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Abstract

One important application of transcranial magnetic stimulation (TMS) is to map cortical motor 

topography by spatially sampling the motor cortex, and recording motor evoked potentials (MEP) 

with surface electromyography. Standard approaches to TMS mapping involve repetitive 

stimulations at different loci spaced on a (typically 1 cm) grid on the scalp. These mappings 

strategies are time consuming and responsive sites are typically sparse. Furthermore, the long time 

scale prevents measurement of transient cortical changes, and is poorly tolerated in clinical 

populations. An alternative approach involves using the TMS mapper expertise to exploit the 

map’s sparsity through the use of feedback of MEPs to decide which loci to stimulate. In this 

investigation, we propose a novel active learning method to automatically infer optimal future 

stimulus loci in place of user expertise. Specifically, we propose an active Gaussian Process (GP) 

strategy with loci selection criteria such as entropy and mutual information (MI). The proposed 

method twists the usual entropy- and MI-based selection criteria by modeling the estimated MEP 

field, i.e., the GP mean, as a Gaussian random variable itself. By doing so, we include MEP 

amplitudes in the loci selection criteria which would be otherwise completely independent of the 

MEP values. Experimental results using real data shows that the proposed strategy can greatly 

outperform competing methods when the MEP variations are mostly conned in a sub-region of the 

space.
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1 INTRODUCTION

Transcranial magnetic stimulation (TMS), provides a non-invasive causal probe of human 

cortical function. A strong magnetic field applied to the scalp induces an electric field (E-

field) within the brain, which at sufficient intensity may result in suprathreshold 

depolarization of spatially selective cortical neuronal populations and a macroscopic 

physiological response [21]. TMS can be used for mapping muscle topography by spatially 

sampling the motor cortex, and recording motor evoked potentials (MEP) [25] using 

electromyography (EMG). Changes in motor topography assessed with TMS have been 

associated with changes in function post stroke, highlighting the potential of this technique 

for elucidating biomarkers of recovery [19].

Traditionally, data acquisition has involved a time consuming process in which repetitive 

stimuli are delivered at loci on a predefined grid [23], limiting it’s use for clinical 

assessment. Recently, our group has shown that more efficient mapping can be performed 

using user-guided selection of stimulation loci based on real time feedback of MEP 

responses [26, 27]. This strategy, however, still requires relatively extensive sessions and, 

more importantly, human expertise in order to create reliable maps. In this contribution, we 

aim at reducing the time and expertise needed to create reliable motor cortex MEP maps by 

selecting stimulus loci using active machine learning strategies.

In the context of machine learning, active learning consists of a family of strategies in which 

learning algorithms take action in selecting procedures or making queries that influence 

what data are added to its training set [3]. Active learning for field estimation finds 

correlates in different applications such as optimal sensor placement [8, 18], active Gaussian 

processes [9], weather forecast [4], kriging [6], brain computer interfaces [17], among 

others. In most of the above-mentioned studies smooth regression strategies based on 

stochastic formulations, more specifically Gaussian Processes (GPs), are naturally coped 

with information-based criteria (Entropy and Mutual information) for (near-) optimal 

location selection [16, 20]. Although such strategies are successful in reducing uncertainty 

and providing smooth estimation across the entire spatial domain, they may wast valuable 

time and resources when the field of interest is conned in a small region of the space. The 

reasoning for this behavior is due to the fact that the GP’s covariance depends exclusively on 

the selected location points neglecting the information provided by the measurements taken 

at these locations. For TMS mapping active learning is a surrogate for human expertise when 

the objective is to optimally select loci and respective MEP measurements used to learn 

MEP spatial fields. Therefore, accounting for the amplitude of the measurement is critical.

Our specific objective here is to find the excitation area (region of interest) and stimulate in 

that region. To this aim, we designed an alternative approach to traditional active learning 

that takes into account the variations of the function to predict optimal future stimulus loci. 

This new design led to an iterative algorithm that alternates between the GP characterization 

of the MEP field and loci selection using entropy and mutual information criteria. 

Differently from previous works which directly considered Gaussian distribution provided 

by the GP for computing the entropy or MI, here, we model the GP mean as a Gaussian 

random variable and construct our loci selection criteria based on this random variable. The 
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resulting algorithm provides results that are much closer to expert user-guided mapping 

strategies, and are faster and more accurate than are given by traditional active GP strategies 

[18]. Simulations with real data was performed to assess the main characteristics of the 

proposed method.

