based on a stratification

index, similar to the a-stratification method in CAT, in fixed-length CD-CAT. The key of CD-

CAT item bank stratification is item discrimination indices for CDMs. Next, the authors will

introduce two types of item discrimination indices for CDMs as the stratification indices.

Original Stratification Index

Rupp et al. (2010) introduced two types of item discrimination indices for CDMs: the classical

test theory (CTT)-based global indices and the KL information–based indices, in which the

CTT-based global indices can be regarded as the counterpart of the a parameter in the item

response theory (IRT) and thus as the original stratification index (Zheng & Wang, 2017). The

CTT-based global indices for the DINA, DINO, and RRUM models are as follows:

d
original
j, DINA = 1� sj � gj, ð10Þ

d
original
j, DINO = 1� sj � gj, ð11Þ

d
original
j, RRUM = p�j � p�j

QK
k = 1

r
�qjk

jk : ð12Þ

According to Equation 7, it can be obtained p�j =
QK

k = 1 (1� sjk)qjk , and thus Equation 12 is

equivalent to the following form:
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d
original
j, RRUM =

QK
k = 1

1� sjk

� �qjk �
QK

k = 1

g
qjk

jk : ð13Þ

Novel Stratification Index

For the DINA model, Li et al. (2016) and Lee (2017) examined the diagnostic quality of each

item by the following indicator:

1� sj

� �
=sj

gj= 1� gj

� � , ð14Þ

which is the odds ratio between responding correctly to item j conditional on hij = 1 and

responding correctly to item j conditional on hij = 0. The item with the largest odds ratio is con-

sidered to be the most diagnostic item that discriminates well between examinees who have

mastered attributes required by that item (i.e., hij = 1) and those who have not mastered the

required attributes (i.e., hij = 0). Therefore, the above indicator can be treated as an item dis-

crimination index, and thus, as the novel stratification criterion for the DINA model, it is

denoted as dnovel
j, DINA.

Similarly, according to the definition of the novel stratification index and Equation 11, the

novel stratification index for the DINO model can be defined as follows:

dnovel
j, DINO =

1�sjð Þ=sj

gj= 1�gjð Þ : ð15Þ

For RRUM, according to Equations 5 to 8, the following can be obtained:

P Yij = 1jhij = 1
� �

=
QK

k = 1

1� sjk

� �qjk
, P Yij = 1jhij = 0
� �

=
QK

k = 1

g
qjk

jk : ð16Þ

Hence, based on the above definition and Equation 7, the novel stratification index for RRUM

can be defined as follows:

dnovel
j, RRUM =

QK
k = 1

1�sjkð Þqjk = 1�
QK
k = 1

1�sjkð Þqjk

	 

QK
k = 1

g
qjk

jk
= 1�

QK
k = 1

g
qjk

jk

	 
 =
p�j = 1�p�jð Þ

p�
j

QK
k = 1

r
�qjk

jk
= 1�p�

j

QK
k = 1

r
�qjk

jk

	 
 : ð17Þ

Given the stratification index and the item selection method (e.g., the PWKL, NPS, or

WNPS method), a simple stratification procedure for the CD-CAT can be described as follows:

Step 1: Partition the item bank into M levels according to the stratification index;

Step 2: Partition the test into M stages;

Step 3: In the mth stage, select nm items from the mth level based on the selection method

given above (note that test length = n1 + n2 + � � � + nM);

Step 4: Repeat Step 3 for m = 1, 2, . . ., M.

It is noted that the stratification method proposed here can be readily combined with all item

selection methods. However, in this study, only the PWKL, NPS, and WNPS methods will be

combined with the proposed stratification method, named S-PWKL, S-NPS,1 and S-WNPS2

methods, respectively.
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According to Chang and Ying (1999), three factors should be considered in selecting M, the

number of levels. The first factor is the variation of stratification indices within the level. If the

item bank consists of items with disparate stratification indices, a relatively large number of lev-

els are required. Conversely, if the item bank consists of items with similar stratification indices,

only a small number of levels are required. The second and third factors are test length and item

bank size, respectively. If the bank is large enough, M can be approximately equal to the test

length.

In addition, the size of each level also needs to be determined. Normally, it should be propor-

tional to the number of items being administered at that level, which ensures that exposure rates

of items at different levels will be similar.

Simulation Study

The primary goals of our simulation are to (a) illustrate the performances of the proposed strati-

fied item selection methods (i.e., S-PWKL, S-NPS, and S-WNPS) with different stratification

indices and (b) compare them with the PWKL, NPS, and WNPS methods without stratification.

First, a simple simulation was carried out to evaluate the performance of the NPC method

against MAP, which was a common profile estimation method, and the PWKL was used as the

item selection method in CD-CAT. Results indicated that the NPC method was comparable to

or better than the MAP method across almost all manipulated conditions. Interested readers can

refer to Online Supplement for details.

Design

Item bank generation. Either of the DINA, DINO, and RRUM models was considered as the data

generation model, respectively, with the number of attributes K2 {3, 5} (Chiu et al., 2018; G.

Xu et al., 2016) and the item bank size J = 350. The test length was L = 4K (Chang et al., 2018).

The Q-matrix is a J3K matrix with qjk ;
i:i:d:

Bernouli(0:5) for all j = 1, . . ., J and k = 1, . . ., K.

Every item was constrained to measure at least one of K attributes to avoid trivial rows in the Q-

matrix (Chang et al., 2018; Wang, 2013). The Q-matrix was regenerated from the Bernoulli(0.5)

for each condition, but it was the same in each replication for that condition. For three CDMs,

the guessing and slipping parameters were generated from U(0.1, 0.2) or U(0.2, 0.3), denoting

high and low item qualities, respectively (Chang et al., 2018). The effect of the number of strata

was also examined. The item bank was stratified into three and five strata (Yi & Chang, 2003)

for each of the stratified methods with a similar number of items according to the ascending

order of stratification indices described above. For the three-stratum condition, each of the first

two strata consists of 117 items and the third stratum has 116 items. For the five-stratum condi-

tion, each stratum consists of 70 items.

Examinee generation. Following a similar setting to Chang et al. (2018), to investigate the effect

of the error from item parameter calibration on the performance of the studied methods, three

sample sizes, N0 = 30, 50, and 100, were considered. It was worth noting here that the calibra-

tion samples were used to compute the weight of each item for the WNPS algorithm and cali-

brate the item parameters for the parametric item selection method (i.e., the PWKL method).

Like Chiu and Douglas (2013), N = 1000 examinees’ attribute patterns were generated from the

multivariate normal threshold model, which was used to mimic a realistic situation where attri-

butes were correlated and of unequal prevalence. The discrete a was linked to an underlying

multivariate normal distribution, ui ~ MVN(0K, S), where the covariance matrix S had the fol-

lowing structure:
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P
=

1 r � � � r

r 1 � � � r

..

. ..
. . .

. ..
.

r r � � � 1

2
6664

3
7775,

and r was set to be 0.5. Let ui = (ui1, ui2, . . ., uiK)# denote the K-dimensional vector of latent con-

tinuous scores for examinee i. The attribute pattern ai = (ai1, ai2, . . ., aiK)# was determined by

aik =
1, uik � F�1 k

K + 1

� �
0, otherwise

�
: ð18Þ

Item selection algorithms. Three item selection methods were used in this study, including S-

PWKL (the baseline condition), S-NPS, and S-WNPS with three types of stratification indices

(i.e., no stratification, original, and novel).

Parameter estimation. The attribute pattern estimates, â, were obtained by the NPC method.

Stopping rule. The fixed-length method (L = 4K) was used to terminate the procedures.

Therefore, there were 3 (calibration sample size) 3 2 (number of attributes) 3 3 (data gener-

ation models) 3 2 (item quality) 3 1 (attribute structure) 3 2 (number of strata) = 72 data gen-

eration conditions for the simulation study. For each condition, 100 replications were

conducted.

Evaluation Criteria

Results are summarized in terms of two evaluation indices. They describe the agreement

between the estimated and the known true attribute patterns. One is the pattern-wise agreement

rate (PAR), denoting the correct classification rates of attribute patterns, formulated as

PAR =
PN
i = 1

I ½âi = ai�
N

: ð19Þ

The other is the attribute-wise agreement rate (AAR), denoting the correct classification rates of

individual attributes, defined as

AAR =
PN
i = 1

PK
k = 1

I ½âik = aik �
NK

: ð20Þ

The mean PAR and the mean AAR across the 100 replications were then obtained and reported.