This paper is organized as follows. Section 2 briefly presents the TMS Mapping Procedure. 

Section 3 presents a general discussion about Gaussian Process Regression. Section 4 

presents the proposed active sampling methodology. Experimental results are presented in 

Section 5 and final discussion and future work are discussed in section 6.

2 TRANSCRANIAL MAGNETIC STIMULATION MAPPING PROCEDURE

TMS mapping was conducted on a single healthy right handed subject (male, 34 years old) 

following IRB approved informed consent and screening for contraindications to TMS. TMS 

mapping procedures have been previous published elsewhere [26, 27]. Briefly, the subject 

was seated with the right arm, hand, and fingers comfortably secured in a brace to limit 

motion. Surface electromyographic activity (EMG, Delsys Trigno, 2kHz) was used to record 

motor evoked potentials (MEPs), quantified as the peak-to-peak amplitude 20–50ms after 

the TMS pulse (Figure 1b), from the first dorsal interosseus [FDI] of the right hand. All 

TMS (Magstim Rapid2, 70mm double coil) stimuli were delivered to the left sensorimotor 

area. To assure spatial TMS precision the subject’s head was coregistered to a high-

resolution anatomical MRI for frameless neuronavigation (Advanced Neuro Technology). 

The TMS coil was held tangential to the scalp with the handle posterior 45° off the sagittal 

plane. Following determination of the hotspot the FDI resting motor threshold (RMT) was 

calculated as the minimum intensity required to elicit MEPs > 50μV in the FDI muscle on 

50% of 6 consecutive trials. All mapping was performed with the subject at rest and 

stimulation intensity set to 110% of the determined RMT. During mapping the TMS 

operator choose the 294 stimulus loci at their discretion, based on live feedback of MEP 

amplitude and shape with the goal to maximize the information obtained by increasing the 

density of points in excitable and border regions while placing very few points in null-

response areas (Figure 1a) [27].

3 GAUSSIAN PROCESS FOR TMS MAPPING

Gaussian process (GP) regression methods consist of dening stochastic models for functions 

and performing inference in functional spaces [24]. These methods have been shown to be 

useful in a wide variety of fields and tasks including regression and classification [24], 

detection [11, 12], unmixing [10], and Bayesian optimization [7], to name but a few. This 

section briefly presents the standard Gaussian process regression [24]. Given a set of N 

input-output pairs xk, yk k = 1
N , x ∈ X ⊂ ℝd, y ∈ ℝ related according to an arbitrary model 

such as

yk = ψ xk + ηk (1)

with η N 0, ση2 , and ψ ∈ ℋ considered to be a function of a reproducing kernel Hilbert 

space ℋ defined over a compact set X, GPs assume a Gaussian functional distribution as 
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prior for the function ψ ∣ xk N 0, κ xk, xk , where κ is a kernel function such that 

κ( ⋅ , x) ∈ ℋ. For a set of input points X = [x1, …, xN] the prior distribution for ѱ becomes 

ψ ∣ X N(0, K), where K ∈ ℝN×N is the Gram matrix with entries [K]ij = κ(xi, xj) For a given 

set of measurements y = [y1, …,yN]⊤ associated with the positions X, the prior distribution 

becomes

y N 0, K + ση2I . (2)

The predictive distribution allows one to “predict” the value of the function ѱ★ for a new 

input value x★. Thus, we have ψ⋆ ∣ x⋆ N 0, κ ⋆ ⋆ , where κ ⋆ ⋆ ≜ κ x⋆, x⋆ . Since y and 

ѱ★ are jointly Gaussian their joint PDF is given by

y
ψ⋆

N 0,
K + ση2I κ⋆

κ⋆⊤ κ ⋆ ⋆
, (3)

where κ⋆ ≜ κ x1, x⋆ , …, κ xN, x⋆
⊤. Finally the predictive distribution can be obtained by 

conditioning ѱ★ over the observation and the its respective positions as

ψ⋆ ∣ y, X, x⋆ N ψ⋆, s⋆2 (4)

with ψ⋆ = κ⋆⊤ K + ση2I −1y, and s⋆2 = κ ⋆ ⋆ − κ⋆⊤ K + ση2I −1κ⋆.

The Bayesian framework also provides strategies to estimate free parameters, such as the 

kernel parameters θ and the noise power ση2. The classical approach [24] aims at maximizing 

the marginal likelihood p y ∣ X, ση2, θ  with respect to ση2, θ .

4 ACTIVE SAMPLE SELECTION

Active sample selection finds correlates in many fields and applications such as Optimal 

Sensor placement [8, 18], Active Gaussian processes [9], weather forecast [4], etc. In most 

scenarios the problem is often stated as given a set of input-output pairs (xℓ, yℓ), l ∈ V, V
being the index set of all possible data pairs, select a subset A ⊂ V, with cardinality 

A = nA ≪ V = nV, which can be obtained using some optimality criterion.

The literature presents near-optimal strategies that are often based on information theoretic 

criteria to select appropriate data samples. This copes very well with GPs since GPs 

provides a proper stochastic framework which can be exploit to compute the desired criteria 

[18, 22]. In [8, 18, 22] optimal point selection strategies are presented in conjunction with 

GPs. In these works, the authors consider entropy- and mutual information-based criteria to 

provide a greedy near-optimal strategy which boils down to analyze the variances provided 

by the GP. Although these strategies succeeded in reducing GP uncertainty across the space, 

the variances provided by the GP depend exclusively on the location points xκ neglecting 

completely information regarding field variations. This implies that even if the mapped field 

presents variations conned into a specific region, such methodologies will lead to evenly 
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(depending on the kernel selected) sampling the entire space what can lead to lost of 

resolution in the region of interest.

To circumvent this issue, we propose here an alternative approach that takes into account the 

variations of the function ψ and that are much closer to expert human mapping strategies. 

We use the GP estimation (i.e., the GP mean) ψ to construct an iterative strategy where GP 

estimation and sample selection are performed sequentially.

Thus, given an index set A with respective sample pairs XA, yA  the GP estimation ψp ∈ V
can be obtained by taking the mean of (4). Assuming a zero-mean Gaussian prior for ψp
with covariance κ(∙,∙) we have

ψp N 0, κpp (5)

with κpp ≜ κ ψp, ψp  and the MEP field at selected indices ψA is distributed

ψA N 0, KAA (6)

with KAA ≜ κ ψA, ψA . Now, consider a sample ψl, l ∈ V\A, the joint distribution of ψl
and ψA is given by

ψA
ψl

N 0,
KAA κAl

κAl
⊤ κll

, (7)

with κAl ≜ κ ψA1, ψl , …, κ ψAnA, ψl
⊤

. Using the identity in [1, pg. 87] we have

ψl ∣ ψA N μψl ∣ A, σψl ∣ A
2

(8)

with

μψl ∣ A = κAl
⊤ KAA

−1 ψA (9)

σψl ∣ A
2 = κll − κAl

⊤ KAA
−1 κAl . (10)

Next we present the entropy and MI resulting problems.

4.1 Grid Entropy Criterion

The goal of active learning for our use case is to select future stimulus locations which are 

most informative with respect to the entire grid of possible sampling locations. As said, a 

good conception of uncertainty is the conditional entropy when we consider finite subsets A
of measured locations and V all other possible locations. We can define conditional entropy 

of the available measurement locations V\A after A measured locations,
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H ψV\A ∣ ψA = − ∫ p ψV\A, ψA log p ψV\A ψA dψV\AdψA . (11)

Thus, an informative set of measurements would minimize this conditional entropy leading 

to an optimization problem known to be NP-Complete [15]. To minimize this issue the 

literature presents greedy heuristics in which starting with an initial set A0, A0 = nA0 < nA, 

the algorithm greedily adds new samples until the desired cardinality nA is achieved [18]. In 

such approaches at each iteration the index ℓ maximizing the conditional entropy H ψl ∣ ψA
should be selected, leading to

l* = argmax
l ∈ V\A

H ψl ∣ ψA (12)

where ℓ is a index not in A. The conditional entropy for Gaussian random variables is well 

known and given by [5]

H ψl ∣ ψA = 1
2log 2πeσψl ∣ A

2
(13)

leading to a simple and effective selection strategy. Since log (ζ) is monotonically increasing 

for ζ ∈ ℝ+, problem (12) can be solved by finding the sample index l ∈ V\A, that 

maximizes the quantity

δψ, l
Entropy  = σψl ∣ A

2 = κll − κAl
⊤ KAA

−1 κAl . (14)

4.2 Mutual Information

A known issue with the entropy criterion discussed above is the tendency to select loci along 

the edges of the sample space. This issue can be understood by the fact that the entropy grid 

approach aims at selecting the ψl with largest variance σψl ∣ A. These uncertainties are 

known to be larger in the edges of the sampling space specially when more flexible 

interpolation methods are considered [13].