Results

Summaries of PARs and AARs for various conditions when the number of attributes (K) was 3

and the number of strata (M) was 3 are presented in Figures 2 to 7.

Figure 2 shows the PARs when the generating model is the DINA model. It contains six sub-

figures. From the top to the bottom row, the item quality changes from high to low quality.

From the left to the right column, the calibration sample size (N0) increases from 30 to 100.

Within each subfigure, the vertical axis represents the PARs and the horizontal axis represents

three item selection methods (i.e., S-PWKL, S-NPS, S-WNPS). The performances of the above

three item selection methods with different stratification indices are reflected in each subfigure

by bars with different edges.
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Figure 3. PARs under the DINO model when K = 3 and number of strata = 3.
Note. PARs = pattern-wise agreement rates; DINO = Deterministic Input, Noisy ‘‘Or’’ Gate; PWKL = posterior-

weighted Kullback–Leibler; NPS = nonparametric item selection; WNPS = weighted nonparametric item selection.

Figure 2. PARs under the DINA model when K = 3 and number of strata = 3.
Note. PARs = pattern-wise agreement rates; DINA = Deterministic Input, Noisy ‘‘And’’ Gate; PWKL = posterior-

weighted Kullback–Leibler; NPS = nonparametric item selection; WNPS = weighted nonparametric item selection.
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Figure 4. PARs under the RRUM model when K = 3 and number of strata = 3.
Note. PARs = pattern-wise agreement rates; RRUM = reduced reparameterized unified model; PWKL = posterior-

weighted Kullback–Leibler; NPS = nonparametric item selection; WNPS = weighted nonparametric item selection.

Figure 5. Mean of AARs under the DINA model when K = 3 and number of strata = 3.
Note. AARs = attribute-wise agreement rate; DINA = Deterministic Input, Noisy ‘‘And’’ Gate; PWKL = posterior-

weighted Kullback–Leibler; NPS = nonparametric item selection; WNPS = weighted nonparametric item selection.
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In Figure 2, going from the top to the bottom row, it is clear that, with the decrease of the

item quality, that is, the guessing and slipping become larger, the PARs go down, which is

expected. Going from the left to the right column, when the calibration sample size increases,

Figure 7. Mean of AARs under the RRUM model when K = 3 and number of strata = 3.
Note. AARs = attribute-wise agreement rate; RRUM = reduced reparameterized unified model; PWKL = posterior-

weighted Kullback–Leibler; NPS = nonparametric item selection; WNPS = weighted nonparametric item selection.

Figure 6. Mean of AARs under the DINO model when K = 3 and number of strata = 3.
Note. AARs = attribute-wise agreement rate; DINO = Deterministic Input, Noisy ‘‘Or’’ Gate; PWKL = posterior-

weighted Kullback–Leibler; NPS = nonparametric item selection; WNPS = weighted nonparametric item selection.
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the change in PARs is fairly small. In general, the top right subfigure shows the highest PARs,

whereas the bottom left subfigure shows the lowest PARs. Within each subfigure, the item selection

methods with novel stratification index performed slightly better than the item selection methods

with original stratification index, and the item selection methods without stratification performed the

worst, which indicated the efficiency of the novel stratification index proposed in this study. In addi-

tion, as found by Chang et al. (2018), the S-WNPS and S-NPS methods performed similarly, and

both outperformed the S-PWKL item selection method. Furthermore, the S-NPS and S-WNPS

methods without stratification (i.e., NPS and WNPS) considerably outperformed the parametric

method (i.e., PWKL), and their corresponding PARs stayed high. It is worth noting that, applying

the stratification, the discrepancy between the nonparametric methods and the parametric method

decreased. This indicates that the stratification mechanism improved the classification accuracy of

the three item selection methods, especially for the parametric method. This finding is consistent

with previous studies (Chang & Ying, 1996, 1999, 2007; Hau & Chang, 2001).

Figures 3 and 4 are presented in the same way as Figure 2, for the conditions in which the

underlying model is the DINO model and the RRUM model, respectively. The patterns are very

similar. The PAR values under the DINO model are comparable to the ones under the DINA

model, whereas the PAR values under the RRUM model are lower than those under the DINA

and DINO models. The maximum difference is around 13%.