An alternative approach, proposed by Caselton and Zidek [2], is based on the mutual 

information (MI) of random variables within the set A and in V\A. This strategy leads to an 

optimization criterion that searches for the subset of locations that most significantly reduce 

the uncertainty about the estimates in the rest of the space [18]. Different from the entropy, 

the MI criterion tends to find loci that are most informative about the unstimulated locations. 

The resulting optimization problem aims at maximizing the mutual information 

I ψV\A; ψA = H ψV\A − H ψV\A ∣ ψA  and can be also shown to be NP-Complete.

In [18], a greedy approximation algorithm was presented which reduces to select the next 

sampling point that provides the maximum increase in mutual information I ψV\A; ψA .
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Krause described an approximation for maximizing mutual information [18] which led to a 

greedy algorithm. The idea is to at each iteration select the location that provides the 

maximum increase in mutual information. Thus, at each iteration the goal is to greedily 

select the location index l ∈ V that maximizes

I ψVA ∪ l; ψA ∪ l − I ψV\A; ψA
= H ψl ∣ ψA − H ψl ∣ ψV\A
= log σψl ∣ A

2 − log σψl ∣ V\A
2 + cte

(15)

where cte is a constant.

This leads to selecting a location that provides the largest variance ratio

δψ, l
MI =

κll − κAl
⊤ KAA

−1 κAl

κll − κAl
⊤ KAA

−1 κAl
(16)

where A = VA ∪ l.

4.3 The sampling algorithm

The proposed iterative methodology is summarized in Algorithm 1. It is designed to work 

with a set of selectable points V and assumes prior knowledge of the kernel parameters θ, 

Besides V and θ, the inputs of Algorithm 1 are the initial index set A0 and respective 

measurements yA0, the set of all possible loci XV and the final desired cardinality nA. The 

algorithm follows a iterative sequence interchanging between computing δψ,ℓ for all 

l ∈ V\A lines 4–6, finding the optimal index (line 7) and MEP field estimation in lines 2 and 

10. When a new index ℓ* is selected (line 7) and included in the set of selected indices (line 

8) a new measurement, yℓ*, is obtained at the respective location xℓ* (line 9). When the 

desired cardinality is achieved the algorithim performs a GP fit (line 12) and. estimation 

(line 13), and return the set of selected indices A and the final MEP field estimation ψV for 

all set XV.
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5 EXPERIMENTS

In this section we present our simulation of experimental results using the active GP for 

MEP interpolation and TMS mapping for one subject. We compare the methodology 

proposed in Section 4 using Entropy and MI, namely, Entropyψ and MIψ with the 

Entropyψ and MI directly using the GP distribution [18], and a Random (uniform) point 

selection TMS mapping approach.

To assess the performance of the different algorithms we resort to a metric: the normalized 

mean squared error (NMSE), between the target function and the predicted map. NMSE is 

given by the formula:

NMSE(ψ, ψ) =
ψ − ψ 2

2

ψ 2
2

where ψ is the vector containing the MEP amplitudes of the target function and ψ is the GP 

estimation using the set of selected points.

Monte Carlo simulations with nMC = 100 runs were also performed to assess the mean 

behavior and standard deviation of the different methods. For all simulations a initial set A0
with cardinality A = 20 was selected randomly, and the kernel parameters θ were fixed and 

assumed to be known a priori.

5.1 Data-set derived from human expert mapping

The experimental dataset was composed of 282 of 293 stimuli obtained from a healthy 

human participant using a user guided approach. Eleven stimuli were excluded for excessive 

subject head movement, poor coil placement or voluntary muscle contraction. The data was 

concatenated and a GP was used to interpolate all available points. Figure 2 presents the 

resulting GP interpolation in 3D (left) and 2D (right). The black circles in the right panel are 

the points selected by the human expert.
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For all subsequent simulations we used the GP interpolated map of Figure 2 as our target 

function (ground truth).

5.2 Results

The results discussed in this section are summarized in Figures 3 and 4 and Table 1 for the 5 

selected methods. For all 5 methods the nal cardinality was nA = 282 including the 20 initial 

points assumed in A0, that is, a total of 262 new points were selected using each one of the 

selected methods.

Figure 3 shows the estimated maps and selected points provided by each method. When 

comparing with the target function, Figure 2, a simple visual inspection shows a clear 

superiority of the results obtained with MIψ (Figure 3a) and Entropyψ (Figure 3c) since the 

resulting maps captured the two main peaks of the cortical topography as well as the smaller 

side-lobes. This contrasts with the more bell-shaped maps obtained by using the other 

methodologies. When analyzing the selected points for all methods, the proposed strategies 

(Figures 3d and 3b) concentrated the selected loci in the region of interest. The reasoning for 

this behavior follows from the fact that the proposed strategy selects locations based on the 

GP mean values instead of spatial locations that are uncorrelated with the field amplitude. 

This also explains the more uniform spread obtained with Entropy and MI in Figures 3d 

and 3h, respectively. Monte Carlo simulations were also performed and are presented in 

Figure 4 where the NMSE mean (solid color) and standard deviation (STD) (transparent 

shade) for the number of samples used is depicted for all 5 methods. The plots show that for 

all methods the NMSE and the STD decreased as n increases. Although all methods present 

high STD for n < 100, the MI presents the best average performance followed by MIψ. 

When n > 100, Entropyψ outperforms the competing methods presenting both smaller 

average NMSE and STD, and displaying convergence at n > 150. MIψ also converges for n 
> 230 presenting a comparable average NMSE and STD to the Entropyψ and outperforming 

the other competing methods. The final results for n = 262 are presented in Table 1 showing 

that the proposed methodology clearly outperformed the competing algorithms and 

corroborating the conclusions obtained by the visual inspection of Figures 2 and 3.

6 CONCLUSIONS

In this paper we proposed an active GP strategy for TMS mapping. The proposed method 

modied the usual GP-Entropy/ MI-based selection criteria by modeling the GP mean as a 

Gaussian random variable. The experiments show that the proposed strategies (MIψ and 

Entropyψ) is suitable for localizing and sampling the region of the space containing most of 

the the fields variation. The results also show a trade-off among the different algorithms. 

When the number of samples is very small (n < 100) more exploratory strategies (MI, 

Entropy, and Random) lead to smaller average NMSE. When more samples are available, n 
> 100 the proposed method (MIψ and Entropyψ) clearly show better convergence rates and 

accuracy. Our results indicate that the proposed method was able to mimic user expertise 

reducing the need for TMS operator training. Reducing the need for expertise in TMS 

mapping could eliminate a potential barrier to use of TMS mapping of motor topography as 

biomarker of pathology or to track recovery due to intervention. More widespread use of 
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TMS in this fashion will likely increase our understanding of who may recovery from 

intervention, thereby increasing the effectiveness of rehabilitation [27]. Recently, several 

robotic TMS positioning systems have become commercially available [14]. Combining 

active learning for the selection of stimulus loci during automated TMS mapping of motor 

topography using robotic positioning would even further reduce barriers of use. 

Additionally, the proposed Entropyψ method was able to achieve maximal accuracy with 

only ~150 stimulations. At a commonly used inter-stimulus interval of 4 seconds, this means 

that mapping could be achieved in as little as 10 minutes. This increased efficiency is critical 

for the use of TMS mapping in populations who may not tolerate prolonged mapping such 

as individuals in the acute period of recovery from stroke sessions, or for the measurement 

of transient changes in cortical representations due to intervention. Natural extensions of this 

work are related to considering methodologies for recursive parameter estimation for GPs 

allowing for a completely blind strategy, providing theoretical convergence analysis and 

proposing new sampling criteria that can balance an initial exploratory analysis (such as the 

one obtained by the MI) with the more region focused criteria such as the proposed 

strategies.
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CCS CONCEPTS

• Theory of computation → Active learning; Gaussian processes; • Applied computing 

→ Health informatics.
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Figure 1: 
A graphical depiction of the analysis of MEP maps: (a) User points on the brain. (b) MEP 

signal and peak-to-peak amplitude
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Figure 2: 
Target function / Expert Human Mapper. X, Y axes represent anterior-posterior and lateral-

medial directions, respectively. MEP amplitude is presented in microvolts (μV)on the Z axis.
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Figure 3: 
Results comparing different point selection methods.
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Figure 4: 
NMSE for test the algorithms (n: number of stimuli).
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Table 1:

Final NMSE for predicted map

Method NMSE

MIψ 0.021 ± 0.006

Entropyψ 0.029 ± 0.003

Random 0.122 ± 0.055

MI 0.119 ± 0.035

Entropy 0.115 ± 0.038
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