Figure 5 shows the AARs when the generating model is the DINA model. The top right sub-

figure shows that when the calibration sample size is 100 and the item quality is high, the AARs

reach around 98% when the S-WNPS with the novel discrimination index is used as the item

selection method. As the item quality becomes low, that is, the guessing and slipping go up, the

AARs quickly drop. The lowest AAR is between 0.86 and 0.87 when S-PWKL without stratifi-

cation (i.e., PWKL) is used, which occurs in the bottom left subfigure, where the item quality is

low and the calibration sample size is the smallest (N0 = 30).

Figures 6 and 7 summarize the AARs when the underlying model is the DINO model and the

RRUM model, respectively. The trends are largely similar to those discussed above, when the

underlying model is the DINA model.

The PARs and the AARs under various conditions when K is 5 and the number of strata is 3

are shown in Figures S1 to S6 (Online Supplement). The patterns and trends are all similar to

Figures 2 to 7. Given the limited space, the authors will not describe them in detail here. As

would be expected, when the number of attributes increased, the performance of the above three

item selection methods decreased.

It can be observed from Figures S7 to S18 (Online Supplement) that the case with five strata

shows the same kind of information as results when the number of strata is three. And all the

stratified methods performed similarly when the number of strata increased from three to five.

See details in Online Supplement.

Discussion

With the progress of science and computer technology, there has been growing interest in CD-

CAT. The CD-CAT purports to obtain individualized diagnostic feedback with the efficiency

brought by CAT (Cheng, 2009). And the item selection methods are the key to success in the

CD-CAT procedure.

This article introduced two types of stratification indices and proposed a series of stratifica-

tion item selection methods, which combined the PWKL, NPS, and WNPS methods (Chang et

al., 2018), to enhance the classification performance of these item selection methods.

Furthermore, the proposed item selection methods were compared against the original PWKL,

NPS, and WNPS methods via the simulation study. Results demonstrated the feasibility of

358 Applied Psychological Measurement 44(5)



using the two types of stratification indices and advantages of item selection methods with a

stratification mechanism over the ones without stratification, which is consistent with what the

authors expected. Therefore, this study suggests a stratified CD-CAT framework for practi-

tioners who intend to develop their own CD-CAT testing in the future.

The simulation design in this study was limited. Future studies can explore the termination

criteria under more comprehensive conditions. In this study, only fixed-length CD-CAT is con-

sidered. The fixed-length termination rule, which has been used frequently in CAT, leads to dif-

ferent degrees of measurement precision for different examinees (Hsu et al., 2013; Hsu &

Wang, 2015). Hence, the influence of variable-length CAT termination rule on the item selec-

tion methods and the corresponding terminal rules should be considered in the future. In addi-

tion, real CD-CAT programs need to consider operational issues, such as test security,

nonstatistical context constraints, content balancing (e.g., balancing attribute coverage; Cheng,

2010), and the calibration of Q-matrix (Lim & Drasgow, 2017).

As it is known that the model-based classification methods required the users to prespecify

the underlying model, the structure of the items (i.e., conjunctive or disjunctive) has to be

known in advance to guarantee the adequate performance of the NPC method (Chiu & Douglas,

2013). However, Chiu et al. (2018) introduced a general nonparametric classification (GNPC)

method, as an extension of the NPC method, and showed that the GNPC method assigned

examinees to the correct proficiency classes with a high rate of accuracy when sample sizes

were at the classroom level. However, usual statistical estimation techniques cannot be used in

the context of small-scale assessment simply, because the sample sizes were too small to guar-

antee reliable estimations of item parameters and examinees’ attribute patterns. In addition, the

most important feature of the GNPC method is that the GNPC method can be used to analyze

data that conform to general CDMs, which remedied the shortcomings of the NPC method.

Therefore, it is essential to introduce a general nonparametric item selection (GNPS) method

based on the GNPC method, which is analogous to construct the NPS method based on the

NPC method and investigate its performances with small-scale test settings.
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Notes

1. The Hamming distance between the observed response and ideal response patterns was used in the

NPS method (Chiu & Douglas, 2013).

2. In the WNPS method, the weighted Hamming distance was defined by weighting according to the

inverse sample variance, 1=(�pj(1� �pj)), where �pj indicated the proportion of examinees responding

correctly to item j (Chiu & Douglas, 2013).
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